1
|
Ogrodzińska W, Szafran K, Łuszczyński M, Barczyk-Woźnicka O, Gabruk M. Molecular insights into the differences between cyanobacterial and plant LPORs and prolamellar body formation: In vitro studies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108935. [PMID: 39029308 DOI: 10.1016/j.plaphy.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR) has captivated the interest of the research community for decades. One reason is the photocatalytic nature of the reaction catalyzed by the enzyme, and the other is the involvement of LPOR in the formation of a paracrystalline lattice called a prolamellar body (PLB) that disintegrates upon illumination, initiating a process of photosynthetic membrane formation. In this paper, we have integrated three traditional methods previously employed to study the properties of the enzyme: molecular biology, spectroscopy, and electron microscopy. We found that for cyanobacterial LPOR, substrates binding appears to be independent of lipids, with membrane interaction primarily affecting the enzyme post-reaction, with MGDG and PG having opposite effects on SynPOR. In contrast, plant isoforms exhibit sequence alterations, rendering the enzyme effective in substrate binding mainly in the presence of anionic lipids, depending on residues at positions 122, 312, and 318. Moreover, we demonstrated that the interaction with MGDG could initially serve as enhancement of the substrate specificity towards monovinyl-protochlorophyllide (Pchlide). We have shown that the second LPOR isoforms of eudicots and monocots accumulated mutations that made these variants less and more dependent on anionic lipids, respectively. Finally, we have shown that in the presence of Pchlide, NADP+, and the lipids, plant but not cyanobacterial LPOR homolog remodel membranes into the cubic phase. The cubic phase is preserved if samples supplemented with NADP + are enriched with NADPH. The results are discussed in the evolutionary context, and the model of PLB formation is presented.
Collapse
Affiliation(s)
- Wiktoria Ogrodzińska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Szafran
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Łuszczyński
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Olga Barczyk-Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Michał Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
2
|
Kwok van der Giezen FM, Viljoen A, Campbell-Clause L, Dao NT, Colas des Francs-Small C, Small I. Insights into U-to-C RNA editing from the lycophyte Phylloglossum drummondii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:445-459. [PMID: 38652016 DOI: 10.1111/tpj.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.
Collapse
Affiliation(s)
- Farley M Kwok van der Giezen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amy Viljoen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Leni Campbell-Clause
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nhan Trong Dao
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Vedalankar P, Tripathy BC. Light dependent protochlorophyllide oxidoreductase: a succinct look. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:719-731. [PMID: 38846463 PMCID: PMC11150229 DOI: 10.1007/s12298-024-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
Collapse
Affiliation(s)
| | - Baishnab C. Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
4
|
Dong CS, Liu L. Fluorination of a conserved tyrosine in POR offers new clues for proton transfer. FEBS J 2024; 291:1400-1403. [PMID: 38297957 DOI: 10.1111/febs.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Reduction of the 17,18-double bond in the D-ring during chlorophyll biosynthesis is catalyzed by the rare, naturally occurring photoenzyme protochlorophyllide oxidoreductase (POR). A conserved tyrosine residue has been suggested to donate a proton to C18 of the substrate in the past decades. Taylor and colleagues scrutinized the model with a powerful tool that utilized a modified genetic code to introduce fluorinated tyrosine analogues into POR. The presented results show that the suggested catalytically critical tyrosine is unlikely to participate in the reaction chemistry but is required for substrate binding, and instead, a cysteine residue preceding the lid helix is proposed to have the role of proton donor.
Collapse
Affiliation(s)
| | - Lin Liu
- School of Life Sciences, Anhui University, China
| |
Collapse
|
5
|
Caramello N, Royant A. From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons. Acta Crystallogr D Struct Biol 2024; 80:60-79. [PMID: 38265875 PMCID: PMC10836399 DOI: 10.1107/s2059798323011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump-probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.
Collapse
Affiliation(s)
- Nicolas Caramello
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Antoine Royant
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| |
Collapse
|
6
|
Jiang Y, Cao T, Yang Y, Zhang H, Zhang J, Li X. A chlorophyll c synthase widely co-opted by phytoplankton. Science 2023; 382:92-98. [PMID: 37797009 DOI: 10.1126/science.adg7921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl a: Chl b for green plants versus Chl c for most eukaryotic phytoplankton. The enzymes that mediate Chl c biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom Phaeodactylum tricornutum as the Chl c synthase. The chlc mutants lacked Chl c, instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl c, thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl c synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis.
Collapse
Affiliation(s)
- Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jingyu Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
7
|
Yang W, Chen X, Chen J, Zheng P, Liu S, Tan X, Sun B. Virus-Induced Gene Silencing in the Tea Plant ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:3162. [PMID: 37687408 PMCID: PMC10490191 DOI: 10.3390/plants12173162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
The recent availability of a number of tea plant genomes has sparked substantial interest in using reverse genetics to explore gene function in tea (Camellia sinensis). However, a hurdle to this is the absence of an efficient transformation system, and virus-induced gene silencing (VIGS), a transient transformation system, could be an optimal choice for validating gene function in the tea plant. In this study, phytoene desaturase (PDS), a carotenoid biosynthesis gene, was used as a reporter to evaluate the VIGS system. The injection sites of the leaves (leaf back, petiole, and stem) for infiltration were tested, and the results showed that petiole injection had the most effective injection, without leading to necrotic lesions that cause the leaves to drop. Tea leaves were inoculated with Agrobacterium harboring a tobacco rattle virus plasmid (pTRV2) containing a CsPDS silencing fragment. The tea leaves exhibited chlorosis symptoms 7-14 days after inoculation, depending on the cultivar. In the chlorosis plants, the coat protein (CP) of tobacco rattle virus (TRV) was detected and coincided with the lower transcription of CsPDS and reduced chlorophyll content compared with the empty vector control, with 81.82% and 54.55% silencing efficiency of 'LTDC' and 'YSX', respectively. These results indicate that the VIGS system with petiole injection could quickly and effectively silence a gene in tea plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| |
Collapse
|
8
|
Liu R, Wang L, Meng Y, Tian Y, Li F, Lu H. Theoretical and Experimental Studies on Plant Light-Dependent Protochlorophyllide Oxidoreductase as a Novel Target for Searching Potential Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37467369 DOI: 10.1021/acs.jafc.3c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Herbicide resistance is a prevalent problem that has posed a foremost challenge to crop production worldwide. Light-dependent enzyme NADPH: protochlorophyllide oxidoreductase (LPOR) in plants is a metabolic target that could satisfy this unmet demand. Herein, for the first time, we embarked on proposing a new mode of action of herbicides by performing structure-based virtual screening targeting multiple LPOR binding sites, with the determination of further bioactivity on the lead series. The feasibility of exploiting high selectivity and safety herbicides targeting LPOR was discussed from the perspective of the origin and phylogeny. Besides, we revealed the structural rearrangement and the selection key for NADPH cofactor binding to LPOR. Based on these, multitarget virtual screening was performed and the result identified compounds 2 affording micromolar inhibition, in which the IC50 reached 4.74 μM. Transcriptome analysis revealed that compound 2 induced more genes related to chlorophyll synthesis in Arabidopsis thaliana, especially the LPOR genes. Additionally, we clarified that these compounds binding to the site enhanced the overall stability and local rigidity of the complex systems from molecular dynamics simulation. This study delivers a guideline on how to assess activity-determining features of inhibitors to LPOR and how to translate this knowledge into the design of novel and effective inhibitors against malignant weed that act by targeting LPOR.
Collapse
Affiliation(s)
- Ruiyuan Liu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Leng Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yue Meng
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yiyi Tian
- College of Science, China Agricultural University, Beijing 100193, China
| | - Fang Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Liang M, Gu D, Lie Z, Yang Y, Lu L, Dai G, Peng T, Deng L, Zheng F, Liu X. Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH:protochlorophyll oxidoreductase A in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111641. [PMID: 36806610 DOI: 10.1016/j.plantsci.2023.111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Chlorophylls are the major pigments that harvest light energy during photosynthesis in plants. Although reactions in chlorophyll biogenesis have been largely known, little attention has been paid to the post-translational regulation mechanism of this process. In this study, we found that four lysine sites (K128/340/350/390) of NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyzes the only light-triggered step in chlorophyll biosynthesis, were acetylated after dark-grown seedlings transferred to light via acetylomics analysis. Etiolated seedlings with K390 mutation of PORA had a lower greening rate and decreased PORA acetylation after illumination. Importantly, K390 of PORA was found extremely conserved in plants and cyanobacteria via bioinformatics analysis. We further demonstrated that the acetylation level of PORA was increased by exposing the dark-grown seedlings to the histone deacetylase (HDAC) inhibitor TSA. Thus, the HDACs probably regulate the acetylation of PORA, thereby controlling this non-histone substrate to catalyze the reduction of Pchlide to produce chlorophyllide, which provides a novel regulatory mechanism by which the plant actively tunes chlorophyll biosynthesis during the conversion from skotomorphogenesis to photomorphogenesis.
