1
|
Palomares DE, Tran PL, Jerman C, Momayez M, Deymier P, Sheriff J, Bluestein D, Parthasarathy S, Slepian MJ. Vibro-Acoustic Platelet Activation: An Additive Mechanism of Prothrombosis with Applicability to Snoring and Obstructive Sleep Apnea. Bioengineering (Basel) 2023; 10:1414. [PMID: 38136005 PMCID: PMC10741028 DOI: 10.3390/bioengineering10121414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Introduction: Obstructive sleep apnea (OSA) and loud snoring are conditions with increased cardiovascular risk and notably an association with stroke. Central in stroke are thrombosis and thromboembolism, all related to and initiaing with platelet activation. Platelet activation in OSA has been felt to be driven by biochemical and inflammatory means, including intermittent catecholamine exposure and transient hypoxia. We hypothesized that snore-associated acoustic vibration (SAAV) is an activator of platelets that synergizes with catecholamines and hypoxia to further amplify platelet activation. Methods: Gel-filtered human platelets were exposed to snoring utilizing a designed vibro-acoustic exposure device, varying the time and intensity of exposure and frequency content. Platelet activation was assessed via thrombin generation using the Platelet Activity State assay and scanning electron microscopy. Comparative activation induced by epinephrine and hypoxia were assessed individually as well as additively with SAAV, as well as the inhibitory effect of aspirin. Results: We demonstrate that snore-associated acoustic vibration is an independent activator of platelets, which is dependent upon the dose of exposure, i.e., intensity x time. In snoring, acoustic vibrations associated with low-frequency sound content (200 Hz) are more activating than those associated with high frequencies (900 Hz) (53.05% vs. 22.08%, p = 0.001). Furthermore, SAAV is additive to both catecholamines and hypoxia-mediated activation, inducing synergistic activation. Finally, aspirin, a known inhibitor of platelet activation, has no significant effect in limiting SAAV platelet activation. Conclusion: Snore-associated acoustic vibration is a mechanical means of platelet activation, which may drive prothrombosis and thrombotic risk clinically observed in loud snoring and OSA.
Collapse
Affiliation(s)
- Daniel E. Palomares
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85724, USA;
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85724, USA; (P.L.T.); (M.M.); (P.D.); (S.P.)
| | - Phat L. Tran
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85724, USA; (P.L.T.); (M.M.); (P.D.); (S.P.)
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Catherine Jerman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Moe Momayez
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85724, USA; (P.L.T.); (M.M.); (P.D.); (S.P.)
- Department of Mining & Geological Engineering, University of Arizona, Tucson, AZ 85724, USA
| | - Pierre Deymier
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85724, USA; (P.L.T.); (M.M.); (P.D.); (S.P.)
- Department of Materials Science & Engineering, University of Arizona, Tucson, AZ 85724, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (J.S.); (D.B.)
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (J.S.); (D.B.)
| | - Sairam Parthasarathy
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85724, USA; (P.L.T.); (M.M.); (P.D.); (S.P.)
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- Health Sciences Center for Sleep and Circadian Sciences, University of Arizona, Tucson, AZ 85724, USA
| | - Marvin J. Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85724, USA;
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85724, USA; (P.L.T.); (M.M.); (P.D.); (S.P.)
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; (J.S.); (D.B.)
