1
|
Alsabri M, Attalla A, Abdelrahman ST, Elsnhory AB, Abo-Elnour DE, Aderinto N, Ukoaka BM, Alqeeq BF, Gamboa LL. Systematic review of case series and case reports on pediatric pulmonary embolism. J Med Case Rep 2025; 19:76. [PMID: 40011940 DOI: 10.1186/s13256-025-05084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Pediatric pulmonary embolism is a rare yet potentially life-threatening condition, presenting significant diagnostic and therapeutic challenges owing to its nonspecific symptoms and diverse underlying risk factors. This systematic review aims to consolidate data from case series and case reports to provide a comprehensive overview of pediatric pulmonary embolism, focusing on clinical characteristics, diagnostic approaches, treatment strategies, and outcomes. METHODS This systematic review was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines and the Cochrane Handbook for Systematic Reviews of Interventions, version 6.3. The study protocol was registered with PROSPERO (ID: CRD42024532471). We utilized the Covidence systematic review software for deduplication and screening of search results. The literature search was developed with a subject specialist and included Medical Subject Headings terms and free-text keywords such as "pulmonary embolism," "pediatric," and "case reports." Databases searched included PubMed, Scopus, Web of Science, and the Cochrane Library up to April 2024, limited to English-language publications. Reference lists of relevant articles were also reviewed. RESULTS Pulmonary embolism affected males and females with age ranging from 1 to 18 years. Common underlying conditions included malignancies (for example, Wilms tumor), chronic diseases (for example, nephrotic syndrome), and recent surgical interventions. Diagnostic practices primarily relied on computed tomography pulmonary angiography, supplemented by chest X-ray and ultrasound. Treatment typically involved anticoagulation therapy with unfractionated heparin and low-molecular-weight heparin, transitioning to oral anticoagulants for long-term management. Thrombolytic therapy was used in severe cases. Outcomes varied, with many patients recovering well, though complications such as recurrent embolism and pleural effusion were observed. Fatal cases underscored the critical need for early detection and prompt treatment. CONCLUSION This systemic review underscores the rarity and complexity of pediatric pulmonary embolism, highlighting the necessity for increased clinical vigilance given its nonspecific presentation and diverse underlying risk factors. Accurate diagnosis, primarily via computed tomography pulmonary angiography, with the prompt initiation of anticoagulation therapy are essential for optimal outcomes. Despite favorable recovery rates for most patients, the potential for severe complications and fatalities reinforces the value of timely diagnosis and personalized management approaches. Further research is essential to refine diagnostic protocols, optimize treatment approaches, establish evidence-based guidelines, and improve long-term outcomes for children with pulmonary embolism.
Collapse
Affiliation(s)
- Mohammed Alsabri
- Emergency Department, Althawara Modern General Hospital, Sanaa, Yemen.
- Pediatric Emergency Department, St. Christopher'S Hospital for Children, Philadelphia, PA, USA.
| | | | | | | | | | - Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Basel F Alqeeq
- Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine
| | - Luis L Gamboa
- Assistant Professor of Pediatrics, Drexel University College of Medicine, Philadelphia, USA
- Program Director, Pediatric Emergency Medicine Fellowship, St. Christopher'S Hospital for Children, Philadelphia, USA
| |
Collapse
|
2
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
3
|
Kumari P, Sharma S, Sharma PK, Alam A. Treatment Management of Diabetic Wounds Utilizing Herbalism: An Overview. Curr Diabetes Rev 2023; 19:92-108. [PMID: 35306989 DOI: 10.2174/1573399818666220318095320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Diabetes Mellitus, commonly known as DM, is a metabolic disorder which is characterized by high blood glucose level, i.e., chronic hyperglycemia. If it is not managed properly, DM can lead to many severe complexities with time and can cause significant damage to the kidneys, heart, eyes, nerves and blood vessels. Diabetic foot ulcers (DFU) are one of those major complexities which affect around 15-25% of the population diagnosed with diabetes. Due to diabetic conditions, the body's natural healing process slows down leading to longer duration for healing of wounds only when taken care of properly. Herbal therapies are one of the approaches for the management and care of diabetic foot ulcer, which utilizes the concept of synergism for better treatment options. With the recent advancement in the field of nanotechnology and natural drug therapy, a lot of opportunities can be seen in combining both technologies and moving towards a more advanced drug delivery system to overcome the limitations of polyherbal formulations. METHODS During the writing of this document, the data was derived from existing original research papers gathered from a variety of sources such as PubMed, ScienceDirect, Google Scholar. CONCLUSION Hence, this review includes evidence about the current practices and future possibilities of nano-herbal formulation in treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Priya Kumari
