1
|
Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Sykes G, Jickling G. Association of Thrombin Generation With Leukocyte Inflammatory Profile in Patients With Acute Ischemic Stroke. Neurology 2022; 99:e1356-e1363. [PMID: 35790427 PMCID: PMC9576286 DOI: 10.1212/wnl.0000000000200909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Thrombosis is central to the pathogenesis of acute ischemic stroke, with higher thrombin generation being associated with increased stroke risk. The immune system may contribute to thrombin generation in stroke and thus may offer novel strategies for stroke prevention. This study addresses the research question regarding the relationship of thrombin generation to leukocyte gene expression in patients with acute ischemic stroke. METHODS We isolated RNA from whole blood and examined the relationship to thrombin generation capacity in patients with acute ischemic stroke. Due to its effects on thrombin generation, patients on anticoagulants were excluded from the study. The relationship of gene expression with peak thrombin was evaluated by analysis of covariance across peak thrombin quartiles adjusted for sex and age. RESULTS In 97 patients with acute ischemic stroke, peak thrombin was variable, ranging from 252.0 to 752.4 nM. Increased peak thrombin was associated with differences in thromboinflammatory leukocyte gene expression, including a decrease in ADAM metallopeptidase with thrombospondin type 1 motif 13 and an increase in nuclear factor κB (NF-κB)-activating protein, protein disulfide isomerase family A member 5, and tissue factor pathway inhibitor 2. Pathways associated with peak thrombin included interleukin 6 signaling, thrombin signaling, and NF-κB signaling. A linear discriminant analysis model summarizing the immune activation associated with peak thrombin in a first cohort of stroke could distinguish patients with low peak thrombin from high peak thrombin in a second cohort of 112 patients with acute ischemic stroke. DISCUSSION The identified genes and pathways support a role of the immune system contributing to thrombus formation in patients with stroke. These may have relevance to antithrombotic strategies for stroke prevention.
Collapse
Affiliation(s)
- Sarina Falcione
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Danielle Munsterman
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Twinkle Joy
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Joseph Kamtchum-Tatuene
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Gina Sykes
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Glen Jickling
- From the Division of Neurology (S.F., D.M., T.J., G.S., G.J.), Department of Medicine, and Neuroscience and Mental Health Institute (J.K.-T.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Migdalski A, Jawien A. New insight into biology, molecular diagnostics and treatment options of unstable carotid atherosclerotic plaque: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1207. [PMID: 34430648 PMCID: PMC8350668 DOI: 10.21037/atm-20-7197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
Indications for intervention in hemodynamically relevant carotid artery stenosis (carotid endarterectomy or stenting) are primarily based on a degree of stenosis and symptomatology. To date the plaque vulnerability is rarely taken into account in clinical decision making although development of molecular imaging allows a better understanding of plaque biology and provides new techniques detecting potentially vulnerable plaque at risk. A significant number of reports describing the mechanisms of unstable plaque formation suggest that it is a multifactorial process. Inflammation, lipid accumulation, apoptosis, proteolysis, the thrombotic process and angiogenesis are among the main factors of carotid plaque destabilization. Although inflammation is a key process in development of plaque vulnerability, the hemostasis and neoangiogenesis should be regarded as equally important. Only a small group of asymptomatic patients may benefit from the invasive treatment and it remains a challenge to determine whether initially asymptomatic carotid plaque become unstable or vulnerable. Currently, the main task of research on atherosclerotic lesion imaging is focused on functional state of the plaque. The presence of one or more features such as stenosis progression, large plaque area, large juxta-luminal black area, plaque echolucency, intra-plaque hemorrhage, impaired cerebral vascular reserve and spontaneous embolization may indicate patients at higher risk for stroke suitable for revascularization. Treatment of carotid stenosis as one of the manifestations of generalized atherosclerosis requires a broad approach. Nowadays pharmacological treatment options for the atherosclerotic process are largely aimed at stimulating the plaque stabilization, but in symptomatic patients and selected asymptomatic patients, carotid plaque should be removed as a potential source of embolism.
Collapse
Affiliation(s)
- Arkadiusz Migdalski
- Department of Vascular Surgery and Angiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Arkadiusz Jawien
- Department of Vascular Surgery and Angiology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
3
|
Espada S, Stavik B, Holm S, Sagen EL, Bjerkeli V, Skjelland M, Dahl TB, Espevik T, Kanse S, Sandset PM, Skretting G, Halvorsen B. Tissue factor pathway inhibitor attenuates ER stress-induced inflammation in human M2-polarized macrophages. Biochem Biophys Res Commun 2017; 491:442-448. [PMID: 28712870 DOI: 10.1016/j.bbrc.2017.07.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress has been shown to play a key role during the initiation and clinical progression of the cardiovascular diseases, such as atherosclerosis. We have recently shown that expression of tissue factor pathway inhibitor (TFPI) in human monocyte-derived macrophages (MDMs) was induced by cholesterol crystals (CC). In the present study we aimed to determine the role of TFPI under ER stress conditions using human MDMs. qRT-PCR and immunohistochemistry analysis were performed to determine the presence of the ER stress marker CCAAT/enhancer binding protein homologous protein (CHOP) and TFPI in human carotid plaque material and also in human MDMs polarized into pro-inflammatory M1 or anti-inflammatory M2 populations. CHOP mRNA levels were upregulated in the plaques compared to healthy vessels, and CHOP protein was localized in the same area as TFPI in the plaques. Both CHOP and TFPI mRNA levels were upregulated after CC treatment, especially in the M2 phenotype, and the ER stress inhibitor 4-phenylbutyric acid (PBA) reversed this effect. Furthermore, CC treatment increased the levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-8, which for TNF-α and IL-8 was inhibited by PBA, and reduced the levels of the anti-inflammatory cytokine IL-10 in M2-polarized macrophages. Knockdown of TFPI prior to CC treatment exacerbated TNF-α and IL-6 levels, but reduced IL-8 and IL-10 levels. Our results show that CC induce TFPI and cytokine expression in M2-polarized macrophages through activation of the ER stress pathway and that TFPI has a protective effect against TNF-α and IL-6 mediated inflammation. These mechanisms may have implications for the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Sandra Espada
- Department of Haematology, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Benedicte Stavik
- Department of Haematology, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway.
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Department of Microbiology, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sandip Kanse
- Department of Haematology, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Grethe Skretting
- Department of Haematology, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, BOX 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| |
Collapse
|