| |
Collapse
|
2
|
Deng Y, Tay HM, Zhou Y, Fei X, Tang X, Nishikawa M, Yatomi Y, Hou HW, Xiao TH, Goda K. Studying the efficacy of antiplatelet drugs on atherosclerosis by optofluidic imaging on a chip. LAB ON A CHIP 2023; 23:410-420. [PMID: 36511820 DOI: 10.1039/d2lc00895e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vascular stenosis caused by atherosclerosis instigates activation and aggregation of platelets, eventually resulting in thrombus formation. Although antiplatelet drugs are commonly used to inhibit platelet activation and aggregation, they unfortunately cannot prevent recurrent thrombotic events in patients with atherosclerosis. This is partially due to the limited understanding of the efficacy of antiplatelet drugs in the complex hemodynamic environment of vascular stenosis. Conventional methods for evaluating the efficacy of antiplatelet drugs under stenosis either fail to simulate the hemodynamic environment of vascular stenosis characterized by high shear stress and recirculatory flow or lack spatial resolution in their analytical techniques to statistically identify and characterize platelet aggregates. Here we propose and experimentally demonstrate a method comprising an in vitro 3D stenosis microfluidic chip and an optical time-stretch quantitative phase imaging system for studying the efficacy of antiplatelet drugs under stenosis. Our method simulates the atherogenic flow environment of vascular stenosis while enabling high-resolution and statistical analysis of platelet aggregates. Using our method, we distinguished the efficacy of three antiplatelet drugs, acetylsalicylic acid (ASA), cangrelor, and eptifibatide, for inhibiting platelet aggregation induced by stenosis. Specifically, ASA failed to inhibit stenosis-induced platelet aggregation, while eptifibatide and cangrelor showed high and moderate efficacy, respectively. Furthermore, we demonstrated that the drugs tested also differed in their efficacy for inhibiting platelet aggregation synergistically induced by stenosis and agonists (e.g., adenosine diphosphate, and collagen). Taken together, our method is an effective tool for investigating the efficacy of antiplatelet drugs under vascular stenosis, which could assist the development of optimal pharmacologic strategies for patients with atherosclerosis.
Collapse
Affiliation(s)
- Yunjie Deng
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuqi Zhou
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Xueer Fei
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Xuke Tang
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-0033, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-0033, Japan
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Ting-Hui Xiao
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
- Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
- CYBO, Tokyo 101-0022, Japan
| |
Collapse
|
3
|
Zainal Abidin NA, Timofeeva M, Szydzik C, Akbaridoust F, Lav C, Marusic I, Mitchell A, Hamilton JR, Ooi AS, Nesbitt WS. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res Pract Thromb Haemost 2023; 7:100037. [PMID: 36846647 PMCID: PMC9944983 DOI: 10.1016/j.rpth.2023.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.
Collapse
Affiliation(s)
- Nurul A. Zainal Abidin
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
- Scuderia AlphaTauri F1, Bicester, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Justin R. Hamilton
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew S.H. Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Warwick S. Nesbitt
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Yang M, Houck KL, Dong X, Hernandez M, Wang Y, Nathan SS, Wu X, Afshar-Kharghan V, Fu X, Cruz MA, Zhang J, Nascimbene A, Dong JF. Hyperadhesive von Willebrand Factor Promotes Extracellular Vesicle-Induced Angiogenesis: Implication for LVAD-Induced Bleeding. JACC Basic Transl Sci 2022; 7:247-261. [PMID: 35411318 PMCID: PMC8993768 DOI: 10.1016/j.jacbts.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
VWF in patients on LVAD supports was hyperadhesive, activated platelets, and generated platelet-derived extracellular vesicles. Extracellular vesicles from LVAD patients and those from shear-activated platelets promoted aberrant angiogenesis in a VWF-dependent manner. The activated VWF exposed the A1 domain through the synergistic actions of oxidative stress and HSS generated in LVAD-driven circulation.
Bleeding associated with left ventricular assist device (LVAD) implantation has been attributed to the loss of large von Willebrand factor (VWF) multimers to excessive cleavage by ADAMTS-13, but this mechanism is not fully supported by the current evidence. We analyzed VWF reactivity in longitudinal samples from LVAD patients and studied normal VWF and platelets exposed to high shear stress to show that VWF became hyperadhesive in LVAD patients to induce platelet microvesiculation. Platelet microvesicles activated endothelial cells, induced vascular permeability, and promoted angiogenesis in a VWF-dependent manner. Our findings suggest that LVAD-driven high shear stress primarily activates VWF, rather than inducing cleavage in the majority of patients.
