1
|
Martín-González C, Ribot-Hernández I, Fernández-Rodríguez CM, Pérez-Hernández O, González-Navarrete L, Godoy-Reyes AM, Rodríguez-Gaspar M, Martínez-Riera A, González-Reimers E. Mean platelet volume and mortality in patients with alcohol use disorder. Dig Liver Dis 2023; 55:1236-1241. [PMID: 37277289 DOI: 10.1016/j.dld.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Several recent studies have pointed out the relationship of platelet size with increased mortality or adverse clinical course. Most studies show that increased mean platelet volume (MPV) may be associated with a deleterious outcome in different settings such as sepsis or neoplasia, whereas other researchers have found the opposite. In inflammatory conditions there is an altered secretion of several cytokines, some of them exerting a marked influence on platelet biogenesis and/or on platelet activation and aggregation. Alcohol use disorder is a chronic situation characterized by a protracted low-grade inflammation. In this study we analyze the relationship between proinflammatory cytokines and MPV and their relationships with mortality in patients with alcohol abuse. We determined serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 and routine laboratory variables among 184 patients with alcohol use disorder admitted to our hospital and followed-up for a median of 42 months. We found that MPV was inversely related to TNF-α (ρ=-0.34), and directly to IL-8 (ρ=0.32, p<0.001 in both cases) and to IL-6 (ρ=0.15; p = 0.046). Reduced MPV was related both with short-term (<6 months) and long-term mortality. Conclusion: These results suggest that inflammatory cytokines are strongly related to MPV. A low MPV is associated with a poor prognosis among patients with alcohol use disorder.
Collapse
Affiliation(s)
- Candelaria Martín-González
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| | - Iván Ribot-Hernández
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Camino M Fernández-Rodríguez
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Onán Pérez-Hernández
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Lourdes González-Navarrete
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Ana M Godoy-Reyes
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Melchor Rodríguez-Gaspar
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Antonio Martínez-Riera
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Emilio González-Reimers
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
2
|
Carnevale R, Cammisotto V, Bartimoccia S, Nocella C, Castellani V, Bufano M, Loffredo L, Sciarretta S, Frati G, Coluccia A, Silvestri R, Ceccarelli G, Oliva A, Venditti M, Pugliese F, Maria Mastroianni C, Turriziani O, Leopizzi M, D'Amati G, Pignatelli P, Violi F. Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2 Infection. Circ Res 2023; 132:290-305. [PMID: 36636919 DOI: 10.1161/circresaha.122.321541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.
Collapse
Affiliation(s)
- Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Valentina Castellani
- Department of General Surgery and Surgical Speciality (V. Castellani, F.P.), Sapienza University of Rome, Italy
| | - Marianna Bufano
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Antonio Coluccia
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Romano Silvestri
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Francesco Pugliese
- Department of General Surgery and Surgical Speciality (V. Castellani, F.P.), Sapienza University of Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine (O.T.), Sapienza University of Rome, Italy
| | - Martina Leopizzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.)
| | - Giulia D'Amati
- Department of Radiological, Oncological and Pathological Sciences (G.D.), Sapienza University of Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy.,Mediterranea Cardiocentro- Napoli, Italy (P.P., F.V.)
| | | |
Collapse
|
3
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
4
|
Abstract
There is increasing awareness that platelets play a significant role in creating a hypercoagulable environment that mediates tumor progression, beyond their classical hemostatic function. Platelets have heterogenic responses to agonists, and differential release and uptake of bioactive molecules may be manipulated via reciprocal cross-talk with cells of the tumor microenvironment. Platelets thus promote tumor progression by enhancing tumor growth, promoting the development of tumor-associated vasculature and encouraging invasion. In the metastatic process, platelets form the shield that protects tumor cells from high-velocity forces and immunosurveillance, while ensuring the establishment of the pre-metastatic niche. This review presents the complexity of these concepts, considering platelets as biomarkers for diagnosis, prognosis and potentially as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Tanya N Augustine
- School of Anatomical Sciences, Faculty of the Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|