1
|
Kapteijn MY, Bakker N, Koekkoek JAF, Versteeg HH, Buijs JT. Venous Thromboembolism in Patients with Glioblastoma: Molecular Mechanisms and Clinical Implications. Thromb Haemost 2024. [PMID: 39168144 DOI: 10.1055/s-0044-1789592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Patients with glioblastoma are among the cancer patients with the highest risk of developing venous thromboembolism (VTE). Long-term thromboprophylaxis is not generally prescribed because of the increased susceptibility of glioblastoma patients to intracranial hemorrhage. This review provides an overview of the current clinical standard for glioblastoma patients, as well as the molecular and genetic background which underlies the high incidence of VTE. The two main procoagulant proteins involved in glioblastoma-related VTE, podoplanin and tissue factor, are described, in addition to the genetic aberrations that can be linked to a hypercoagulable state in glioblastoma. Furthermore, possible novel biomarkers and future treatment strategies are discussed, along with the potential of sequencing approaches toward personalized risk prediction for VTE. A glioblastoma-specific VTE risk stratification model may help identifying those patients in which the increased risk of bleeding due to extended anticoagulation is outweighed by the decreased risk of VTE.
Collapse
Affiliation(s)
- Maaike Y Kapteijn
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina Bakker
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Khan A, Siddiqui U, Fatima S, Rehman A, Jairajpuri M. Protein disulfide isomerase uses thrombin-antithrombin complex as a template to bind its target protein and alter the blood coagulation rates. Biosci Rep 2024; 44:BSR20231540. [PMID: 38660763 PMCID: PMC11096647 DOI: 10.1042/bsr20231540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
During inflammation and situations of cellular stress protein disulfide isomerase (PDI) is released in the blood plasma from the platelet and endothelial cells to influence thrombosis. The addition of exogenous PDI makes the environment pro-thrombotic by inducing disulfide bond formation in specific plasma protein targets like vitronectin, factor V, and factor XI. However, the mechanistic details of PDI interaction with its target remain largely unknown. A decrease in the coagulation time was detected in activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) on addition of the purified recombinant PDI (175 nM). The coagulation time can be controlled using an activator (quercetin penta sulfate, QPS) or an inhibitor (quercetin 3-rutinoside, Q3R) of PDI activity. Likewise, the PDI variants that increase the PDI activity (H399R) decrease, and the variant with low activity (C53A) increases the blood coagulation time. An SDS-PAGE and Western blot analysis showed that the PDI does not form a stable complex with either thrombin or antithrombin (ATIII) but it uses the ATIII-thrombin complex as a template to bind and maintain its activity. A complete inhibition of thrombin activity on the formation of ATIII-thrombin-PDI complex, and the complex-bound PDI-catalyzed disulfide bond formation of the target proteins may control the pro- and anti-thrombotic role of PDI.
Collapse
Affiliation(s)
- Abdul Burhan Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Urfi Siddiqui
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sana Fatima
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ahmed Abdur Rehman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
3
|
Wang HL, Narisawa M, Wu P, Meng X, Cheng XW. The many roles of cathepsins in restenosis. Heliyon 2024; 10:e24720. [PMID: 38333869 PMCID: PMC10850908 DOI: 10.1016/j.heliyon.2024.e24720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Drug-eluting stents (DES) and dual antiplatelet regimens have significantly improved the clinical management of ischemic heart disease; however, the drugs loaded with DES in clinical practice are mostly paclitaxel or rapamycin derivatives, which target symptoms of post implantation proliferation and inflammation, leading to delayed re-endothelialization and neo-atherosclerosis. Along with the treatments already in place, there is a need for novel strategies to lessen the negative clinical outcomes of DES delays as well as a need for greater understanding of their pathobiological mechanisms. This review concentrates on the function of cathepsins (Cats) in the inflammatory response and granulation tissue formation that follow Cat-induced damage to the vasculature scaffold, as well as the functions of Cats in intimal hyperplasia, which is characterized by the migration and proliferation of smooth muscle cells, and endothelial denudation, re-endothelialization, and/or neo-endothelialization. Additionally, Cats can alter essential neointima formation and immune response inside scaffolds, and if Cats are properly controlled in vivo, they may improve scaffold biocompatibility. This unique profile of functions could lead to an original concept for a cathepsin-based coronary intervention treatment as an adjunct to stent placement.