Collapse
Affiliation(s)
- Minting Liang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhiyang Lie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yongyi Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longxin Lu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510630, China
| | - Guangyi Dai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Tao Peng
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
10
|
Kreiss M, Haas FB, Hansen M, Rensing SA, Hoecker U. Co-action of COP1, SPA and cryptochrome in light signal transduction and photomorphogenesis of the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:159-175. [PMID: 36710658 DOI: 10.1111/tpj.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.
Collapse
Affiliation(s)
- Melanie Kreiss
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany
| |
Collapse
|
11
|
Li C, Ran M, Liu J, Wang X, Wu Q, Zhang Q, Yang J, Yi F, Zhang H, Zhu JK, Zhao C. Functional analysis of CqPORB in the regulation of chlorophyll biosynthesis in Chenopodium quinoa. FRONTIERS IN PLANT SCIENCE 2022; 13:1083438. [PMID: 36578328 PMCID: PMC9791128 DOI: 10.3389/fpls.2022.1083438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Protochlorophyllide oxidoreductase (POR) plays a key role in catalyzing the light-dependent reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), and thus promotes the transit from etiolated seedlings to green plants. In this study, by exploring ethyl methanesulfonate (EMS)-mediated mutagenesis in Chenopodium quinoa NL-6 variety, we identified a mutant nl6-35 that displays faded green leaf and reduced chlorophyll (Chl) and carotenoid contents. Bulk segregant analysis (BSA) revealed that a mutation in CqPORB gene is genetically associated with the faded green leaf of the nl6-35 mutant. Further study indicates that the nl6-35 mutant exhibits abnormal grana stacks and compromised conversion of Pchlide to Chlide upon illumination, suggesting the important role of CqPORB in producing photoactive Pchlide. Totally three CqPOR isoforms, including CqPORA, CqPORA-like, and CqPORB are identified in NL-6 variety. Transcriptional analysis shows that the expression of all these three CqPOR isoforms is regulated in light- and development-dependent manners, and in mature quinoa plants only CqPORB isoform is predominantly expressed. Subcellular localization analysis indicates that CqPORB is exclusively localized in chloroplast. Together, our study elucidates the important role of CqPORB in the regulation of Chl biosynthesis and chloroplast development in quinoa.
Collapse
Affiliation(s)
- Chao Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Minyuan Ran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiao Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qingbing Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhang
- Bright Agricultural Development (Group) Co., Ltd., Shanghai, China
| | - Jing Yang
- Bright Agricultural Development (Group) Co., Ltd., Shanghai, China
| | - Feng Yi
- Bright Agricultural Development (Group) Co., Ltd., Shanghai, China
| | - Heng Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Tan YH, Poong SW, Yang CH, Lim PE, John B, Pai TW, Phang SM. Transcriptomic analysis reveals distinct mechanisms of adaptation of a polar picophytoplankter under ocean acidification conditions. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105782. [PMID: 36308800 DOI: 10.1016/j.marenvres.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Human emissions of carbon dioxide are causing irreversible changes in our oceans and impacting marine phytoplankton, including a group of small green algae known as picochlorophytes. Picochlorophytes grown in natural phytoplankton communities under future predicted levels of carbon dioxide have been demonstrated to thrive, along with redistribution of the cellular metabolome that enhances growth rate and photosynthesis. Here, using next-generation sequencing technology, we measured levels of transcripts in a picochlorophyte Chlorella, isolated from the sub-Antarctic and acclimated under high and current ambient CO2 levels, to better understand the molecular mechanisms involved with its ability to acclimate to elevated CO2. Compared to other phytoplankton taxa that induce broad transcriptomic responses involving multiple parts of their cellular metabolism, the changes observed in Chlorella focused on activating gene regulation involved in different sets of pathways such as light harvesting complex binding proteins, amino acid synthesis and RNA modification, while carbon metabolism was largely unaffected. Triggering a specific set of genes could be a unique strategy of small green phytoplankton under high CO2 in polar oceans.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia; Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - Beardall John
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan; Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Department of Biotechnology, Faculty of Applied Science, UCSI University, Kuala Lumpur, Malaysia; The Chancellery, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
The Eucalyptus grandis chloroplast proteome: Seasonal variations in leaf development. PLoS One 2022; 17:e0265134. [PMID: 36048873 PMCID: PMC9436043 DOI: 10.1371/journal.pone.0265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Chloroplast metabolism is very sensitive to environmental fluctuations and is intimately related to plant leaf development. Characterization of the chloroplast proteome dynamics can contribute to a better understanding on plant adaptation to different climate scenarios and leaf development processes. Herein, we carried out a discovery-driven analysis of the Eucalyptus grandis chloroplast proteome during leaf maturation and throughout different seasons of the year. The chloroplast proteome from young leaves differed the most from all assessed samples. Most upregulated proteins identified in mature and young leaves were those related to catabolic-redox signaling and biogenesis processes, respectively. Seasonal dynamics revealed unique proteome features in the fall and spring periods. The most abundant chloroplast protein in humid (wet) seasons (spring and summer) was a small subunit of RuBisCO, while in the dry periods (fall and winter) the proteins that showed the most pronounced accumulation were associated with photo-oxidative damage, Calvin cycle, shikimate pathway, and detoxification. Our investigation of the chloroplast proteome dynamics during leaf development revealed significant alterations in relation to the maturation event. Our findings also suggest that transition seasons induced the most pronounced chloroplast proteome changes over the year. This study contributes to a more comprehensive understanding on the subcellular mechanisms that lead to plant leaf adaptation and ultimately gives more insights into Eucalyptus grandis phenology.
Collapse
|
14
|
Proctor MS, Sutherland GA, Canniffe DP, Hitchcock A. The terminal enzymes of (bacterio)chlorophyll biosynthesis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211903. [PMID: 35573041 PMCID: PMC9066304 DOI: 10.1098/rsos.211903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
(Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs.
Collapse
Affiliation(s)
- Matthew S. Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - George A. Sutherland
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Daniel P. Canniffe
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
15
|
Johannissen LO, Taylor A, Hardman SJ, Heyes DJ, Scrutton NS, Hay S. How Photoactivation Triggers Protochlorophyllide Reduction: Computational Evidence of a Stepwise Hydride Transfer during Chlorophyll Biosynthesis. ACS Catal 2022; 12:4141-4148. [PMID: 35574213 PMCID: PMC9098174 DOI: 10.1021/acscatal.2c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Indexed: 12/28/2022]
Abstract
The photochemical reaction catalyzed by enzyme protochlorophyllide oxidoreductase (POR), a rare example of a photoactivated enzyme, is a crucial step during chlorophyll biosynthesis and involves the fastest known biological hydride transfer. Structures of the enzyme with bound substrate protochlorophyllide (PChlide) and coenzyme nicotinamide adenine dinucleotide phosphate (NADPH) have recently been published, opening up the possibility of using computational approaches to provide a comprehensive understanding of the excited state chemistry. Herein, we propose a complete mechanism for the photochemistry between PChlide and NADPH based on density functional theory (DFT) and time-dependent DFT calculations that is consistent with recent experimental data. In this multi-step mechanism, photoexcitation of PChlide leads to electron transfer from NADPH to PChlide, which in turn facilitates hydrogen atom transfer by weakening the breaking C-H bond. This work rationalizes how photoexcitation facilitates hydride transfer in POR and has more general implications for biological hydride transfer reactions.
Collapse
Affiliation(s)
- Linus O. Johannissen
- Manchester Institute of Biotechnology
and Department of Chemistry, The University
of Manchester, Manchester M1 7DN, U.K.
| | - Aoife Taylor
- Manchester Institute of Biotechnology
and Department of Chemistry, The University
of Manchester, Manchester M1 7DN, U.K.
| | - Samantha J.O. Hardman
- Manchester Institute of Biotechnology
and Department of Chemistry, The University
of Manchester, Manchester M1 7DN, U.K.
| | - Derren J. Heyes
- Manchester Institute of Biotechnology
and Department of Chemistry, The University
of Manchester, Manchester M1 7DN, U.K.