Collapse
Key Words
- ADAMTS-13:Ag, ADAMTS-13 antigen
- AVS, aortic vascular segment
- EC, endothelial cell
- EV, extracellular vesicle
- EVFP, extracellular vesicle–free plasma
- GI, gastrointestinal
- GOF, gain of function
- GP, glycoprotein
- GPM, growth factor-poor medium
- GRM, growth factor-rich medium
- HSS, high shear stress
- LVAD, left ventricular assist device
- PS, phosphatidylserine
- SIPA, shear-induced platelet aggregation
- ULVWF, ultra-large von Willebrand factor
- VEGF, vascular endothelial growth factor
- VWF, von Willebrand factor
- VWF:Ag, von Willebrand factor antigen
- VWF:CB, von Willebrand factor binding to collagen
- VWF:pp, von Willebrand factor propeptide
- aVWS, acquired von Willebrand syndrome
- angiogenesis
- extracellular vesicles
- left ventricular assist devices
- pEV, extracellular vesicle from von Willebrand factor-activated platelets
- platelets
- shear stress
- von Willebrand factor
Collapse
Affiliation(s)
- Mengchen Yang
- Bloodworks Research Institute, Seattle, Washington, USA.,Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Katie L Houck
- Bloodworks Research Institute, Seattle, Washington, USA
| | - Xinlong Dong
- Bloodworks Research Institute, Seattle, Washington, USA
| | - Maria Hernandez
- Center for Advanced Heart Failure, University of Texas at Houston, Houston, Texas, USA
| | - Yi Wang
- Bloodworks Research Institute, Seattle, Washington, USA
| | - Sriram S Nathan
- Center for Advanced Heart Failure, University of Texas at Houston, Houston, Texas, USA
| | - Xiaoping Wu
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Department of Pulmonary Medicine, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, Washington, USA
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine.,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Angelo Nascimbene
- Center for Advanced Heart Failure, University of Texas at Houston, Houston, Texas, USA
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, Washington, USA.,Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Sweedo A, Wise LM, Roka-Moiia Y, Arce FT, Saavedra SS, Sheriff J, Bluestein D, Slepian MJ, Purdy JG. Shear-Mediated Platelet Activation is Accompanied by Unique Alterations in Platelet Release of Lipids. Cell Mol Bioeng 2021; 14:597-612. [PMID: 34900013 PMCID: PMC8630256 DOI: 10.1007/s12195-021-00692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Platelet activation by mechanical means such as shear stress exposure, is a vital driver of thrombotic risk in implantable blood-contacting devices used in the treatment of heart failure. Lipids are essential in platelets activation and have been studied following biochemical activation. However, little is known regarding lipid alterations occurring with mechanical shear-mediated platelet activation. METHODS Here, we determined if shear-activation of platelets induced lipidome changes that differ from those associated with biochemically-mediated platelet activation. We performed high-resolution lipidomic analysis on purified platelets from four healthy human donors. For each donor, we compared the lipidome of platelets that were non-activated or activated by shear, ADP, or thrombin treatment. RESULTS We found that shear activation altered cell-associated lipids and led to the release of lipids into the extracellular environment. Shear-activated platelets released 21 phospholipids and sphingomyelins at levels statistically higher than platelets activated by biochemical stimulation. CONCLUSIONS We conclude that shear-mediated activation of platelets alters the basal platelet lipidome. Further, these alterations differ and are unique in comparison to the lipidome of biochemically activated platelets. Many of the released phospholipids contained an arachidonic acid tail or were phosphatidylserine lipids, which have known procoagulant properties. Our findings suggest that lipids released by shear-activated platelets may contribute to altered thrombosis in patients with implanted cardiovascular therapeutic devices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00692-x.