Collapse
Affiliation(s)
- Hai Long Wang
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Pan Wu
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, PR China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, PR China
| |
Collapse
|
4
|
Khan AB, Siddiqui U, Fatima S, Rehman AA, Jairajpuri MA. Naringin binds to protein disulfide isomerase to inhibit its activity and modulate the blood coagulation rates: Implications in controlling thrombosis. Int J Biol Macromol 2023; 252:126241. [PMID: 37567521 DOI: 10.1016/j.ijbiomac.2023.126241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Currently used antithrombotic drugs are beset with several drawbacks which necessitates the need for new and cheaper alternatives. Protein disulfide isomerase (PDI) is secreted in the blood plasma in cellular stress conditions and initiates the thrombus formation. A screening of library of natural compounds revealed that naringin had a high binding affinity for the PDI (-8.2 kcal/mol). Recombinant PDI was purified using the affinity chromatography. Incubation of purified PDI (3 μM) with naringin (0-100 μM, pH 7.4, 25 °C) partially modulated its conformation. Consequently, the fluorescence emission spectra of the PDI binding to naringin were assessed using the Stern-Volmer equation, which indicated an association constant of 2.78 × 104 M-1 suggesting an appreciable affinity for the naringin, with a unique binding site. An insulin turbidity assay showed that PDI activity is decreased in the presence of naringin indicating inhibition. Molecular dynamic simulation studies showed the changes in the PDI structure on binding to the naringin. Incubation of naringin (80 μM) in fresh human plasma along with exogenous PDI (175 nM) showed a significant delay in the intrinsic and extrinsic coagulation pathways. We show that naringin is able to modulate the PDI conformation and activity resulting in altered blood coagulation rates.
Collapse
Affiliation(s)
- Abdul Burhan Khan
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Urfi Siddiqui
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sana Fatima
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ahmed Abdur Rehman
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
5
|
Gelzinis JA, Szahaj MK, Bekendam RH, Wurl SE, Pantos MM, Verbetsky CA, Dufresne A, Shea M, Howard KC, Tsodikov OV, Garneau-Tsodikova S, Zwicker JI, Kennedy DR. Targeting thiol isomerase activity with zafirlukast to treat ovarian cancer from the bench to clinic. FASEB J 2023; 37:e22914. [PMID: 37043381 PMCID: PMC10360043 DOI: 10.1096/fj.202201952r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Thiol isomerases, including PDI, ERp57, ERp5, and ERp72, play important and distinct roles in cancer progression, cancer cell signaling, and metastasis. We recently discovered that zafirlukast, an FDA-approved medication for asthma, is a pan-thiol isomerase inhibitor. Zafirlukast inhibited the growth of multiple cancer cell lines with an IC50 in the low micromolar range, while also inhibiting cellular thiol isomerase activity, EGFR activation, and downstream phosphorylation of Gab1. Zafirlukast also blocked the procoagulant activity of OVCAR8 cells by inhibiting tissue factor-dependent Factor Xa generation. In an ovarian cancer xenograft model, statistically significant differences in tumor size between control vs treated groups were observed by Day 18. Zafirlukast also significantly reduced the number and size of metastatic tumors found within the lungs of the mock-treated controls. When added to a chemotherapeutic regimen, zafirlukast significantly reduced growth, by 38% compared with the mice receiving only the chemotherapeutic treatment, and by 83% over untreated controls. Finally, we conducted a pilot clinical trial in women with tumor marker-only (CA-125) relapsed ovarian cancer, where the rate of rise of CA-125 was significantly reduced following treatment with zafirlukast, while no severe adverse events were reported. Thiol isomerase inhibition with zafirlukast represents a novel, well-tolerated therapeutic in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Justine A. Gelzinis
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, UK
| | - Melanie K. Szahaj
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Roelof H. Bekendam
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sienna E. Wurl