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology
and Department of Chemistry, The University
of Manchester, Manchester M1 7DN, U.K.
| | - Sam Hay
- Manchester Institute of Biotechnology
and Department of Chemistry, The University
of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
16
|
Silva PJ, Cheng Q. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase. ACS Catal 2022; 12:2589-2605. [PMID: 36568346 PMCID: PMC9778109 DOI: 10.1021/acscatal.1c05351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase is one of the few known enzymes that require a quantum of light to start their catalytic cycle. Upon excitation, it uses NADPH to reduce the C17-C18 in its substrate (protochlorophyllide) through a complex mechanism that has heretofore eluded precise determination. Isotopic labeling experiments have shown that the hydride-transfer step is very fast, with a small barrier close to 9 kcal mol-1, and is followed by a proton-transfer step, which has been postulated to be the protonation of the product by the strictly conserved Tyr189 residue. Since the structure of the enzyme-substrate complex has not yet been experimentally determined, we first used modeling techniques to discover the actual substrate binding mode. Two possible binding modes were found, both yielding stable binding (as ascertained through molecular dynamics simulations) but only one of which placed the critical C17=C18 bond consistently close to the NADPH pro-S hydrogen and to Tyr189. This binding pose was then used as a starting point for the testing of previous mechanistic proposals using time-dependent density functional theory. The quantum-chemical computations clearly showed that such mechanisms have prohibitively high activation energies. Instead, these computations showed the feasibility of an alternative mechanism initiated by excited-state electron transfer from the key Tyr189 to the substrate. This mechanism appears to agree with the extant experimental data and reinterprets the final protonation step as a proton transfer to the active site itself rather than to the product, aiming at regenerating it for another round of catalysis.
Collapse
Affiliation(s)
- Pedro J. Silva
- FP-I3ID/Fac.
de Ciências da Saúde, Universidade
Fernando Pessoa, 4200-150 Porto, Portugal,UCIBIO@REQUIMTE,
BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal,
| | - Qi Cheng
- Department
of Biochemistry, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China,State
Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071000, China,
| |
Collapse
|
17
|
Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chem Rev 2022; 122:1654-1716. [PMID: 34606251 PMCID: PMC8792375 DOI: 10.1021/acs.chemrev.1c00467] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.
Collapse
Affiliation(s)
- Matthew J Genzink
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Chen J, Wu S, Dong F, Li J, Zeng L, Tang J, Gu D. Mechanism Underlying the Shading-Induced Chlorophyll Accumulation in Tea Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:779819. [PMID: 34925423 PMCID: PMC8675639 DOI: 10.3389/fpls.2021.779819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Besides aroma and taste, the color of dry tea leaves, tea infusion, and infused tea leaves is also an important index for tea quality. Shading can significantly increase the chlorophyll content of tea leaves, leading to enhanced tea leaf coloration. However, the underlying regulatory mechanism remains unclear. In this study, we revealed that the expressions of chlorophyll synthesis genes were significantly induced by shading, specially, the gene encoding protochlorophyllide oxidoreductase (CsPOR). Indoor control experiment showed that decreased light intensity could significantly induce the expression of CsPOR, and thus cause the increase of chlorophyll content. Subsequently, we explored the light signaling pathway transcription factors regulating chlorophyll synthesis, including CsPIFs and CsHY5. Through expression level and subcellular localization analysis, we found that CsPIF3-2, CsPIF7-1, and CsHY5 may be candidate transcriptional regulators. Transcriptional activation experiments proved that CsHY5 inhibits CsPORL-2 transcription. In summary, we concluded that shading might promote the expression of CsPORL-2 by inhibiting the expression of CsHY5, leading to high accumulation of chlorophyll in tea leaves. The results of this study provide insights into the mechanism regulating the improvements to tea plant quality caused by shading.
Collapse
Affiliation(s)
- Jiaming Chen
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuhua Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Jianlong Li
- Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key, Guangzhou, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jinchi Tang
- Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key, Guangzhou, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Solymosi K, Mysliwa-Kurdziel B. The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:663309. [PMID: 33995458 PMCID: PMC8113382 DOI: 10.3389/fpls.2021.663309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthesis and needs to be produced throughout the whole plant life, especially under changing light intensity and stress conditions which may result in the destruction and elimination of these pigments. All steps of the Mg-branch of tetrapyrrole biosynthesis leading to Chl formation are carried out by enzymes associated with plastid membranes. Still the significance of these protein-membrane and protein-lipid interactions in Chl synthesis and chloroplast differentiation are not very well-understood. In this review, we provide an overview on Chl biosynthesis in angiosperms with emphasis on its association with membranes and lipids. Moreover, the last steps of the pathway including the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), the biosynthesis of the isoprenoid phytyl moiety and the esterification of Chlide are also summarized. The unique biochemical and photophysical properties of the light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) enzyme catalyzing Pchlide photoreduction and located to peculiar tubuloreticular prolamellar body (PLB) membranes of light-deprived tissues of angiosperms and to envelope membranes, as well as to thylakoids (especially grana margins) are also reviewed. Data about the factors influencing tubuloreticular membrane formation within cells, the spectroscopic properties and the in vitro reconstitution of the native LPOR enzyme complexes are also critically discussed.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
20
|
Xue Y, Li X, Mao M, He Y, Owusu Adjei M, Zhou X, Hu H, Liu J, Li X, Ma J. AbhemC encoding porphobilinogen deaminase plays an important role in chlorophyll biosynthesis and function in albino Ananas comosus var. bracteatus leaves. PeerJ 2021; 9:e11118. [PMID: 33850657 PMCID: PMC8018242 DOI: 10.7717/peerj.11118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background The chimeric leaves of Ananas comosus var. bracteatus are composed of normal green parts (Grs) and albino white parts (Whs). Although the underlying mechanism of albinism in A. comosus var. bracteatus leaves is not fully understood, it is likely associated with the chlorophyll (Chl) biosynthesis. In this biosynthetic process, porphobilinogen deaminase (PBGD) plays a crucial role by catalyzing the conversion of porphobilinogen (PBG) to uroporphyrinogen III (Urogen III). Therefore, its encoding gene AbhemC was investigated here in association with Chl biosynthesis and albinism in chimeric A. comosus var. bracteatus leaves. Methods The Chl content, main Chl biosynthesis precursor content, and main enzyme activity were determined and compared between the Whs and Grs of A. comosus var. bracteatus leaves. In addition, AbhemC was cloned and its transcriptional expression and prokaryotic protein expression were analyzed. Furthermore, RNAi-mediated silencing of AbhemC was produced and assessed in tobacco plants. Results The concentration of Chl a and Chl b in the Grs was significantly higher than that in the Whs, respectively. Additionally, the content of the Chl biosynthesis precursor Urogen III decreased significantly in the Whs compared with the Grs. Thus, the transition of PBG to Urogen III may be the first rate-limiting step leading to albinism in the chimeric leaves of A. comosus var. bracteatus. The gene AbhemC comprised 1,135 bp and was encoded into a protein with 371 amino acids; phylogenetically, AbhemC was most closely related to hemC of pineapple. Prokaryotic expression and in vitro enzyme activity analysis showed that the cloned mRNA sequence of AbhemC was successfully integrated and had PBGD activity. Compared with control plants, transgenic tobacco leaves with pFGC5941-AbhemC-RNAi vector were substantially less green with significantly reduced hemC expression and Chl content, as well as reduced PBGD enzyme activity and significantly decreased content of Chl biosynthesis precursors from Urogen III onwards. Our results suggest that the absence of hemC expression reduces the enzyme activity of PBGD, which blocks the transition of PBG to Urogen III, and in turn suppresses Chl synthesis leading to the pale-green leaf color. Therefore, we suggest that AbhemC plays an important role in Chl synthesis and may be an important factor in the albinism of A. comosus var. bracteatus leaves.