Collapse
Affiliation(s)
- Alice Sweedo
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
| | - Lisa M. Wise
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, PO Box 245221, Tucson, AZ 85724 USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
| | - Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ USA
| | - Fernando Teran Arce
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ USA
| | - S. Scott Saavedra
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY USA
| | - Marvin J. Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY USA
- Department of Material Sciences and Engineering, University of Arizona, Tucson, AZ USA
| | - John G. Purdy
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, PO Box 245221, Tucson, AZ 85724 USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
| |
Collapse
|
6
|
Roka-Moiia Y, Ammann KR, Miller-Gutierrez S, Sweedo A, Palomares D, Italiano J, Sheriff J, Bluestein D, Slepian MJ. Shear-mediated platelet activation in the free flow II: Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features. J Biomech 2021; 123:110415. [PMID: 34052772 DOI: 10.1016/j.jbiomech.2021.110415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 01/17/2023]
Abstract
Shear-mediated platelet activation (SMPA) in the "free flow" is the net result of a range of cell mechanobiological mechanisms. Previously, we outlined three main groups of mechanisms including: 1) mechano-destruction - i.e. additive platelet (membrane) damage; 2) mechano-activation - i.e. activation of shear-sensitive ion channels and pores; and 3) mechano-transduction - i.e. "outside-in" signaling via a range of transducers. Here, we report on recent advances since our original report which describes additional features of SMPA. A clear "signature" of SMPA has been defined, allowing differentiation from biochemically-mediated activation. Notably, SMPA is characterized by mitochondrial dysfunction, platelet membrane eversion, externalization of anionic phospholipids, and increased thrombin generation on the platelet surface. However, SMPA does not lead to integrin αIIbβ3 activation or P-selectin exposure due to platelet degranulation, as is commonly observed in biochemical activation. Rather, downregulation of GPIb, αIIbβ3, and P-selectin surface expression is evident. Furthermore, SMPA is accompanied by a decrease in overall platelet size coupled with a concomitant, progressive increase in microparticle generation. Shear-ejected microparticles are highly enriched in GPIb and αIIbβ3. These observations indicate the enhanced diffusion, migration, or otherwise dispersion of platelet adhesion receptors to membrane zones, which are ultimately shed as receptor-rich PDMPs. The pathophysiological consequence of this progressive shear accumulation phenomenon is an associated dyscrasia of remaining platelets - being both reduced in size and less activatable via biochemical means - a tendency to favor bleeding, while concomitantly shed microparticles are highly prothrombotic and increase the tendency for thrombosis in both local and systemic milieu. These mechanisms and observations offer direct clinical utility in allowing measurement and guidance of the net balance of platelet driven events in patients with implanted cardiovascular therapeutic devices.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Kaitlyn R Ammann
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Samuel Miller-Gutierrez
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Alice Sweedo
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Daniel Palomares
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States
| | - Joseph Italiano
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
| | - Marvin J Slepian
- Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, Stony Brook University, NY 11794, United States; Arizona Center for Accelerated Biomedical Innovation, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
7
|
Bozzi S, Roka-Moiia Y, Mencarini T, Vercellino F, Epifani I, Ammann KR, Consolo F, Slepian MJ, Redaelli A. Characterization of the competing role of surface-contact and shear stress on platelet activation in the setting of blood contacting devices. Int J Artif Organs 2021; 44:1013-1020. [PMID: 33845625 DOI: 10.1177/03913988211009909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Supraphysiological shear stress and surface-contact are recognized as driving mechanisms of platelet activation (PA) in blood contacting devices (BCDs). However, the competing role of these mechanisms in triggering thrombogenic events is poorly understood. Here, we characterized the dynamics of PA in response to the combined effect of shear stress and material exposure. Human platelets were stimulated with different levels of shear stress (500, 750, 1000 dynes/cm2) over a range of exposure times (10, 20, and 30 min) within capillary tubes made of various polymeric materials. Polyethylene (PE), polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), and polyether ether ketone (PEEK), used for BCDs fabrication, were investigated as compared to glass and thromboresistant Sigma™-coated glass. PA was quantified using the Platelet Activity State assay. Our results indicate that mechanical stimulation and polymer surface-contact both significantly contribute to PA. Notably, the contribution of the mechanical stimulus ranges between +36% and +43%, while that associated with polymer surface-contact ranges from +48% to +59%, depending on the exposure time. In more detail, our results indicate that: (i) PA increases with increasing shear stress magnitude; (ii) PA has a non-linear, time-dependent relationship to exposure time; (iii) PA is largely influenced by biomaterials, with PE and PEEK having respectively the lowest and highest prothrombotic potential; (iv) the effects of polymer surface-contact and shear stress are not correlated and can be studied separately. Our results suggest the importance of incorporating the evaluation of platelet activation driven by the combined effect of shear stress and polymer surface-contact for the comprehensive assessment, and eventually minimization, of BCDs thrombogenic potential.