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Megan M. Pantos
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Christina A. Verbetsky
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Alexandre Dufresne
- Baystate Research Facility, Baystate Medical Center and UMass Chan Medical School, Springfield, MA
| | - Meghan Shea
- Division of Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kaitlind C. Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536
| | - Jeffrey I. Zwicker
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- These authors contributed equally
| | - Daniel R. Kennedy
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, UK
- Department of Medicine, UMass Chan Medical School-Baystate, Springfield, MA
- These authors contributed equally
| |
Collapse
|
6
|
LEE WANSIK, PARK SUNYOUNG, PARK YOUNGRAN, JOO YOUNGEUN. Over-expression of Anterior Gradient 3 Is Associated With Tumor Progression and Poor Survival in Gastric Cancer. In Vivo 2023; 37:483-489. [PMID: 36593009 PMCID: PMC9843753 DOI: 10.21873/invivo.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM Anterior gradient (AGR) proteins, including AGR1, AGR2, and AGR3, which are members of the protein disulfide isomerase family, have been reported as biomarkers for various carcinogenesis processes. Although AGR2 and AGR1 have been demonstrated to be associated with gastric cancer (GC) progression and poor survival, the effect of AGR3 on the progression and prognosis of GC remains unknown. Therefore, our study aimed to examine the expression and prognostic significance of AGR3 in patients with GC. PATIENTS AND METHODS We investigated 271 GC patients receiving curative surgery. Formalin-fixed and paraffin-embedded tissue blocks were obtained, and long-term survival analysis was performed. The expression of AGR3 in GC tissues was investigated by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS AGR3 was over-expressed in GC tissue compared with paired normal tissue at the mRNA and protein levels. AGR3 over-expression was significantly associated with larger tumor size, deeper tumor invasion, lymph node metastasis, and advanced tumor stage. The overall survival of patients with positive AGR3 expression was significantly lower than that of patients without positive AGR3 expression. Multivariate analysis demonstrated that AGR3 and age were independent prognostic factors associated with overall survival. CONCLUSION Over-expression of AGR3 was significantly associated with tumor progression and poor survival of GC patients. Therefore, AGR3 may be a novel biomarker and prognostic factor for GC.
Collapse
|
7
|
Liang C, Cai M, Xu Y, Fu W, Wu J, Liu Y, Liao X, Ning J, Li J, Huang M, Yuan C. Identification of Antithrombotic Natural Products Targeting the Major Substrate Binding Pocket of Protein Disulfide Isomerase. JOURNAL OF NATURAL PRODUCTS 2022; 85:1332-1339. [PMID: 35471830 DOI: 10.1021/acs.jnatprod.2c00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein disulfide isomerase (PDI) is a vital oxidoreductase. Extracellular PDI promotes thrombus formation but does not affect physiological blood hemostasis. Inhibition of extracellular PDI has been demonstrated as a promising strategy for antithrombotic treatment. Herein, we focused on the major substrate binding site, a unique pocket in the PDI b' domain, and identified four natural products binding to PDI by combining virtual screening with tryptophan fluorescence-based assays against a customized natural product library. These hits all directly bound to the PDI-b' domain and inhibited the reductase activity of PDI. Among them, galangin showed the most prominent potency (5.9 μM) against PDI and as a broad-spectrum inhibitor for vascular thiol isomerases. In vivo studies manifested that galangin delayed the time of blood vessel occlusion in an electricity-induced mouse thrombosis model. Molecular docking and dynamics simulation further revealed that the hydroxyl-substituted benzopyrone moiety of galangin deeply inserted into the interface between the PDI-b' substrate-binding pocket and the a' domain. Together, these findings provide a potential antithrombotic drug candidate and demonstrate that the PDI b' domain is a critical domain for inhibitor development. Besides, we also report an innovative high-throughput screening method for the rapid discovery of PDI b' targeted inhibitors.