Collapse
Affiliation(s)
- Yanbin Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.,College of Biology and Food Engineering, Chongqing Three Gorges College, Chongqing, China
| | - Xia Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Meiqin Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yehua He
- South China Agricultural University, Guangzhou, China
| | - Mark Owusu Adjei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xuzixin Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Hao Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiawen Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Heyes DJ, Zhang S, Taylor A, Johannissen LO, Hardman SJO, Hay S, Scrutton NS. Photocatalysis as the 'master switch' of photomorphogenesis in early plant development. NATURE PLANTS 2021; 7:268-276. [PMID: 33686224 DOI: 10.1038/s41477-021-00866-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic photocatalysis is seldom used in biology. Photocatalysis by light-dependent protochlorophyllide oxidoreductase (LPOR)-one of only a few natural light-dependent enzymes-is an exception, and is responsible for the conversion of protochlorophyllide to chlorophyllide in chlorophyll biosynthesis. Photocatalysis by LPOR not only regulates the biosynthesis of the most abundant pigment on Earth but it is also a 'master switch' in photomorphogenesis in early plant development. Following illumination, LPOR promotes chlorophyll production, plastid membranes are transformed and the photosynthetic apparatus is established. Given these remarkable, light-induced pigment and morphological changes, the LPOR-catalysed reaction has been extensively studied from catalytic, physiological and plant development perspectives, highlighting vital, and multiple, cellular roles of this intriguing enzyme. Here, we offer a perspective in which the link between LPOR photocatalysis and plant photomorphogenesis is explored. Notable breakthroughs in LPOR structural biology have uncovered the structural-mechanistic basis of photocatalysis. These studies have clarified how photon absorption by the pigment protochlorophyllide-bound in a ternary LPOR-protochlorophyllide-NADPH complex-triggers photocatalysis and a cascade of complex molecular and cellular events that lead to plant morphological changes. Photocatalysis is therefore the master switch responsible for early-stage plant development and ultimately life on Earth.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Aoife Taylor
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Senge MO, Sergeeva NN, Hale KJ. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem Soc Rev 2021; 50:4730-4789. [PMID: 33623938 DOI: 10.1039/c7cs00719a] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins feature prominently in nature, be it as enzymatic cofactors, electron and exciton shuffles, as photoactive dyes, or as signaling substances. Their involvement in the generation, storage and use of oxygen is pivotal to life, while their photochemical properties are central to the biochemical functioning of plants. When complexed to metals, porphyrins can engage in a multitude of contemporary applications ranging from solar energy generation to serving as catalysts for important chemical reactions. They are also able to function as useful theranostic agents, and as novel materials for a wide range of applications. As such, they are widely considered to be highly valuable molecules, and it almost goes without saying that synthetic organic chemistry has dramatically underpinned all the key advances made, by providing reliable access to them. In fact, strategies for the synthesis of functionalized porphyrins have now reached a state of refinement where pretty well any desired porphyrin can successfully be synthesized with the approaches that are available, including a cornucopia of related macrocycle-modified porphyrinoids. In this review, we are going to illustrate the development of this exciting field by discussing a number of classic syntheses of porphyrins. Our coverage will encompass the natural protoporphyrins and chlorophylls, while also covering general strategies for the synthesis of unsymmetrical porphyrins and chlorins. Various industrial syntheses of porphyrins will also be discussed, as will other routes of great practical importance, and avenues to key porphyrinoids with modified macrocycles. A range of selected examples of contemporary functionalization reactions will be highlighted. The various key syntheses will be described and analyzed from a traditional mechanistic organic chemistry perspective to help student readers, and those who are new to this area. The aim will be to allow readers to mechanistically appreciate and understand how many of these fascinating ring-systems are built and further functionalized.
Collapse
Affiliation(s)
- Mathias O Senge
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | | | | |
Collapse
|
23
|
Zhang J, Sui C, Liu H, Chen J, Han Z, Yan Q, Liu S, Liu H. Effect of chlorophyll biosynthesis-related genes on the leaf color in Hosta (Hosta plantaginea Aschers) and tobacco (Nicotiana tabacum L.). BMC PLANT BIOLOGY 2021; 21:45. [PMID: 33451287 PMCID: PMC7811250 DOI: 10.1186/s12870-020-02805-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/20/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND 'Regal Splendour' (Hosta variety) is famous for its multi-color leaves, which are useful resources for exploring chloroplast development and color changes. The expressions of chlorophyll biosynthesis-related genes (HrHEMA, HrPOR and HrCAO) in Hosta have been demonstrated to be associated with leaf color. Herein, we isolated, sequenced, and analyzed HrHEMA, HrPOR and HrCAO genes. Subcellular localization was also performed to determine the location of the corresponding enzymes. After plasmid construction, virus-induced gene silencing (VIGS) was carried out to reduce the expressions of those genes. In addition, HrHEMA-, HrPOR- and HrCAO-overexpressing tobacco plants were made to verify the genes function. Changes of transgenic tobacco were recorded under 2000 lx, 6000 lx and 10,000 lx light intensity. Additionally, the contents of enzyme 5-aminolevulinic acid (5-ALA), porphobilinogen (PBG), chlorophyll a and b (Chla and Chlb), carotenoid (Cxc), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), proline (Pro) and catalase (CAT) under different light intensities were evaluated. RESULTS The silencing of HrHEMA, HrPOR and HrCAO genes can induce leaf yellowing and chloroplast structure changes in Hosta. Specifically, leaves of Hosta with HrCAO silencing were the most affected, while those with HrPOR silencing were the least affected. Moreover, all three genes in tobacco were highly expressed, whereas no expression was detected in wild-type (WT). However, the sensitivities of the three genes to different light intensities were different. The highest expression level of HrHEMA and HrPOR was detected under 10,000 lx of illumination, while HrCAO showed the highest expression level under 6000 lx. Lastly, the 5-ALA, Chla, Cxc, SOD, POD, MDA, Pro and CAT contents in different transgenic tobaccos changed significantly under different light intensities. CONCLUSION The overexpression of these three genes in tobacco enhanced photosynthesis by accumulating chlorophyll content, but the influential level varied under different light intensities. Furthermore, HrHEMA-, HrPOR- and HrCAO- overexpressing in tobacco can enhance the antioxidant capacity of plants to cope with stress under higher light intensity. However, under lower light intensity, the antioxidant capacity was declined in HrHEMA-, HrPOR- and HrCAO- overexpressing tobaccos.
Collapse
Affiliation(s)
- Jingying Zhang
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Changhai Sui
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
- Jilin Engineering Vocational College, Siping City, Jilin, 136000, People's Republic of China
| | - Huimin Liu
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Jinjiao Chen
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Zhilin Han
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Qian Yan
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Shuying Liu
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China.
| | - Hongzhang Liu
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China.
| |
Collapse
|
24
|
Alves FRR, Lira BS, Pikart FC, Monteiro SS, Furlan CM, Purgatto E, Pascoal GB, Andrade SCDS, Demarco D, Rossi M, Freschi L. Beyond the limits of photoperception: constitutively active PHYTOCHROME B2 overexpression as a means of improving fruit nutritional quality in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2027-2041. [PMID: 32068963 PMCID: PMC7540714 DOI: 10.1111/pbi.13362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 05/30/2023]
Abstract
Photoreceptor engineering has recently emerged as a means for improving agronomically beneficial traits in crop species. Despite the central role played by the red/far-red photoreceptor phytochromes (PHYs) in controlling fruit physiology, the applicability of PHY engineering for increasing fleshy fruit nutritional content remains poorly exploited. In this study, we demonstrated that the fruit-specific overexpression of a constitutively active GAF domain Tyr252 -to-His PHYB2 mutant version (PHYB2Y252H ) significantly enhances the accumulation of multiple health-promoting antioxidants in tomato fruits, without negative collateral consequences on vegetative development. Compared with the native PHYB2 overexpression, PHYB2Y252H -overexpressing lines exhibited more extensive increments in transcript abundance of genes associated with fruit plastid development, chlorophyll biosynthesis and metabolic pathways responsible for the accumulation of antioxidant compounds. Accordingly, PHYB2Y252H -overexpressing fruits developed more chloroplasts containing voluminous grana at the green stage and overaccumulated carotenoids, tocopherols, flavonoids and ascorbate in ripe fruits compared with both wild-type and PHYB2-overexpressing lines. The impacts of PHYB2 or PHYB2Y252H overexpression on fruit primary metabolism were limited to a slight promotion in lipid biosynthesis and reduction in sugar accumulation. Altogether, these findings indicate that mutation-based adjustments in PHY properties represent a valuable photobiotechnological tool for tomato biofortification, highlighting the potential of photoreceptor engineering for improving quality traits in fleshy fruits.