Collapse
Affiliation(s)
- Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Yana Roka-Moiia
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Federica Vercellino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Ilenia Epifani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kaitlyn R Ammann
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Filippo Consolo
- Università Vita-Salute San Raffaele, Facoltà di Medicina e Chirurgia, Milano, Italy
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
8
|
Sheriff J, Malone LE, Avila C, Zigomalas A, Bluestein D, Bahou WF. Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood. Cell Mol Bioeng 2020; 13:575-590. [PMID: 33281988 PMCID: PMC7704822 DOI: 10.1007/s12195-020-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Antiplatelet therapy for neonates and infants is often extrapolated from the adult experience, based on limited observation of agonist-induced neonatal platelet hypoactivity and poor understanding of flow shear-mediated platelet activation. Therefore, thrombotic events due to device-associated disturbed flow are inadequately mitigated in critically ill neonates with indwelling umbilical catheters and infants receiving cardiovascular implants. METHODS Whole blood (WB), platelet-rich plasma (PRP), and gel-filtered platelets (GFP) were prepared from umbilical cord and adult blood, and exposed to biochemical agonists or pathological shear stress of 70 dyne/cm2. We evaluated α-granule release, phosphatidylserine (PS) scrambling, and procoagulant response using P-selectin expression, Annexin V binding, and thrombin generation (PAS), respectively. Activation modulation due to depletion of intracellular and extracellular calcium, requisite second messengers, was also examined. RESULTS Similar P-selectin expression was observed for sheared adult and cord platelets, with concordant inhibition due to intracellular and extracellular calcium depletion. Sheared cord platelet Annexin V binding and PAS activity was similar to adult values in GFP, but lower in PRP and WB. Annexin V on sheared cord platelets was calcium-independent, with PAS slightly reduced by intracellular calcium depletion. CONCLUSIONS Increased PS activity on purified sheared cord platelets suggest that their intrinsic function under pathological flow conditions is suppressed by cell-cell or plasmatic components. Although secretory functions of adult and cord platelets retain comparable calcium-dependence, PS exposure in sheared cord platelets is uniquely calcium-independent and distinct from adults. Identification of calcium-regulated developmental disparities in shear-mediated platelet function may provide novel targets for age-specific antiplatelet therapy.