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| |
Collapse
|
4
|
Luo G, Wang C, Li J, Zhang X, Sun Z, Song S, Fan C. Thrombin improves diabetic wound healing by ERK dependent and independent Smad2/3 linker region phosphorylation. Curr Pharm Des 2022; 28:1433-1443. [PMID: 35546767 DOI: 10.2174/1381612828666220511125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired wound healing is one of the most noteworthy features and troublesome complications of diabetes mellitus, which arouse a rising global health concern but without potent remedies. Thrombin is the major hemostatic agent applied at wound healing initiation and recently gained therapeutic credits in later phases. However, a rare investigation achieved prolonged use of thrombin and probed the detailed mechanism. OBJECTIVE To investigate the effects and mechanism of thrombin on diabetic skin wound healing. METHODS The effect of thrombin on fibroblast proliferation, α-SMA, and Collagen I expression was firstly studied in vitro by Cell Counting Kit 8 (CCK8) and western blotting. Then, the specific phosphorylation site of SMAD2/3 and their ERK1/2 dependence during thrombin treatment were assessed by western blotting for mechanism exploration. After that, full-thickness wound defects were established in diabetic male SD rats and treated with thrombin in the presence or absence of PD98059 to observe the in vivo effects of thrombin and to confirm its ERK dependence. RESULTS We found that thrombin promoted fibroblast proliferation and their α-SMA and Collagen I production. Mechanistically, thrombin induced phosphorylation of Smad2 linker region (Ser245/250/255) through ERK1/2 phosphorylation but promoted phosphorylation of Smad3 linker region (Ser204) independent of ERK1/2. Histological results showed that thrombin facilitated wound healing by promoting α-SMA and Collagen I expression, which was not abolished by inhibiting ERK phosphorylation. CONCLUSION Collectively, this study validated the therapeutic efficacy of thrombin on diabetic wound healing and identified both ERK-dependent and -independent Smad2/3 linker region phosphorylation as the essential signaling events in this process.
Collapse
Affiliation(s)
- Gang Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, 600 Yishan Rd, Shanghai 200233, PR China
| | - Chongyang Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, 600 Yishan Rd, Shanghai 200233, PR China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, 600 Yishan Rd, Shanghai 200233, PR China
| | - Xuancheng Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, 600 Yishan Rd, Shanghai 200233, PR China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, 600 Yishan Rd, Shanghai 200233, PR China
| | - Sa Song
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, 600 Yishan Rd, Shanghai 200233, PR China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, 600 Yishan Rd, Shanghai 200233, PR China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, China
| |
Collapse
|
5
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Patel S, Pragati, Dwivedi SD, Yadav K, Kanwar JR, Singh MR, Singh D. Pathogenesis and Molecular Targets in Treatment of Diabetic Wounds. OBESITY AND DIABETES 2020:747-758. [DOI: 10.1007/978-3-030-53370-0_55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019; 112:108615. [PMID: 30784919 DOI: 10.1016/j.biopha.2019.108615] [Citation(s) in RCA: 500] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Wound management in diabetic patient is of an extreme clinical and social concern. The delayed and impaired healing makes it more critical for research focus. The research on impaired healing process is proceeding hastily evident by new therapeutic approaches other than conventional such as single growth factor, dual growth factor, skin substitutes, cytokine stimulators, cytokine inhibitors, matrix metalloproteinase inhibitors, gene and stem cell therapy, extracellular matrix and angiogenesis stimulators. Although numerous studies are available that support delayed wound healing in diabetes but detailed mechanistic insight including factors involved and their role still needs to be revealed. This review mainly focuses on the molecular cascades of cytokines (with growth factors) and erstwhile factors responsible for delayed wound healing, molecular targets and recent advancements in complete healing and its cure. Present article briefed recent pioneering information on possible molecular targets and treatment strategies including clinical trials to clinicians and researchers working in similar area.