Collapse
Affiliation(s)
- Frederico Rocha Rodrigues Alves
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
- Departamento de BotânicaUniversidade Federal de GoiásGoiásGOBrazil
| | | | | | | | | | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição ExperimentalUniversidade de São PauloSão PauloSPBrazil
| | - Grazieli Benedetti Pascoal
- Departamento de Alimentos e Nutrição ExperimentalUniversidade de São PauloSão PauloSPBrazil
- Curso de Graduação em NutriçãoUniversidade Federal de UberlândiaMinas GeraisMGBrazil
| | | | - Diego Demarco
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| | - Magdalena Rossi
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| | - Luciano Freschi
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| |
Collapse
|
25
|
Schmermund L, Bierbaumer S, Schein VK, Winkler CK, Kara S, Kroutil W. Extending the Library of Light‐Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem 2020. [DOI: 10.1002/cctc.202000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Sarah Bierbaumer
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Viktor K. Schein
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christoph K. Winkler
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing Group Aarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Wolfgang Kroutil
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
26
|
Okamoto H, Ducreux LJM, Allwood JW, Hedley PE, Wright A, Gururajan V, Terry MJ, Taylor MA. Light Regulation of Chlorophyll and Glycoalkaloid Biosynthesis During Tuber Greening of Potato S. tuberosum. FRONTIERS IN PLANT SCIENCE 2020; 11:753. [PMID: 32760410 PMCID: PMC7372192 DOI: 10.3389/fpls.2020.00753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Potato, S. tuberosum, is one of the most important global crops, but has high levels of waste due to tuber greening under light, which is associated with the accumulation of neurotoxic glycoalkaloids. However, unlike the situation in de-etiolating seedlings, the mechanisms underlying tuber greening are not well understood. Here, we have investigated the effect of monochromatic blue, red, and far-red light on the regulation of chlorophyll and glycoalkaloid accumulation in potato tubers. Blue and red wavelengths were effective for induction and accumulation of chlorophyll, carotenoids and the two major potato glycoalkaloids, α-solanine and α-chaconine, whereas none of these accumulated in darkness or under far-red light. Key genes in chlorophyll biosynthesis (HEMA1, encoding the rate-limiting enzyme glutamyl-tRNA reductase, GSA, CHLH and GUN4) and six genes (HMG1, SQS, CAS1, SSR2, SGT1 and SGT2) required for glycoalkaloid synthesis were also induced under white, blue, and red light but not in darkness or under far-red light. These data suggest a role for both cryptochrome and phytochrome photoreceptors in chlorophyll and glycoalkaloid accumulation. The contribution of phytochrome was further supported by the observation that far-red light could inhibit white light-induced chlorophyll and glycoalkaloid accumulation and associated gene expression. Transcriptomic analysis of tubers exposed to white, blue, and red light showed that light induction of photosynthesis and tetrapyrrole-related genes grouped into three distinct groups with one group showing a generally progressive induction by light at both 6 h and 24 h, a second group showing induction at 6 h in all light treatments, but induction only by red and white light at 24 h and a third showing just a very moderate light induction at 6 h which was reduced to the dark control level at 24 h. All glycoalkaloid synthesis genes showed a group one profile consistent with what was seen for the most light regulated chlorophyll synthesis genes. Our data provide a molecular framework for developing new approaches to reducing waste due to potato greening.
Collapse
Affiliation(s)
- Haruko Okamoto
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - J. William Allwood
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Alison Wright
- Branston Ltd., Lincoln, United Kingdom
- B-hive Innovations Ltd., Lincoln, United Kingdom
| | - Vidyanath Gururajan
- Branston Ltd., Lincoln, United Kingdom
- B-hive Innovations Ltd., Lincoln, United Kingdom
| | - Matthew J. Terry
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark A. Taylor
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
27
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
28
|
Yang F, Liu Q, Cheng Y, Feng L, Wu X, Fan Y, Raza MA, Wang X, Yong T, Liu W, Liu J, Du J, Shu K, Yang W. Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. BMC PLANT BIOLOGY 2020; 20:148. [PMID: 32268881 PMCID: PMC7140557 DOI: 10.1186/s12870-020-02352-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/23/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Shading includes low light intensity and varying quality. However, a low red/far-red (R/Fr) ratio of light is a signal that affects plant growth in intercropping and close- planting systems. Thus, the low R/Fr ratio uncoupling from shading conditions was assessed to identify the effect of light quality on photosynthesis and CO2 assimilation. Soybean plants were grown in a growth chamber with natural solar radiation under four treatments, that is, normal (N, sunlight), N + Fr, Low (L) + Fr, and L light. RESULTS Low R/Fr ratio significantly increased the total biomass, leaf area, starch and sucrose contents, chlorophyll content, net photosynthetic rate, and quantum efficiency of the photosystem II compared with normal R/Fr ratio under the same light level (P < 0.05). Proteomic analysis of soybean leaves under different treatments was performed to quantify the changes in photosynthesis and CO2 assimilation in the chloroplast. Among the 7834 proteins quantified, 12 showed a > 1.3-fold change in abundance, of which 1 was related to porphyrin and chlorophyll metabolism, 2 were involved in photosystem I (PS I), 4 were associated with PS II, 3 proteins participated in photosynthetic electron transport, and 2 were involved in starch and sucrose metabolism. The dynamic change in these proteins indicates that photosynthesis and CO2 assimilation were maintained in the L treatment by up-regulating the component protein levels compared with those in N treatment. Although low R/Fr ratio increased the photosynthetic CO2 assimilation parameters, the differences in most protein expression levels in N + Fr and L + Fr treatments compared with those in N treatment were insignificant. Similar trends were found in gene expression through quantitative reverse transcription polymerase chain reaction excluding the gene expression of sucrose synthase possible because light environment is one of the factors affecting carbon assimilation. CONCLUSIONS Low R/Fr ratio (high Fr light) can increase the photosynthetic CO2 assimilation in the same light intensity by improving the photosynthetic efficiency of the photosystems.
Collapse
Affiliation(s)
- Feng Yang
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Qinlin Liu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
| | - Yajiao Cheng
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Yuanfang Fan
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Kai Shu
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130 People’s Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
29
|
Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase. Proc Natl Acad Sci U S A 2020; 117:8455-8461. [PMID: 32234783 DOI: 10.1073/pnas.1920244117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is the penultimate step of chlorophyll biosynthesis. In oxygenic photosynthetic bacteria, algae, and plants, this reaction can be catalyzed by the light-dependent Pchlide oxidoreductase (LPOR), a member of the short-chain dehydrogenase superfamily sharing a conserved Rossmann fold for NAD(P)H binding and the catalytic activity. Whereas modeling and simulation approaches have been used to study the catalytic mechanism of this light-driven reaction, key details of the LPOR structure remain unclear. We determined the crystal structures of LPOR from two cyanobacteria, Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus Structural analysis defines the LPOR core fold, outlines the LPOR-NADPH interaction network, identifies the residues forming the substrate cavity and the proton-relay path, and reveals the role of the LPOR-specific loop. These findings provide a basis for understanding the structure-function relationships of the light-driven Pchlide reduction.
Collapse
|
30
|
Zhan W, Liu J, Pan Q, Wang H, Yan S, Li K, Deng M, Li W, Liu N, Kong Q, Fernie AR, Yan J. An allele of ZmPORB2 encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:114-127. [PMID: 31169939 DOI: 10.1111/tpj.14432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
Phytol is one of the key precursors for tocopherol synthesis in plants, however, the underlying mechanisms concerning the accumulation of tocopherol remain poorly understood. In this study, qVE5, a major QTL affecting tocopherol accumulation in maize kernels was identified via a positional cloning approach. qVE5 encodes a protochlorophyllide oxidoreductase (ZmPORB2), which localizes to the chloroplast. Overexpression of ZmPORB2 increased tocopherol content in both leaves and kernels. Candidate gene association analysis identified a 5/8-bp insertion/deletion (InDel058) in the 5' untranslated region (UTR) as the causal polymorphism in affecting ZmPORB2 expression and being highly associated with tocopherol content. We showed that higher expression of ZmPORB2 correlated with more chlorophyll metabolites in the leaf following pollination. RNA-sequencing and metabolic analysis in near isogenic lines (NILs) support that ZmPORB2 participates in chlorophyll metabolism enabling the production of phytol, an important precursor of tocopherol. We also found that the tocopherol content in the kernel is mainly determined by the maternal genotype, a fact that was further confirmed by in vitro culture experiments. Finally, a PCR-based marker based on Indel058 was developed in order to facilitate the high tocopherol (vitamin E) maize breeding.
Collapse
Affiliation(s)
- Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Crop Germplasm Resources of Northern China (Ministry of Education), Hebei Sub-center of National Maize Improvement Center of China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nannan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Kong
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Schneidewind J, Krause F, Bocola M, Stadler AM, Davari MD, Schwaneberg U, Jaeger KE, Krauss U. Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex. Commun Biol 2019; 2:351. [PMID: 31583285 PMCID: PMC6761149 DOI: 10.1038/s42003-019-0590-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/29/2019] [Indexed: 12/02/2022] Open
Abstract
Photosynthetic organisms employ two different enzymes for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide), yielding the chlorophyll precursor chlorophyllide. First, a nitrogenase-like, light-independent (dark-operative) Pchlide oxidoreductase and secondly, a light-dependent Pchlide oxidoreductase (LPOR). For the latter enzyme, despite decades of research, no structural information is available. Here, we use protein structure modelling, molecular dynamics (MD) simulations combined with multi-wavelength analytical ultracentrifugation (MWA-AUC) and small angle X-ray scattering (SAXS) experiments to derive a consensus model of the LPOR apoprotein and the substrate/cofactor/LPOR ternary complex. MWA-AUC and SAXS experiments independently demonstrate that the apoprotein is monomeric, while ternary complex formation induces dimerization. SAXS-guided modelling studies provide a full-length model of the apoprotein and suggest a tentative mode of dimerization for the LPOR ternary complex, supported by published cross-link constraints. Our study provides a first impression of the LPOR structural organization.