Collapse
Affiliation(s)
- Chenghui Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yanyan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yurong Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Xinyuan Liao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jiamin Ning
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| |
Collapse
|
8
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
9
|
Wang M, Zhang W, Liu Y, Ma Z, Xiang W, Wen Y, Zhang D, Li Y, Li Y, Li T, Chen L, Zhou J. PDIA4 promotes glioblastoma progression via the PI3K/AKT/m-TOR pathway. Biochem Biophys Res Commun 2022; 597:83-90. [PMID: 35131603 DOI: 10.1016/j.bbrc.2022.01.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022]
Abstract
Protein disulfide isomerase A4 (PDIA4) is highly expressed in clear cell ovarian carcinoma and lung cancer. Through analysis of TCGA database and CGGA database, we noted that PDIA4 is a key promotor of glioblastoma (GBM). However, the detailed role and molecular mechanism of PDIA4 in GBM remain unclear. In this study, the expression pattern and biological role of PDIA4 in GBM was investigated. PDIA4 was overexpressed in GBM tumor samples and cell lines and positively correlated with pathological grades in glioma patients. In addition, downregulation of PDIA4 promoted apoptosis and inhibited proliferation of GBM. Meanwhile, there was a concurrent decrease in aerobic glycolysis metabolites. Mechanistically, PDIA4 downregulation promoted the apoptosis of GBM cells by increased the expression of apoptosis pathway proteins (caspase 3, caspase 9 and Bax). Downregulation of PDIA4 decreased energy demand and inhibited GBM growth in vitro and in vivo. Besides, such effect also inhibited the PI3K/AKT/m-TOR pathway by inhibiting protein phosphorylation levels of PI3K, AKT and m-TOR. After addition of PI3K/AKT/mTOR pathway activator 740Y-P, the effect of PDIA4 knockdown on GBM was reversed. Therefore, we believe that PDIA4 regulates the proliferation via activating the PI3K/AKT/m-TOR pathway and suppression of apoptosis in glioblastoma. It could be used as a potential target for the treatment of GBM.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Wenyan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Yibo Liu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Zhigang Ma
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China; Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Yuqi Wen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yanling Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Yeming Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China; Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China; Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
10
|
Wang L, Wang X, Lv X, Jin Q, Shang H, Wang CC, Wang L. The extracellular Ero1α/PDI electron transport system regulates platelet function by increasing glutathione reduction potential. Redox Biol 2022; 50:102244. [PMID: 35077997 PMCID: PMC8792282 DOI: 10.1016/j.redox.2022.102244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Protein disulfide isomerase (PDI), an oxidoreductase, possesses two vicinal cysteines in the -Cys-Gly-His-Cys-motif that either form a disulfide bridge (S–S) or exist in a sulfhydryl form (-SH), forming oxidized or reduced PDI, respectively. PDI has been proven to be critical for platelet aggregation, thrombosis, and hemostasis, and PDI inhibition is being evaluated as a novel antithrombotic strategy. The redox states of functional PDI during the regulation of platelet aggregation, however, remain to be elucidated. Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and PDI constitute the pivotal oxidative folding pathway in the ER and play an important role in ER redox homeostasis. Whether Ero1α and PDI constitute an extracellular electron transport pathway to mediate platelet aggregation is an open question. Here, we found that oxidized but not reduced PDI promotes platelet aggregation. On the platelet surface, Ero1α constitutively oxidizes PDI and further regulates platelet aggregation in a glutathione-dependent manner. The Ero1α/PDI system oxidizes reduced glutathione (GSH) and establishes a reduction potential optimal for platelet aggregation. Therefore, platelet aggregation is mediated by the Ero1α-PDI-GSH electron transport system on the platelet surface. We further showed that targeting the functional interplay between PDI and Ero1α by small molecule inhibitors may be a novel strategy for antithrombotic therapy. Oxidized but not reduced PDI promotes platelet aggregation. Ero1α and PDI constitute an electron transport pathway on platelet surface. Ero1α and PDI provide a redox environment optimal for platelet aggregation. The functional interplay between Ero1α and PDI can be a new target for antiplatelet therapy.
Collapse
Affiliation(s)
- Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiying Lv
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Vascular thiol isomerases: Structures, regulatory mechanisms, and inhibitor development. Drug Discov Today 2021; 27:626-635. [PMID: 34757205 DOI: 10.1016/j.drudis.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Vascular thiol isomerases (VTIs), including PDI, ERp5, ERp57, ERp72, and thioredoxin-related transmembrane protein 1 (TMX1), have important roles in platelet aggregation and thrombosis. Research on VTIs, their substrates in thrombosis, their regulatory mechanisms, and inhibitor development is an emerging and rapidly evolving area in vascular biology. Here, we describe the structures and functions of VTIs, summarize the relationship between the vascular TIs and thrombosis, and focus on the development of VTI inhibitors for antithrombotic applications.