Collapse
Affiliation(s)
- Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Lisa E. Malone
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Cecilia Avila
- Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Amanda Zigomalas
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Wadie F. Bahou
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
9
|
Influence of Different Antithrombotic Regimens on Platelet-Mediated Thrombin Generation in Patients with Left Ventricular Assist Devices. ASAIO J 2020; 66:415-422. [PMID: 31453830 DOI: 10.1097/mat.0000000000001064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We characterized the biologic background of prothrombotic platelet function in the setting of durable left ventricular assist devices (LVADs) evaluating the role of different antithrombotic regimens. Platelet-mediated thrombin generation was quantified using the Platelet Activity State (PAS) Assay and the Thrombin Generation Test (TGT) in 78 patients implanted with the HeartMate II (n = 10, 13%), the HeartMate 3 (HM3) (n = 30, 38%), or the HVAD (n = 38, 49%) and managed with oral anticoagulation plus aspirin (n = 46, 59%) or anticoagulation alone (n = 32, 41%). Coagulation parameters (platelet count, International Normalized Ratio (INR), activated Partial Thromboplastin Time, Fibrinogen and D-Dimer levels) and hemolysis (lactate dehydrogenase levels [LDH]) were also recorded to comprehensively characterize the hemostatic profile in the two groups. In patients without aspirin, the PAS assay revealed low-intensity increase in platelet prothrombinase activity (1.11-fold, p = 0.03). Similarly the TGT revealed moderate higher platelet reactivity when compared with patients receiving aspirin, consistent with reduction in lag time (0.87-fold, p < 0.001), increase in peak of thrombin generation (1.5-fold, p = 0.002) and thrombin generation rate (2-fold, p = 0.02), but comparable endogenous thrombin potential (p = 0.50). Coagulation parameters and LDH were comparable in the two groups (p > 0.05). Moreover, no differences were noted in platelet prothrombinase activity of patients implanted with the HM3 or HVAD. Our results suggest that, in the setting of durable LVADs, aspirin minimally modulates the biochemical pathway of platelet-mediated thrombin generation. Accordingly, re-evaluation of current antithrombotic management criteria in patients stratified according to bleeding/thromboembolic risk might be safe and beneficial to prevent adverse events.
Collapse
|
10
|
Thrombotic Risk of Rotor Speed Modulation Regimes of Contemporary Centrifugal Continuous-flow Left Ventricular Assist Devices. ASAIO J 2020; 67:737-745. [PMID: 33074865 DOI: 10.1097/mat.0000000000001297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Contemporary centrifugal continuous-flow left ventricular assist devices (LVADs) incorporate dynamic speed modulation algorithms. Hemocompatibility of these periodic unsteady pump operating conditions has been only partially explored. We evaluated whether speed modulation induces flow alterations associated with detrimental prothrombotic effects. For this aim, we evaluated the thrombogenic profile of the HeartWare ventricular assist device (HVAD) Lavare Cycle (LC) and HeartMate3 (HM3) artificial pulse (AP) via comprehensive numerical evaluation of (i) pump washout, (ii) stagnation zones, (iii) shear stress regimens, and (iv) modeling of platelet activation status via the platelet activity state (PAS) model. Data were compared between different simulated operating scenarios, including: (i) constant rotational speed and pump pressure head, used as reference; (ii) unsteady pump pressure head as induced by cardiac pulsatility; and (iii) unsteady rotor speed modulation of the LC (HVAD) and AP (HM3). Our results show that pump washout did not improve across the different simulated scenarios in neither the HVAD nor the HM3. The LC reduced but did not eliminate flow stagnation (-57%) and did not impact metrics of HVAD platelet activation (median PAS: +0.4%). The AP reduced HM3 flow stagnation by up to 91% but increased prothrombotic shear stress and simulated platelet activation (median PAS: +124%). Our study advances understanding of the pathogenesis of LVAD thrombosis, suggesting mechanistic implications of rotor speed modulation. Our data provide rationale criteria for the future design optimization of next generation LVADs to further reduce hemocompatibility-related adverse events.