Collapse
Affiliation(s)
- Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India.
| |
Collapse
|
8
|
Leung LLK, Morser J. Carboxypeptidase B2 and carboxypeptidase N in the crosstalk between coagulation, thrombosis, inflammation, and innate immunity. J Thromb Haemost 2018; 16:S1538-7836(22)02219-X. [PMID: 29883024 DOI: 10.1111/jth.14199] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Two basic carboxypeptidases, carboxypeptidase B2 (CPB2) and carboxypeptidase N (CPN) are present in plasma. CPN is constitutively active, whereas CPB2 circulates as a precursor, procarboxypeptidase B2 (proCPB2), that needs to be activated by the thrombin-thrombomodulin complex or plasmin bound to glycosaminoglycans. The substrate specificities of CPB2 and CPN are similar; they both remove C-terminal basic amino acids from bioactive peptides and proteins, thereby inactivating them. The complement cascade is a cascade of proteases and cofactors activated by pathogens or dead cells, divided into two phases, with the second phase only being triggered if sufficient C3b is present. Complement activation generates anaphylatoxins: C3a, which stimulates macrophages; and C5a, which is an activator and attractant for neutrophils. Pharmacological intervention with inhibitors has shown that CPB2 delays fibrinolysis, whereas CPN is responsible for systemic inactivation of C3a and C5a. Among mice genetically deficient in either CPB2 or CPN, in a model of hemolytic-uremic syndrome, Cpb2-/- mice had the worst disease, followed by Cpn-/- mice, with wild-type (WT) mice being the most protected. This model is driven by C5a, and shows that CPB2 is important in inactivating C5a. In contrast, when mice were challenged acutely with cobra venom factor, the reverse phenotype was observed; Cpn-/- mice had markedly worse disease than Cpb2-/- mice, and WT mice were resistant. These observations need to be confirmed in humans. Therefore, CPB2 and CPN have different roles. CPN inactivates C3a and C5a generated spontaneously, whereas proCPB2 is activated at specific sites, where it inactivates bioactive peptides that would overwhelm CPN.
Collapse
Affiliation(s)
- L L K Leung
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - J Morser
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
9
|
Godoy JA, Carneiro GD, Sielski MS, Barbosa GO, Werneck CC, Vicente CP. Combined dermatan sulfate and endothelial progenitor cell treatment: action on the initial inflammatory response after arterial injury in C57BL/6 mice. Cytotherapy 2015; 17:1447-64. [DOI: 10.1016/j.jcyt.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 01/23/2023]
|
10
|
Sabino F, Hermes O, Egli FE, Kockmann T, Schlage P, Croizat P, Kizhakkedathu JN, Smola H, auf dem Keller U. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates. Mol Cell Proteomics 2014; 14:354-70. [PMID: 25516628 DOI: 10.1074/mcp.m114.043414] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteases control complex tissue responses by modulating inflammation, cell proliferation and migration, and matrix remodeling. All these processes are orchestrated in cutaneous wound healing to restore the skin's barrier function upon injury. Altered protease activity has been implicated in the pathogenesis of healing impairments, and proteases are important targets in diagnosis and therapy of this pathology. Global assessment of proteolysis at critical turning points after injury will define crucial events in acute healing that might be disturbed in healing disorders. As optimal biospecimens, wound exudates contain an ideal proteome to detect extracellular proteolytic events, are noninvasively accessible, and can be collected at multiple time points along the healing process from the same wound in the clinics. In this study, we applied multiplexed Terminal Amine Isotopic Labeling of Substrates (TAILS) to globally assess proteolysis in early phases of cutaneous wound healing. By quantitative analysis of proteins and protein N termini in wound fluids from a clinically relevant pig wound model, we identified more than 650 proteins and discerned major healing phases through distinctive abundance clustering of markers of inflammation, granulation tissue formation, and re-epithelialization. TAILS revealed a high degree of proteolysis at all time points after injury by detecting almost 1300 N-terminal peptides in ∼450 proteins. Quantitative positional proteomics mapped pivotal interdependent processing events in the blood coagulation and complement cascades, temporally discerned clotting and fibrinolysis during the healing process, and detected processing of complement C3 at distinct time points after wounding and by different proteases. Exploiting data on primary cleavage specificities, we related candidate proteases to cleavage events and revealed processing of the integrin adapter protein kindlin-3 by caspase-3, generating new hypotheses for protease-substrate relations in the healing skin wound in vivo. The data have been deposited to the ProteomeXchange Consortium with identifier PXD001198.