Collapse
|
13
|
Abdollahi S, Dehghanian SZ, Hung LY, Yang SJ, Chen DP, Medeiros LJ, Chiang JH, Chang KC. Deciphering genes associated with diffuse large B-cell lymphoma with lymphomatous effusions: A mutational accumulation scoring approach. Biomark Res 2021; 9:74. [PMID: 34635181 PMCID: PMC8504051 DOI: 10.1186/s40364-021-00330-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Earlier studies have shown that lymphomatous effusions in patients with diffuse large B-cell lymphoma (DLBCL) are associated with a very poor prognosis, even worse than for non-effusion-associated patients with stage IV disease. We hypothesized that certain genetic abnormalities were associated with lymphomatous effusions, which would help to identify related pathways, oncogenic mechanisms, and therapeutic targets. Methods We compared whole-exome sequencing on DLBCL samples involving solid organs (n = 22) and involving effusions (n = 9). We designed a mutational accumulation-based approach to score each gene and used mutation interpreters to identify candidate pathogenic genes associated with lymphomatous effusions. Moreover, we performed gene-set enrichment analysis from a microarray comparison of effusion-associated versus non-effusion-associated DLBCL cases to extract the related pathways. Results We found that genes involved in identified pathways or with high accumulation scores in the effusion-based DLBCL cases were associated with migration/invasion. We validated expression of 8 selected genes in DLBCL cell lines and clinical samples: MUC4, SLC35G6, TP53BP2, ARAP3, IL13RA1, PDIA4, HDAC1 and MDM2, and validated expression of 3 proteins (MUC4, HDAC1 and MDM2) in an independent cohort of DLBCL cases with (n = 31) and without (n = 20) lymphomatous effusions. We found that overexpression of HDAC1 and MDM2 correlated with the presence of lymphomatous effusions, and HDAC1 overexpression was associated with the poorest prognosis. Conclusion Our findings suggest that DLBCL associated with lymphomatous effusions may be associated mechanistically with TP53-MDM2 pathway and HDAC-related chromatin remodeling mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00330-8.
Collapse
Affiliation(s)
- Sina Abdollahi
- Intelligent Information Retrieval Lab, Department of Computer Science and Information Engineering, National Cheng Kung University, 701, Tainan, Taiwan
| | | | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiang-Jie Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dao-Peng Chen
- Kim Forest Enterprise Co., Ltd, New Taipei City, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jung-Hsien Chiang
- Intelligent Information Retrieval Lab, Department of Computer Science and Information Engineering, National Cheng Kung University, 701, Tainan, Taiwan. .,Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan.
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng-Li Road, 704, Tainan, Taiwan. .,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Liu X, Wang Y, Chen D, Ji S, Yang LT, Huang Q, Guan L, Chang K, Li D, Yuan R, Ouyang C, Hu TY, Liu ZQ, Sun B, Xu G, Liu ZG, Yang PC. Dust-mite-derived protein disulfide isomerase suppresses airway allergy by inducing tolerogenic dendritic cells. J Biol Chem 2021; 296:100585. [PMID: 33771560 PMCID: PMC8080076 DOI: 10.1016/j.jbc.2021.100585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
House dust mites (HDMs) are a potent allergen source that are commonly found in human living environments. While HDMs are known to induce allergic diseases in humans, such as asthma, its other biological activities related to human health are less understood. Our laboratory recently purified the HDM protein PDI (protein disulfide isomerase). In this study, we assess the role of PDI in contributing to immune regulation. Using mass spectrometry, we analyzed the complexes of DEC205 and HDM extracts, and the role of PDI in the induction of tolerogenic dendritic cells (DCs) was assessed in human cell culture experiments and verified in a murine model. We found that more than 20 HDM-derived proteins, including PDI, bound to DCs by forming complexes with DEC205. Additionally, DEC205-mediated the endocytosis of PDI. HDM-derived PDI (HDM-PDI) promoted Foxp3 expression in DCs. HDM-PDI-primed DCs also showed tolerogenic properties that induced regulatory T cell development, indicating that the primed DCs were tolerogenic DCs. Our results suggested that the PDI/DEC205/TIEG1/Foxp3 signal pathway activation was involved in the HDM-PDI-induced Foxp3 expression in DCs. Finally, we found that HDM-PDI competitively counteracted the Th2 cytokines to restore DC’s tolerogenicity, and administration of HDM-PDI could suppress experimental asthma. In conclusion, our data suggest that HDM-PDI contributes to immune regulation by inducing tolerogenic DC development. Administration of HDM-PDI can alleviate experimental asthma. These findings demonstrate that HDM-PDI has translational potential to be used in the treatment of immune disorders such as asthma.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuwei Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Desheng Chen
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Shuyu Ji
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Li-Teng Yang
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qinmiao Huang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Lvxin Guan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Kexin Chang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Dan Li
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Ruyi Yuan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Chunyan Ouyang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Tian-Yong Hu
- Department of Allergy, Longgnag ENT Hospital, Shenzhen, China
| | - Zhi-Qiang Liu
- Department of Allergy, Longgnag ENT Hospital, Shenzhen, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Guorong Xu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Gang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.