Collapse
|
11
|
Abstract
Studies using whole blood platelet aggregometry as a laboratory research tool, provided important insights into the mechanism and modulators of platelet aggregation. Subsequently, a number of point-of-care (POC) platelet function tests (PFTs) were developed for clinical use, based on the concept that an individual’s thrombotic profile could be assessed in vitro by assessing the response to stimulation of platelet aggregation by specific, usually solo agonists such as adenosine diphosphate (ADP), collagen and thrombin. However, adjusting antiplatelet medication in order to improve the results of such POC PFTs has not translated into a meaningful reduction in cardiovascular events, which may be attributable to important differences between the POC PFT techniques and in vivo conditions, including patient-to-patient variability. Important limitations of most tests include the use of citrate-anticoagulated blood. Citrate directly and irreversibly diminishes platelet function and even after recalcification, it may result in altered platelet aggregation in response to ADP, epinephrine or collagen, and interfere with thrombin generation from activated platelets. Furthermore, most tests do not employ flowing blood and therefore do not assess the effect of high shear forces on platelets that initiate, propagate and stabilize arterial thrombi. Finally, the effect of endogenous thrombolysis, due to fibrinolysis and dislodgement, which ultimately determines the outcome of a thrombotic stimulus, is mostly not assessed. In order to accurately reflect an individual’s predisposition to arterial thrombosis, future tests of thrombotic status which overcome these limitations should be used, to improve cardiovascular risk prediction and to guide pharmacotherapy.
Collapse
Affiliation(s)
- Diana A Gorog
- National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK.
- University of Hertfordshire, Hertfordshire, UK.
| | | |
Collapse
|
12
|
Device Thrombogenicity Emulation: An In Silico Predictor of In Vitro and In Vivo Ventricular Assist Device Thrombogenicity. Sci Rep 2019; 9:2946. [PMID: 30814674 PMCID: PMC6393420 DOI: 10.1038/s41598-019-39897-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/04/2019] [Indexed: 12/02/2022] Open
Abstract
Ventricular assist devices (VAD), a mainstay of therapy for advanced and end-stage heart failure, remain plagued by device thrombogenicity. Combining advanced in silico and in vitro methods, Device Thrombogenicity Emulation (DTE) is a device design approach for enhancing VAD thromboresistance. Here we tested DTE efficacy in experimental VAD designs. DTE incorporates iterative design modifications with advanced CFD to compute the propensity of large populations of platelets to activate by flow-induced stresses (statistically representing the VAD ‘Thrombogenic Footprint’). The DTE approach was applied to a VAD (MINDTE) design with a favorable thromboresistance profile and compared against a design (MAXDTE) that generated an intentionally poor thromboresistance profile. DTE predictions were confirmed by testing physical prototypes in vitro by measuring VAD thrombogenicity using the modified prothrombinase assay. Chronic in vivo studies in VAD implanted calves, revealed MINDTE calf surviving well with low platelet activation, whereas the MAXDTE animal sustained thromboembolic strokes. DTE predictions were confirmed, correlating with in vitro and in vivo thrombogenicity, supporting utility in guiding device development, potentially reducing the need for animal studies.
Collapse
|
13
|
Apostoli A, Bianchi V, Bono N, Dimasi A, Ammann KR, Moiia YR, Montisci A, Sheriff J, Bluestein D, Fiore GB, Pappalardo F, Candiani G, Redaelli A, Slepian MJ, Consolo F. Prothrombotic activity of cytokine-activated endothelial cells and shear-activated platelets in the setting of ventricular assist device support. J Heart Lung Transplant 2019; 38:658-667. [PMID: 30846234 DOI: 10.1016/j.healun.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We systematically analyzed the synergistic effect of: (i) cytokine-mediated inflammatory activation of endothelial cells (ECs) with and (ii) shear-mediated platelet activation (SMPA) as a potential contributory mechanism to intraventricular thrombus formation in the setting of left ventricular assist device (LVAD) support. METHODS Intact and shear-activated human platelets were exposed to non-activated and cytokine-activated ECs. To modulate the level of LVAD-related shear activation, platelets were exposed to shear stress patterns of varying magnitude (30, 50, and 70 dynes/cm2, 10 minutes) via a hemodynamic shearing device. ECs were activated via exposure to inflammatory tumor necrosis factor-α (TNF-α 10 and 100 ng/ml, 24 hours), consistent with inflammatory activation recorded in patients on LVAD circulatory support. RESULTS Adhesivity of shear-activated platelets to ECs was significantly higher than that of intact/unactivated platelets, regardless of the initial activation level (70 dynes/cm2 shear-activated platelets vs intact platelets: +80%, p < 0.001). Importantly, inflammatory activation of ECs amplified platelet prothrombinase activity progressively with increasing shear stress magnitude and TNF-α concentration: thrombin generation of 70 dynes/cm2 shear-activated platelets was 2.6-fold higher after exposure and adhesion to 100 ng/ml TNF-α‒activated ECs (p < 0.0001). CONCLUSIONS We demonstrated synergistic effect of SMPA and cytokine-mediated EC inflammatory activation to enhance EC‒platelet adhesion and platelet prothrombotic function. These mechanisms may contribute to intraventricular thrombosis in the setting of mechanical circulatory support.