Collapse
Affiliation(s)
- Judith Schneidewind
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Frank Krause
- Nanolytics, Gesellschaft für Kolloidanalytik GmbH, Am Mühlenberg 11, 14476 Potsdam, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Andreas Maximilian Stadler
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- IBG-1: Biotechnologie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- IBG-1: Biotechnologie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
32
|
Fujii S, Wada H, Kobayashi K. Role of Galactolipids in Plastid Differentiation Before and After Light Exposure. PLANTS (BASEL, SWITZERLAND) 2019; 8:E357. [PMID: 31547010 PMCID: PMC6843375 DOI: 10.3390/plants8100357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the predominant lipid classes in the thylakoid membrane of chloroplasts. These lipids are also major constituents of internal membrane structures called prolamellar bodies (PLBs) and prothylakoids (PTs) in etioplasts, which develop in the cotyledon cells of dark-grown angiosperms. Analysis of Arabidopsis mutants defective in the major galactolipid biosynthesis pathway revealed that MGDG and DGDG are similarly and, in part, differently required for membrane-associated processes such as the organization of PLBs and PTs and the formation of pigment-protein complexes in etioplasts. After light exposure, PLBs and PTs in etioplasts are transformed into the thylakoid membrane, resulting in chloroplast biogenesis. During the etioplast-to-chloroplast differentiation, galactolipids facilitate thylakoid membrane biogenesis from PLBs and PTs and play crucial roles in chlorophyll biosynthesis and accumulation of light-harvesting proteins. These recent findings shed light on the roles of galactolipids as key facilitators of several membrane-associated processes during the development of the internal membrane systems in plant plastids.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Koichi Kobayashi
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan.
| |
Collapse
|
33
|
The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:15297-15306. [PMID: 31296566 PMCID: PMC6660741 DOI: 10.1073/pnas.1908556116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many mutations that affect plastidial metabolism are embryo-lethal, as expected if the disrupted genes encode enzymes with essential housekeeping functions. However, some mutations that disrupt the plastidial oxidative pentose phosphate pathway (OPPP) cause developmental defects, as well as embryo arrest at the globular stage of development. We show that the OPPP provides the substrate for the pathway of purine synthesis, ribose-5-phosphate, and is thus essential for the generation of nucleic acids during the very early stages of embryo development. Inadequate purine synthesis leads to abnormal patterns of cell division in the embryo and blocks development beyond the globular stage. Therefore, defects in primary metabolic pathways can have profound consequences for development as well as simply reducing growth. Large numbers of genes essential for embryogenesis in Arabidopsis encode enzymes of plastidial metabolism. Disruption of many of these genes results in embryo arrest at the globular stage of development. However, the cause of lethality is obscure. We examined the role of the plastidial oxidative pentose phosphate pathway (OPPP) in embryo development. In nonphotosynthetic plastids the OPPP produces reductant and metabolic intermediates for central biosynthetic processes. Embryos with defects in various steps in the oxidative part of the OPPP had cell division defects and arrested at the globular stage, revealing an absolute requirement for the production via these steps of ribulose-5-phosphate. In the nonoxidative part of the OPPP, ribulose-5-phosphate is converted to ribose-5-phosphate (R5P)—required for purine nucleotide and histidine synthesis—and subsequently to erythrose-4-phosphate, which is required for synthesis of aromatic amino acids. We show that embryo development through the globular stage specifically requires synthesis of R5P rather than erythrose-4-phosphate. Either a failure to convert ribulose-5-phosphate to R5P or a block in purine nucleotide biosynthesis beyond R5P perturbs normal patterning of the embryo, disrupts endosperm development, and causes early developmental arrest. We suggest that seed abortion in mutants unable to synthesize R5P via the oxidative part of the OPPP stems from a lack of substrate for synthesis of purine nucleotides, and hence nucleic acids. Our results show that the plastidial OPPP is essential for normal developmental progression as well as for growth in the embryo.
Collapse
|
34
|
Zhi T, Zhou Z, Qiu B, Zhu Q, Xiong X, Ren C. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:622-638. [PMID: 30666736 DOI: 10.1111/tpj.14235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 05/10/2023]
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyses the final step of the tyrosine degradation pathway, which is essential to animals but was of unknown importance in plants until we found that mutation of Short-day Sensitive Cell Death1 (SSCD1), encoding Arabidopsis FAH, results in cell death under short-day conditions. The sscd1 mutant accumulates succinylacetone (SUAC), an abnormal metabolite caused by loss of FAH. Succinylacetone is an inhibitor of δ-aminolevulinic acid (ALA) dehydratase (ALAD), which is involved in chlorophyll (Chl) biosynthesis. In this study, we investigated whether sscd1 cell death is mediated by Chl biosynthesis and found that ALAD activity is repressed in sscd1 and that protochlorophyllide (Pchlide), an intermediate of Chl biosynthesis, accumulates at lower levels in etiolated sscd1 seedlings. However, it was interesting that Pchlide in sscd1 might increase after transfer from light to dark and that HEMA1 and CHLH are upregulated in the light-dark transition before Pchlide levels increased. Upon re-illumination after Pchlide levels had increased, reactive oxygen species marker genes, including singlet oxygen-induced genes, are upregulated, and the sscd1 cell death phenotype appears. In addition, Arabidopsis WT seedlings treated with SUAC mimic sscd1 in decline of ALAD activity and accumulation of Pchlide as well as cell death. These results demonstrate that increase in Pchlide causes cell death in sscd1 upon re-illumination and suggest that a decline in the Pchlide pool due to inhibition of ALAD activity by SUAC impairs the repression of ALA synthesis from the light-dark transition by feedback control, resulting in activation of the Chl biosynthesis pathway and accumulation of Pchlide in the dark.
Collapse
Affiliation(s)
- Tiantian Zhi
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhou Zhou
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Qi Zhu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chunmei Ren
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
35
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
36
|
Erdei AL, Kósa A, Böddi B. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls. PHOTOSYNTHESIS RESEARCH 2019; 140:93-102. [PMID: 30225812 DOI: 10.1007/s11120-018-0584-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The effects of distinct UV-A and UV-B radiations were studied on etiolated pea (Pisum sativum L.) epicotyls. Emission spectra of the native protochlorophyll and protochlorophyllide forms were measured when epicotyls were excited with 360 or 300 nm light. The UV-A (360 nm) excited mainly the non-enzyme-bound monomers of protochlorophyll and protochlorophyllide and the UV-B (300 nm) excited preferentially the flash-photoactive protochlorophyllide complexes. These latter complexes converted into short- and long-wavelength chlorophyllide forms at 10-s illumination with both wavelength irradiations. As the spectral changes were very small, the effects of longer illumination periods were studied. Room temperature fluorescence emission spectra were measured from the same epicotyl spots before and after irradiation with various wavelengths between 280 and 360 nm for 15 min and the "illuminated" minus "dark" difference spectra were calculated. Both the UV-A and the UV-B irradiations caused photoreduction of protochlorophyllide into chlorophyllide. At 10 µmol photons m-2 s-1, the photoreduction rates were similar, however, at 60 µmol photons m-2 s-1, the UV-B irradiation was more effective in inducing chlorophyllide formation than the UV-A. The action spectra of protochlorophyllide plus protochlorophyll loss and chlorophyllide production showed that the radiation around 290 nm was the most effective in provoking protochlorophyllide photoreduction and the UV light above 320 nm caused strong bleaching. These results show that the effect of the UV radiation should be considered when discussing the protochlorophyllide-chlorophyllide photoreduction during germination and as a part of the regeneration of the photosynthetic apparatus proceeding in the daily run of photosynthesis.
Collapse
Affiliation(s)
- Anna Laura Erdei
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Annamária Kósa
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary.
| |
Collapse
|
37
|
Gholami S, Nenov A, Rivalta I, Bocola M, Bordbar AK, Schwaneberg U, Davari MD, Garavelli M. Theoretical Model of the Protochlorophyllide Oxidoreductase from a Hierarchy of Protocols. J Phys Chem B 2018; 122:7668-7681. [PMID: 29996651 DOI: 10.1021/acs.jpcb.8b04231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme protochlorophyllide oxidoreductase (LPOR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), a crucial step in chlorophyll biosynthesis. Molecular understanding of the photocatalytic mechanism of LPOR is essential for harnessing light energy to mediate enzymatic reactions. The absence of X-ray crystal structure has promoted the development of LPOR homology models that lack a catalytically competent active site and could not explain the variously reported spectroscopic evidence, including time-resolved optical spectroscopy data. We have refined previous structural models to account for the catalytic active site and the characteristic experimental spectral features of Pchlide binding, including the 26 cm-1 red shift of the C13(1) carbonyl stretch vibration in the mid-infrared (IR) and the 12 nm red shift of the Q x electronic band. A hierarchy of theoretical methods, including homology modeling, molecular dynamics simulations, hybrid quantum mechanics [(TD-)DFT]/molecular mechanics [AMBER] calculations, and computational vibrational and electronic spectroscopies, have been combined in an iterative protocol to reproduce experimental evidence and to predict ultrafast transient IR spectroscopic fingerprints associated with the catalytic process. The successful application to the LPOR enzyme indicates that the presented hierarchical protocol provides a general workflow to protein structure refinement.