| | - Ping-Chang Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.
| |
Collapse
|
15
|
Li H, Liu Q, Xiao K, He Z, Wu C, Sun J, Chen X, Chen S, Yang J, Ma Q, Su J. PDIA4 Correlates with Poor Prognosis and is a Potential Biomarker in Glioma. Onco Targets Ther 2021; 14:125-138. [PMID: 33447054 PMCID: PMC7802790 DOI: 10.2147/ott.s287931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose Gliomas, characterized by aggressiveness and invasiveness, remain incurable after conventional therapies. The molecular mechanisms driving the progression and maintenance of glioma are still poorly understood. Methods The TCGA and CGGA databases were chosen for bioinformatics analysis. Gene expression profiling interactive analysis (GEPIA) was performed for differential analysis. The Kaplan–Meier method was chosen for survival analysis. Analysis of stromal and immune infiltration was performed using the ESTIMATE algorithm and xCell package. qPCR and Western blotting were performed to measure the expression of PDIA4 at the mRNA and protein levels. IHC was performed to detect the expression of PDIA4 in glioma tissues. The viability of glioma cells was evaluated by the CCK8 assay. Results In this study, we identified high PDIA4 expression in gliomas that correlated with poor prognosis. The association between IDH1 and different glioma patterns also indicated the potential biological role of PDIA4 in tumor development. Mechanistically, PDIA4 interacted with multiple immunological components to promote an immunosuppressive tumor microenvironment (TME). Knockdown of PDIA4 significantly impaired the proliferation of GBM cells. Conclusion Our results confirm that PDIA4 is an efficient biomarker of gliomas, with clinical implications for prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Chao Wu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, People's Republic of China
| | - Jianjun Sun
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, People's Republic of China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, People's Republic of China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, People's Republic of China
| | - Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, People's Republic of China
| | - Jun Su
- Department of Neurosurgery, Hunan Children's Hospital, Changsha 410007, Hunan, People's Republic of China
| |
Collapse
|
16
|
Khalaf NB, Al-Μehatab D, Fathallah DM. Vascular endothelial ERp72 is involved in the inflammatory response in a rat model of skeletal muscle injury. Mol Med Rep 2021; 23:186. [PMID: 33398381 PMCID: PMC7809907 DOI: 10.3892/mmr.2021.11825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/25/2020] [Indexed: 11/05/2022] Open
Abstract
The vascular inflammatory response involves the coordinated action of a large network of molecular mediators and culminates in the transmigration of leukocytes into the site of inflammation. Inflammatory mediators include a variety of protein families, including adhesion molecules such as integrins and members of the immunoglobulin superfamily, as well as other cytokines and chemokines. In this study, a rat model of traumatic skeletal muscle injury was used to demonstrate endoplasmic reticulum resident protein 72 (ERp72) overexpression in the early phase of the inflammatory response that follows skeletal muscle injury. Reverse transcription‑quantitative PCR, western blotting, dual‑labeling immunohistochemistry and immunofluorescence experiments confirmed that ERp72 was expressed on the endothelial cells of blood vessels present at the injured area. In addition, a cell‑based neutrophil adhesion assay indicated that a polyclonal antibody specific for ERp72 significantly reduced adhesion of neutrophils to activated human umbilical vein endothelial cells (35% reduction). These data suggested that ERp72 expression on vascular endothelial cells may play a role in skeletal muscle inflammation and could be considered as a target for the modulation of leukocyte‑endothelial cell interactions in an inflammatory setting.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Manama 329, Bahrain
| | - Dalal Al-Μehatab
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Manama 329, Bahrain
| | - Dahmani M Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Manama 329, Bahrain
| |
Collapse
|
17
|
Ren L, You T, Li Q, Chen G, Liu Z, Zhao X, Wang Y, Wang L, Wu Y, Tang C, Zhu L. Molecular docking-assisted screening reveals tannic acid as a natural protein disulphide isomerase inhibitor with antiplatelet and antithrombotic activities. J Cell Mol Med 2020; 24:14257-14269. [PMID: 33128352 PMCID: PMC7753999 DOI: 10.1111/jcmm.16043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Protein disulphide isomerase (PDI) promotes platelet activation and constitutes a novel antithrombotic target. In this study, we reported that a PDI‐binding plant polyphenol, tannic acid (TA), inhibits PDI activity, platelet activation and thrombus formation. Molecular docking using plant polyphenols from dietary sources with cardiovascular benefits revealed TA as the most potent binding molecule with PDI active centre. Surface plasmon resonance demonstrated that TA bound PDI with high affinity. Using Di‐eosin‐glutathione disulphide fluorescence assay and PDI assay kit, we showed that TA inhibited PDI activity. In isolated platelets, TA inhibited platelet aggregation stimulated by either GPVI or ITAM pathway agonists. Flow cytometry showed that TA inhibited thrombin‐ or CRP‐stimulated platelet activation, as reflected by reduced granule secretion and integrin activation. TA also reduced platelet spreading on immobilized fibrinogen and platelet adhesion under flow conditions. In a laser‐induced vascular injury mouse model, intraperitoneal injection of TA significantly decreased the size of cremaster arteriole thrombi. No prolongation of mouse jugular vein and tail‐bleeding time was observed after TA administration. Therefore, we identified TA from natural polyphenols as a novel inhibitor of PDI function. TA inhibits platelet activation and thrombus formation, suggesting it as a potential antithrombotic agent.