Collapse
Affiliation(s)
- Fabio Sabino
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Olivia Hermes
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabian E Egli
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Tobias Kockmann
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Pascal Schlage
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Pierre Croizat
- §Paul Hartmann AG, Paul Hartmann Strasse 12, 89522 Heidenheim, Germany
| | - Jayachandran N Kizhakkedathu
- ¶University of British Columbia, Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Hans Smola
- §Paul Hartmann AG, Paul Hartmann Strasse 12, 89522 Heidenheim, Germany
| | - Ulrich auf dem Keller
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland;
| |
Collapse
|
11
|
Wyseure T, Declerck PJ. Novel or expanding current targets in fibrinolysis. Drug Discov Today 2014; 19:1476-82. [PMID: 24886765 DOI: 10.1016/j.drudis.2014.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022]
Abstract
Globally the leading cause of long-term disability and mortality stems from cardiovascular diseases, which creates an enormous economic burden. Currently available treatments for intravascular thrombosis consist of a large repertoire of antithrombotic agents targeting coagulation and platelet function. However, the only agents available to enhance fibrinolysis are recombinant or modified forms of plasminogen activators. Their clinical use is limited by low efficacy, life-threatening side-effects (primarily caused by the high systemic dose required) and the inapplicability for prophylactic use. This review provides an update on the latest advances in targeting the antifibrinolytic proteins, plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor, and will highlight novel therapeutic avenues to enhance fibrinolysis.
Collapse
Affiliation(s)
- Tine Wyseure
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul J Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Abstract
OBJECTIVES We have previously shown that stromal cell-derived factor-1α (SDF-1α) is downregulated within diabetic cutaneous wounds, and that direct application of recombinant SDF-1α increases wound closure rates, neovascularization, and endothelial progenitor cell (EPC) recruitment. However, increased wound levels of exogenous SDF-1α results in elevated systemic levels of this proangiogenic chemokine that raises concerns for tumorigenesis and inflammation. We now seek to test the efficacy of a novel, safer cell-based therapy (CBT) employing ex vivo primed bone marrow-derived stem cells (BMDSC) with SDF-1α. We also elucidate the mechanism of action of this new approach for accelerating diabetic wound healing. METHODS Unfractionated BMDSC from diabetic Lepr mice were incubated for 20 hours with SDF-1α (100 ng/mL) or bovine serum albumin (control). Pretreated BMDSC (1 × 10) were injected subcutaneously into full-thickness skin wounds in Lepr mice (n = 8 per group). Wound closure rates, capillary density, and the recruitment of EPC were assessed with serial photography, DiI perfusion, confocal microscopy, and immunohistochemistry. The expression of molecular targets, which may mediate prohealing/proangiogenic effects of SDF-1α-primed BMDSC was evaluated by polymerase chain reaction array and immunoblotting assay. The biological function of a potential mediator was tested in a mouse wound-healing model. Serum SDF-1α levels were measured with enzyme-linked immunosorbent assay (ELISA). RESULTS SDF-1α-primed BMDSC significantly promote wound healing (P < 0.0001), neovascularization (P = 0.0028), and EPC recruitment (P = 0.0059). Gene/protein expression studies demonstrate upregulation of Ephrin Receptor B4 and plasminogen as downstream targets potentially mediating the prohealing and proangiogenic responses. Ex vivo BMDSC activation and the subsequent inoculation of cells into wounds does not increase systemic SDF-1α levels. CONCLUSIONS We report a novel CBT that is highly effective in promoting healing and neovascularization in a murine model of type 2 diabetes. Furthermore, we identify new molecular targets that may be important for advancing the field of wound healing.
Collapse
|
13
|
Siller-Matula JM, Schwameis M, Blann A, Mannhalter C, Jilma B. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects. Thromb Haemost 2011; 106:1020-33. [PMID: 21979864 DOI: 10.1160/th10-11-0711] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 09/11/2011] [Indexed: 12/16/2022]
Abstract
Thrombin is the central protease in the coagulation cascade and one of the most extensively studied of all enzymes. In addition to its recognised role in the coagulation cascade and haemostasis, thrombin is known to have multiple pleiotropic effects, which mostly have been shown only in in vitro studies: it plays a role in inflammation and cellular proliferation and displays a mitogen activity on smooth muscle cells and endothelial cells, predominantly by activation of angiogenesis. In vivo , thrombin effects were examined in animal models of intravenous or intraarterial thrombin infusion. An extensive literature search regarding in vivo data showed that i) thrombin administered as a bolus causes microembolism, ii) thrombin infused slowly at steady-state conditions (up to 1.6 U/kg/min) leads to bleeds but not to intravascular clotting, iii) large quantity of thrombin infused at low rates (0.05 U/kg/min) does not have any measurable effect, and iv) thrombin increases vascular permeability leading to tissue damage. Although several decades of research on thrombin functions have provided a framework for understanding the biology of thrombin, animal and human studies with use of newer laboratory techniques are still needed to confirm the pleiotropic thrombin functions shown in in vitro studies.
Collapse
Affiliation(s)
- Jolanta M Siller-Matula
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|