Collapse
Affiliation(s)
- Samira Gholami
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran.,Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Ivan Rivalta
- Université de Lyon , École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 , Lyon , France
| | - Marco Bocola
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - A Khalegh Bordbar
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany.,DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Mehdi D Davari
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
38
|
Herbst J, Girke A, Hajirezaei MR, Hanke G, Grimm B. Potential roles of YCF54 and ferredoxin-NADPH reductase for magnesium protoporphyrin monomethylester cyclase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:485-496. [PMID: 29443418 DOI: 10.1111/tpj.13869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/10/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Chlorophyll is synthesized from activated glutamate in the tetrapyrrole biosynthesis pathway through at least 20 different enzymatic reactions. Among these, the MgProto monomethylester (MgProtoME) cyclase catalyzes the formation of a fifth isocyclic ring to tetrapyrroles to form protochlorophyllide. The enzyme consists of two proteins. The CHL27 protein is proposed to be the catalytic component, while LCAA/YCF54 likely acts as a scaffolding factor. In comparison to other reactions of chlorophyll biosynthesis, this enzymatic step lacks clear elucidation and it is hardly understood, how electrons are delivered for the NADPH-dependent cyclization reaction. The present study intends to elucidate more precisely the role of LCAA/YCF54. Transgenic Arabidopsis lines with inactivated and overexpressed YCF54 reveal the mutual stability of YCF54 and CHL27. Among the YCF54-interacting proteins, the plastidal ferredoxin-NADPH reductase (FNR) was identified. We showed in N. tabacum and A. thaliana that a deficit of FNR1 or YCF54 caused MgProtoME accumulation, the substrate of the cyclase, and destabilization of the cyclase subunits. It is proposed that FNR serves as a potential donor for electrons required in the cyclase reaction and connects chlorophyll synthesis with photosynthetic activity.
Collapse
Affiliation(s)
- Josephine Herbst
- Humboldt-University Berlin, Life Sciences Faulty, Institute of Biology/Plant Physiology, Philippstraße 13, Building 12, 10115, Berlin, Germany
| | - Annabel Girke
- Humboldt-University Berlin, Life Sciences Faulty, Institute of Biology/Plant Physiology, Philippstraße 13, Building 12, 10115, Berlin, Germany
| | - Mohammad Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Molecular Plant Nutrition, OT Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Guy Hanke
- Department of Cell and Molecular Biology, Queen Mary University of London, Fogg Building, Mile End Road, London, E1 4NS, UK
| | - Bernhard Grimm
- Humboldt-University Berlin, Life Sciences Faulty, Institute of Biology/Plant Physiology, Philippstraße 13, Building 12, 10115, Berlin, Germany
| |
Collapse
|
39
|
Kwon CT, Kim SH, Song G, Kim D, Paek NC. Two NADPH: Protochlorophyllide Oxidoreductase (POR) Isoforms Play Distinct Roles in Environmental Adaptation in Rice. RICE (NEW YORK, N.Y.) 2017; 10:1. [PMID: 28078486 PMCID: PMC5226909 DOI: 10.1186/s12284-016-0141-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND NADPH: protochlorophyllide oxidoreductase (POR) is an essential enzyme that catalyzes the photoreduction of protochlorophyllide to chlorophyllide, which is ultimately converted to chlorophyll in developing leaves. Rice has two POR isoforms, OsPORA and OsPORB. OsPORA is expressed in the dark during early leaf development; OsPORB is expressed throughout leaf development regardless of light conditions. The faded green leaf (fgl) is a loss-of-function osporB mutant that displays necrotic lesions and variegation in the leaves due to destabilized grana thylakoids, and has increased numbers of plastoglobules in the chloroplasts. To investigate whether the function of OsPORA can complement that of OsPORB, we constitutively overexpressed OsPORA in fgl mutant. RESULTS In the 35S:OsPORA/fgl (termed OPAO) transgenic plants, the necrotic lesions of the mutant disappeared and the levels of photosynthetic pigments and proteins, as well as plastid structure, were recovered in developing leaves under natural long days in the paddy field and under short days in an artificially controlled growth room. Under constant light conditions, however, total chlorophyll and carotenoid levels in the developing leaves of OPAO plants were lower than those of wild type. Moreover, the OPAO plants exhibited mild defects in mature leaves beginning at the early reproductive stage in the paddy field. CONCLUSIONS The physiological function of OsPORB in response to constant light or during reproductive growth cannot be completely replaced by constitutive activity of OsPORA, although the biochemical functions of OsPORA and OsPORB are redundant. Therefore, we suggest that the two OsPORs have differentiated over the course of evolution, playing distinct roles in the adaptation of rice to the environment.
Collapse
Affiliation(s)
- Choon-Tak Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Giha Song
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dami Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Crop Biotechnology Institute, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
| |
Collapse
|
40
|
Ren Y, Yang J, Lu B, Jiang Y, Chen H, Hong Y, Wu B, Miao Y. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai. Int J Mol Sci 2017; 18:ijms18091923. [PMID: 28885552 PMCID: PMC5618572 DOI: 10.3390/ijms18091923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/31/2022] Open
Abstract
Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.
Collapse
Affiliation(s)
- Yujun Ren
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jingwen Yang
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bingguo Lu
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yaping Jiang
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Haiyang Chen
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuwei Hong
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Binghua Wu
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ying Miao
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
41
|
Buhr F, Lahroussi A, Springer A, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. NADPH:protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins. PLANT MOLECULAR BIOLOGY 2017; 94:45-59. [PMID: 28260138 DOI: 10.1007/s11103-017-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the 'RED' family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis. cDNAs were constructed by site-directed mutagenesis that encode PORB mutant proteins with defined Cys→Ala exchanges. These cDNAs were expressed in transgenic plants of a PORB-deficient knock-out mutant (porB) of Arabidopsis thaliana. Results show that porB plants expressing PORB mutant proteins with Ala substitutions of Cys276 or Cys303 are hypersensitive to high-light conditions during greening. Hereby, failure to assemble higher molecular weight complexes of PORB with its twin isoenzyme, PORA, as encountered with (Cys303→Ala)-PORB plants, caused more severe effects than replacing Cys276 by an Ala residue in the active site of the enzyme, as encountered in (Cys276→Ala)-PORB plants. Our results are consistent with the presence of two distinct pigment binding sites in PORB, with Cys276 establishing the active site of the enzyme and Cys303 providing a second, low affinity pigment binding site that is essential for the assembly of higher molecular mass light-harvesting PORB::PORA complexes and photoprotection of etiolated seedlings. Failure to assemble such complexes provoked photodynamic damage through the generation of singlet oxygen. Together, our data highlight the importance of PORB for Pchlide homoeostasis and greening in Arabidopsis.
Collapse
Affiliation(s)
- Frank Buhr
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Abderrahim Lahroussi
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Armin Springer
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, Strempelstraße 14, 18057, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, 29506, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France.
| |
Collapse
|
42
|
Ha JH, Lee HJ, Jung JH, Park CM. Thermo-Induced Maintenance of Photo-oxidoreductases Underlies Plant Autotrophic Development. Dev Cell 2017; 41:170-179.e4. [PMID: 28392197 DOI: 10.1016/j.devcel.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 03/12/2017] [Indexed: 12/31/2022]
Abstract
Chlorophyll biosynthesis enables autotrophic development of developing seedlings. Upon light exposure, the chlorophyll precursor protochlorophyllide produces reactive oxygen species (ROS). Developing seedlings acquire photosynthetic competence through the action of protochlorophyllide oxidoreductases (PORs) that convert protochlorophyllide to chlorophyllide, reducing ROS production that would otherwise induce cellular damage and chlorophyll bleaching. Here, we show that FCA mediates the thermostabilization of PORs to trigger the conversion of protochlorophyllide to chlorophyllide in developing seedlings. FCA also facilitates the thermal induction of POR genes through histone acetylation that promotes the accessibility of RNA polymerases to the gene promoters. The combined action of FCA maintains PORs at warm temperatures, shifting the chlorophyll-ROS balance toward autotrophic development. We propose that the FCA-mediated thermal adaptation of autotrophic development allows developing seedlings to cope with the heat-absorbing soil surface layer under natural conditions. The thermal adaptive mechanism would provide a potential basis for studying crop performance at warm temperatures.