Collapse
Affiliation(s)
- Lijie Ren
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tao You
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of CardiologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qing Li
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Guona Chen
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Ziting Liu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Xuefei Zhao
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Yinyan Wang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Lei Wang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Yi Wu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chaojun Tang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Zhu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
18
|
Tanaka LY, Oliveira PVS, Laurindo FRM. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling. Antioxid Redox Signal 2020; 33:280-307. [PMID: 31910038 DOI: 10.1089/ars.2019.8012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Supracellular redox networks regulating cell-extracellular matrix (ECM) and organ system architecture merge with structural and functional (catalytic or allosteric) properties of disulfide bonds. This review addresses emerging evidence that exported thiol oxidoreductases (TORs), such as thioredoxin, protein disulfide isomerases (PDIs), quiescin sulfhydryl oxidases (QSOX)1, and peroxiredoxins, composing a peri/epicellular (pec)TOR pool, mediate relevant signaling. pecTOR functions depend mainly on kinetic and spatial regulation of thiol-disulfide exchange reactions governed by redox potentials, which are modulated by exported intracellular low-molecular-weight thiols, together conferring signal specificity. Recent Advances: pecTOR redox-modulates several targets including integrins, ECM proteins, surface molecules, and plasma components, although clear-cut documentation of direct effects is lacking in many cases. TOR catalytic pathways, displaying common patterns, culminate in substrate thiol reduction, oxidation, or isomerization. Peroxiredoxins act as redox/peroxide sensors, contrary to PDIs, which are likely substrate-targeted redox modulators. Emerging evidence suggests important pecTOR roles in patho(physio)logical processes, including blood coagulation, vascular remodeling, mechanosensing, endothelial function, immune responses, and inflammation. Critical Issues: Effects of pecPDIs supporting thrombosis/platelet activation have been well documented and reached the clinical arena. Roles of pecPDIA1 in vascular remodeling/mechanosensing are also emerging. Extracellular thioredoxin and pecPDIs redox-regulate immunoinflammation. Routes of TOR externalization remain elusive and appear to involve Golgi-independent routes. pecTORs are particularly accessible drug targets. Future Directions: Further understanding mechanisms of thiol redox reactions and developing assays for assessing pecTOR redox activities remain important research avenues. Also, addressing pecTORs as disease markers and achieving more efficient/specific drugs for pecTOR modulation are major perspectives for diagnostic/therapeutic improvements.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Percillia V S Oliveira
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2019; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China.