Collapse
Affiliation(s)
- Alice Apostoli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Valentina Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Nina Bono
- Politecnico di Milano Research Unit, National Interuniversity Consortium of Materials Science and Technology, Milano, Italy
| | - Annalisa Dimasi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kaitlyn R Ammann
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Yana Roka Moiia
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Andrea Montisci
- Anesthesia and Intensive Care, Sant'Ambrogio Cardiothoracic Center, Milano, Italy
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Gianfranco B Fiore
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Federico Pappalardo
- Advanced Heart Failure and Mechanical Circulatory Support Program, San Raffaele Scientific Institute, Milano, Italy; Università Vita Salute San Raffaele, Milano, Italy
| | - Gabriele Candiani
- Biocompatibility and Cell Culture Laboratory "BioCell," Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milano, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Marvin J Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Filippo Consolo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy; Advanced Heart Failure and Mechanical Circulatory Support Program, San Raffaele Scientific Institute, Milano, Italy; Università Vita Salute San Raffaele, Milano, Italy.
| |
Collapse
|
14
|
Morici N, Varrenti M, Brunelli D, Perna E, Cipriani M, Ammirati E, Frigerio M, Cattaneo M, Oliva F. Antithrombotic therapy in ventricular assist device (VAD) management: From ancient beliefs to updated evidence. A narrative review. IJC HEART & VASCULATURE 2018; 20:20-26. [PMID: 30229131 PMCID: PMC6141382 DOI: 10.1016/j.ijcha.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 12/23/2022]
Abstract
Platelets play a key role in the pathogenesis of ventricular assist device (VAD) thrombosis; therefore, antiplatelet drugs are essential, both in the acute phase and in the long-term follow-up in VAD management. Aspirin is the most used agent and still remains the first-choice drug for lifelong administration after VAD implantation. Anticoagulant drugs are usually recommended, but with a wide range of efficacy targets. Dual antiplatelet therapy, targeting more than one pathway of platelet activation, has been used for patients developing a thrombotic event, despite an increased risk of bleeding complications. Although different strategies have been attempted, bleeding and thrombotic events remain frequent and there are no uniform strategies adopted for pharmacological management in the short and mid- or long-term follow up. The aim of this article is to provide an overview of the evidence from randomized clinical trials and observational studies with a focus on the pathophysiologic mechanisms underlying bleeding and thrombosis in VAD patients and the best antithrombotic regimens available.
Collapse
Affiliation(s)
- Nuccia Morici
- Intensive Cardiac Care Unit and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dept. of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Marisa Varrenti
- Health Science Department, Milano-Bicocca University, Milano, Italy
| | - Dario Brunelli
- Intensive Cardiac Care Unit and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Transplant Center and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Enrico Perna
- Transplant Center and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Manlio Cipriani
- Transplant Center and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Enrico Ammirati
- Transplant Center and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Frigerio
- Transplant Center and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marco Cattaneo
- Health Science Department, Università Degli Studi di Milano, Milan, Italy.,Unità di Medicina 3, ASST Santi Paolo e Carlo, Milan, Italy
| | - Fabrizio Oliva
- Intensive Cardiac Care Unit and De Gasperis Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|