Collapse
Affiliation(s)
- Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
43
|
Brandariz-de-Pedro G, Heyes DJ, Hardman SJO, Shanmugam M, Jones AR, Weber S, Nohr D, Scrutton NS, Fielding AJ. Direct Evidence of an Excited-State Triplet Species upon Photoactivation of the Chlorophyll Precursor Protochlorophyllide. J Phys Chem Lett 2017; 8:1219-1223. [PMID: 28244763 DOI: 10.1021/acs.jpclett.7b00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The chlorophyll precursor protochlorophyllide (Pchlide), which is the substrate for the light-driven enzyme protochlorophyllide oxidoreductase, has unique excited-state properties that facilitate photocatalysis. Previous time-resolved spectroscopy measurements have implied that a long-lived triplet state is formed during the excited-state relaxation of Pchlide, although direct evidence of its existence is still lacking. Here we use time-resolved electron paramagnetic resonance (EPR) in combination with time-resolved absorption measurements at a range of temperatures (10-290 K), solvents, and oxygen concentrations to provide a detailed characterization of the triplet state of Pchlide. The triplet decays in a biphasic, oxygen-dependent manner, while the first reported EPR signature of a Pchlide triplet displays both emissive and absorptive features and an antisymmetric spectrum similar to other porphyrin triplet states. This work demonstrates that the Pchlide triplet is accessible to various cryogenic spectroscopic probes over a range of time scales and paves the way for understanding its potential role in catalysis.
Collapse
Affiliation(s)
- Guillem Brandariz-de-Pedro
- School of Chemistry and the Photon Science Institute, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Alex R Jones
- School of Chemistry and the Photon Science Institute, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg , 79104 Freiburg, Germany
| | - Daniel Nohr
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg , 79104 Freiburg, Germany
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Alistair J Fielding
- School of Chemistry and the Photon Science Institute, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
44
|
Heyes DJ, Hardman SJO, Mansell D, Ní Cheallaigh A, Gardiner JM, Johannissen LO, Greetham GM, Towrie M, Scrutton NS. Excited-State Properties of Protochlorophyllide Analogues and Implications for Light-Driven Synthesis of Chlorophyll. J Phys Chem B 2017; 121:1312-1320. [PMID: 28117585 DOI: 10.1021/acs.jpcb.7b00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protochlorophyllide (Pchlide), an intermediate in the biosynthesis of chlorophyll, is the substrate for the light-driven enzyme protochlorophyllide oxidoreductase. Pchlide has excited-state properties that allow it to initiate photochemistry in the enzyme active site, which involves reduction of Pchlide by sequential hydride and proton transfer. The basis of this photochemical behavior has been investigated here using a combination of time-resolved spectroscopies and density functional theory calculations of a number of Pchlide analogues with modifications to various substituent groups. A keto group on ring E is essential for excited-state charge separation in the molecule, which is the driving force for the photoreactivity of the pigment. Vibrational "fingerprints" of specific regions of the Pchlide chromophore have been assigned, allowing identification of the modes that are crucial for excited-state chemistry in the enzyme. This work provides an understanding of the structural determinants of Pchlide that are important for harnessing light energy.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - David Mansell
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Aisling Ní Cheallaigh
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - John M Gardiner
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council , Harwell Oxford, Didcot OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council , Harwell Oxford, Didcot OX11 0QX, U.K
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
45
|
Zhang D, Li Y, Zhang X, Zha P, Lin R. The SWI2/SNF2 Chromatin-Remodeling ATPase BRAHMA Regulates Chlorophyll Biosynthesis in Arabidopsis. MOLECULAR PLANT 2017; 10:155-167. [PMID: 27865928 DOI: 10.1016/j.molp.2016.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 05/20/2023]
Abstract
Chlorophyll biosynthesis is critical for chloroplast development and photosynthesis in plants. Although reactions in the chlorophyll biosynthetic pathway have been largely known, little is known about the regulatory mechanisms of this pathway. In this study, we found that the dark-grown knockout and knockdown mutants as well as RNA-interference transgenic seedlings of BRAHMA (BRM), which encodes an SWI2/SNF2 chromatin-remodeling ATPase, had higher greening rates, accumulated less protochlorophyllide, and produced less reactive oxygen species than Arabidopsis wild-type plants did upon light exposure. The expression of NADPH:protochlorophyllide oxidoreductase A (PORA), PORB, and PORC, which catalyze a key step in chlorophyll biosynthesis, was increased in the brm mutants. We found that BRM physically interacted with the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) through its N-terminal domains. Furthermore, we demonstrated that BRM was directly recruited to the cis-regulatory regions of PORC, but not of PORA and PORB, at least partially in a PIF1-dependent manner and the level of histone H3 lysine 4 tri-methylation (H3K4me3) at PORC loci was increased in the brm mutant. Taken together, our data indicate that the chromatin-remodeling enzyme BRM modulates PORC expression through interacting with PIF1, providing a novel regulatory mechanism by which plants fine-tune chlorophyll biosynthesis during the transition from heterotrophic to autotrophic growth.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Li
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zha
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Menon BRK, Hardman SJO, Scrutton NS, Heyes DJ. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:236-43. [PMID: 27285815 PMCID: PMC4970445 DOI: 10.1016/j.jphotobiol.2016.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. Identified several active site residues that can interact with coenzyme/substrate Multiple residues are important in excited state POR–protochlorophyllide interactions. New structural model for T. elongatus POR to rationalize mutagenesis outcomes POR active site geometry is finely-tuned to support photochemistry.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Samantha J O Hardman
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - Derren J Heyes
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
47
|
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS One 2016; 11:e0154235. [PMID: 27137770 PMCID: PMC4854468 DOI: 10.1371/journal.pone.0154235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness.
Collapse
Affiliation(s)
- Jing Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
| | - Qingbo Yu
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Haibo Xiong
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Jun Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States of America
| | - Zhongnan Yang
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Shaojun Dai
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| |
Collapse
|
48
|
Hoeven R, Hardman SJO, Heyes DJ, Scrutton NS. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Biochemistry 2016; 55:903-13. [DOI: 10.1021/acs.biochem.5b01355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin Hoeven
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Samantha J. O. Hardman
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Derren J. Heyes
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
49
|
The Arabidopsis glutamyl-tRNA reductase (GluTR) forms a ternary complex with FLU and GluTR-binding protein. Sci Rep 2016; 6:19756. [PMID: 26794057 PMCID: PMC4726326 DOI: 10.1038/srep19756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/17/2015] [Indexed: 11/09/2022] Open
Abstract
Tetrapyrrole biosynthesis is an essential and tightly regulated process, and glutamyl-tRNA reductase (GluTR) is a key target for multiple regulatory factors at the post-translational level. By binding to the thylakoid membrane protein FLUORESCENT (FLU) or the soluble stromal GluTR-binding protein (GBP), the activity of GluTR is down- or up-regulated. Here, we reconstructed a ternary complex composed of the C-terminal tetratricopepetide-repeat domain of FLU, GBP, and GluTR, crystallized and solved the structure of the complex at 3.2 Å. The overall structure resembles the shape of merged two binary complexes as previously reported, and shows a large conformational change within GluTR. We also demonstrated that GluTR binds tightly with GBP but does not bind to GSAM under the same condition. These findings allow us to suggest a biological role of the ternary complex for the regulation of plant GluTR.
Collapse
|
50
|
Xu G, Guo H, Zhang D, Chen D, Jiang Z, Lin R. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2015; 126:331-40. [PMID: 25910753 DOI: 10.1007/s11120-015-0146-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/16/2015] [Indexed: 05/03/2023]
Abstract
Chlorophyll biosynthesis plays a crucial role in the greening process and survival of etiolated seedlings and yet the mechanism underlying the regulation of this process is poorly understood. Upon light stimulation, NADPH: protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide. Whereas this represents a key step in the chlorophyll biosynthetic pathway, the regulation of POR remains largely unknown. Three POR isoforms exist in Arabidopsis thaliana, i.e., PORA, PORB, and PORC. In this study, we identified a transcription factor, REVEILLE1 (RVE1), that binds directly to the PORA promoter through the EE-box cis-regulatory element. Analysis of PORA expression in RVE1 loss-of-function (rve1) and overexpression (RVE1-OX) Arabidopsis plants showed that RVE1 positively regulates the transcription of PORA. We found that Pchlide levels were reduced in RVE1-OX seedlings. Furthermore, rve1 etiolated seedlings had lower greening rates than the wild type when exposed to light, whereas RVE1-OX seedlings had higher greening rates. In addition, when etiolated seedlings were exposed to light, RVE1-OX plants had less reactive oxygen species (ROS) accumulation and cell death than the wild type, and had reduced levels of ROS-responsive gene expression. Taken together, our study reveals an important role for RVE1 in regulating chlorophyll biosynthesis and promoting seedling greening during early plant growth and development.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Guo
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Zhang
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing, 1000, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|