| |
Collapse
|
20
|
Majithia A, Bhatt DL. Novel Antiplatelet Therapies for Atherothrombotic Diseases. Arterioscler Thromb Vasc Biol 2019; 39:546-557. [PMID: 30760019 PMCID: PMC6445601 DOI: 10.1161/atvbaha.118.310955] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 01/03/2023]
Abstract
Antiplatelet therapies are an essential tool to reduce the risk of developing clinically apparent atherothrombotic disease and are a mainstay in the therapy of patients who have established cardiovascular, cerebrovascular, and peripheral artery disease. Strategies to intensify antiplatelet regimens are limited by concomitant increases in clinically significant bleeding. The development of novel antiplatelet therapies targeting additional receptor and signaling pathways, with a focus on maintaining antiplatelet efficacy while preserving hemostasis, holds tremendous potential to improve outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Arjun Majithia
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| | - Deepak L. Bhatt
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Debourdeau P, Simonin C, Carbasse C, Debourdeau T, Zammit C, Scotté F. [Primary prophylaxis of venous thromboembolism in ambulatory cancer patients treated with antineoplastic agents]. Rev Med Interne 2019; 40:523-532. [PMID: 30928244 DOI: 10.1016/j.revmed.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 11/29/2022]
Abstract
Apart from myeloma, primary prophylaxis of venous thromboembolism (VTE) in ambulatory cancer patients treated with chemotherapy is underused, despite its proven benefit for pancreatic cancer and to a lesser extent for lung cancer. This prophylaxis has been showed to be effective for myeloma, pancreas but in absolute numbers these cancers lead to a few venous thromboembolic events. Up to date, VTE risk scores cannot be used as a discriminatory criterion to select a high-risk population that could really benefit from this prevention. VTE depends in part on oncogenic mutations of tumor cells that result in an imbalance between activation and inhibition pathways that are involved in venous thrombus formation. So, stratification of risk of VTE in cancer patients could be considered from a clinical and molecular point of view and result in a tailored prophylaxis. This "personalized medicine" that is currently used for the anti-tumor treatment of many cancers and hematological malignancies, could lead to a more effective prophylaxis of VTE in cancer patients.
Collapse
Affiliation(s)
- P Debourdeau
- Institut Sainte Catherine, 250, chemin de Baigne-Pieds, CS 80005, 84918 Avignon cedex 09, France.
| | - C Simonin
- Institut Sainte Catherine, 250, chemin de Baigne-Pieds, CS 80005, 84918 Avignon cedex 09, France
| | - C Carbasse
- Institut Sainte Catherine, 250, chemin de Baigne-Pieds, CS 80005, 84918 Avignon cedex 09, France
| | - T Debourdeau
- Faculté de médecine Lyon est, université Claude Bernard Lyon 1, 8, boulevard Rockefeller, 69008 Lyon, France
| | - C Zammit
- Hôpitaux des Portes de Camargue, route d'Arles, 13150 Tarascon, France
| | - F Scotté
- Hôpital Foch, 40, rue Worth, BP 36, 92151 Suresnes cedex, France
| |
Collapse
|
22
|
Oliveira PVSD, Garcia-Rosa S, Sachetto ATA, Moretti AIS, Debbas V, De Bessa TC, Silva NT, Pereira ADC, Martins-de-Souza D, Santoro ML, Laurindo FRM. Protein disulfide isomerase plasma levels in healthy humans reveal proteomic signatures involved in contrasting endothelial phenotypes. Redox Biol 2019; 22:101142. [PMID: 30870787 PMCID: PMC6430080 DOI: 10.1016/j.redox.2019.101142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Redox-related plasma proteins are candidate reporters of protein signatures associated with endothelial structure/function. Thiol-proteins from protein disulfide isomerase (PDI) family are unexplored in this context. Here, we investigate the occurrence and physiological significance of a circulating pool of PDI in healthy humans. We validated an assay for detecting PDI in plasma of healthy individuals. Our results indicate high inter-individual (median = 330 pg/mL) but low intra-individual variability over time and repeated measurements. Remarkably, plasma PDI levels could discriminate between distinct plasma proteome signatures, with PDI-rich (>median) plasma differentially expressing proteins related to cell differentiation, protein processing, housekeeping functions and others, while PDI-poor plasma differentially displayed proteins associated with coagulation, inflammatory responses and immunoactivation. Platelet function was similar among individuals with PDI-rich vs. PDI-poor plasma. Remarkably, such protein signatures closely correlated with endothelial function and phenotype, since cultured endothelial cells incubated with PDI-poor or PDI-rich plasma recapitulated gene expression and secretome patterns in line with their corresponding plasma signatures. Furthermore, such signatures translated into functional responses, with PDI-poor plasma promoting impairment of endothelial adhesion to fibronectin and a disturbed pattern of wound-associated migration and recovery area. Patients with cardiovascular events had lower PDI levels vs. healthy individuals. This is the first study describing PDI levels as reporters of specific plasma proteome signatures directly promoting contrasting endothelial phenotypes and functional responses.
Collapse
Affiliation(s)
- Percíllia Victória Santos de Oliveira
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sheila Garcia-Rosa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Ana Iochabel Soares Moretti
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Victor Debbas
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie De Bessa
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nathalia Tenguan Silva
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|