1
|
Bamberger C, Pankow S, Park SKR, Yates JR. Interference-free proteome quantification with MS/MS-based isobaric isotopologue detection. J Proteome Res 2014; 13:1494-501. [PMID: 24417624 PMCID: PMC3993960 DOI: 10.1021/pr401035z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 12/31/2022]
Abstract
Chemical labeling of peptides prior to shotgun proteomics allows relative quantification of proteins in biological samples independent of sample origin. Current strategies utilize isobaric labels that fragment into reporter ions. However, quantification of reporter ions results in distorted ratio measurements due to contaminating peptides that are co-selected in the same precursor isolation window. Here, we show that quantitation of isobaric peptide fragment isotopologues in tandem mass spectra reduces precursor interference. The method is based on the relative quantitation of isobaric isotopologues of dimethylated peptide fragments in tandem mass spectra following higher energy collisional dissociation (HCD). The approach enables precise quantification of a proteome down to single spectra per protein and quantifies >90% of proteins in a MudPIT experiment and accurately measures proteins in a model cell line for cystic fibrosis.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, California 92037, United States
| | - Sandra Pankow
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, California 92037, United States
| | - Sung Kyu Robin Park
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, California 92037, United States
| | - John R. Yates
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, California 92037, United States
| |
Collapse
|
2
|
Vlasblom J, Jin K, Kassir S, Babu M. Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. J Proteomics 2013; 100:8-24. [PMID: 24262152 DOI: 10.1016/j.jprot.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/08/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022]
Abstract
UNLABELLED Mitochondria are double membraned, dynamic organelles that are required for a large number of cellular processes, and defects in their function have emerged as causative factors for a growing number of human disorders and are highly associated with cancer, metabolic, and neurodegenerative (ND) diseases. Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in ND disease, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. However, high-throughput proteomic and genomic approaches developed in genetically tractable model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene-gene) relationships between diverse types of proteins, including cytosolic and membrane proteins. In this review, we highlight how experimental and computational approaches developed recently by our group and others can be effectively used towards elucidating the mitochondrial interactome in an unbiased and systematic manner to uncover network-based connections. We discuss how the knowledge from the resulting interaction networks can effectively contribute towards the identification of new mitochondrial disease gene candidates, and thus further clarify the role of mitochondrial biology and the complex etiologies of ND disease. BIOLOGICAL SIGNIFICANCE Biochemical and genetic investigations have uncovered small numbers of candidate mitochondrial proteins (MPs) involved in neurodegenerative (ND) diseases, but given the diversity of processes affected by MP function and the difficulty of detecting interactions involving these proteins, many more likely remain unknown. Large-scale proteomic and genomic approaches developed in model prokaryotes and lower eukaryotes have proven to be effective tools for querying the physical (protein-protein) and functional (gene-gene) relationships between diverse types of proteins. Extension of this new framework to the mitochondrial sub-system in human will likewise provide a universally informative systems-level view of the physical and functional landscape for exploring the evolutionary principles underlying mitochondrial function. In this review, we highlight how experimental and computational approaches developed recently by our group and others can be effectively used towards elucidating the mitochondrial interactome in an unbiased and systematic manner to uncover network-based connections. We anticipate that the knowledge from these resulting interaction networks can effectively contribute towards the identification of new mitochondrial disease gene candidates, and thus foster a deeper molecular understanding of mitochondrial biology as well as the etiology of mitochondrial diseases. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- James Vlasblom
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ke Jin
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada; Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sandy Kassir
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| |
Collapse
|
3
|
Provan F, Jensen LB, Uleberg KE, Larssen E, Rajalahti T, Mullins J, Obach A. Proteomic analysis of epidermal mucus from sea lice-infected Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2013; 36:311-321. [PMID: 23305410 DOI: 10.1111/jfd.12064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
Health diets that contain immunostimulants and other functional ingredients can strengthen the immune response in Atlantic salmon, Salmo salar, and thereby reduce sea lice, Lepeophtheirus salmonis, infection levels. Such diets can be used to supplement other treatments and will potentially reduce the need for delousing and medication. A sea lice infection trial was conducted on fish with an average weight of 215 g. One control diet and four experimental diets containing functional ingredients were produced. The diets were fed to salmon for 4 weeks before infection with sea lice copepodids. When lice had developed to chalimus III/IV, 88 fish per diet were examined for lice loads. Mucus samples from fish fed the different diets were taken before and after lice infection. Mass spectrometry-based proteomics was used to characterize the protein composition in the epidermal mucus of Atlantic salmon and to identify quantitative alterations in protein expression. Multivariate analysis of the generated data sets was performed to identify protein biomarkers. Putative biomarkers associated with functional feed intake and with sea lice infection have been identified and can form the basis for strategic validation experiments with selected functional feeds.
Collapse
Affiliation(s)
- F Provan
- International Research Institute of Stavanger, Stavanger, Norway.
| | | | | | | | | | | | | |
Collapse
|
4
|
Corthals A, Koller A, Martin DW, Rieger R, Chen EI, Bernaski M, Recagno G, Dávalos LM. Detecting the immune system response of a 500 year-old Inca mummy. PLoS One 2012; 7:e41244. [PMID: 22848450 PMCID: PMC3405130 DOI: 10.1371/journal.pone.0041244] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Disease detection in historical samples currently relies on DNA extraction and amplification, or immunoassays. These techniques only establish pathogen presence rather than active disease. We report the first use of shotgun proteomics to detect the protein expression profile of buccal swabs and cloth samples from two 500-year-old Andean mummies. The profile of one of the mummies is consistent with immune system response to severe pulmonary bacterial infection at the time of death. Presence of a probably pathogenic Mycobacterium sp. in one buccal swab was confirmed by DNA amplification, sequencing, and phylogenetic analyses. Our study provides positive evidence of active pathogenic infection in an ancient sample for the first time. The protocol introduced here is less susceptible to contamination than DNA-based or immunoassay-based studies. In scarce forensic samples, shotgun proteomics narrows the range of pathogens to detect using DNA assays, reducing cost. This analytical technique can be broadly applied for detecting infection in ancient samples to answer questions on the historical ecology of specific pathogens, as well as in medico-legal cases when active pathogenic infection is suspected.
Collapse
Affiliation(s)
- Angelique Corthals
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Culver BP, Savas JN, Park SK, Choi JH, Zheng S, Zeitlin SO, Yates JR, Tanese N. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. J Biol Chem 2012; 287:21599-614. [PMID: 22556411 DOI: 10.1074/jbc.m112.359307] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.
Collapse
Affiliation(s)
- Brady P Culver
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
van Hoof D, Krijgsveld J, Mummery C. Proteomic analysis of stem cell differentiation and early development. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008177. [PMID: 22317846 DOI: 10.1101/cshperspect.a008177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genomics methodologies have advanced to the extent that it is now possible to interrogate the gene expression in a single cell but proteomics has traditionally lagged behind and required much greater cellular input and was not quantitative. Coupling protein with gene expression data is essential for understanding how cell behavior is regulated. Advances primarily in mass spectrometry have, however, greatly improved the sensitivity of proteomics methods over the last decade and the outcome of proteomic analyses can now also be quantified. Nevertheless, it is still difficult to obtain sufficient tissue from staged mammalian embryos to combine proteomic and genomic analyses. Recent developments in pluripotent stem cell biology have in part addressed this issue by providing surrogate scalable cell systems in which early developmental events can be modeled. Here we present an overview of current proteomics methodologies and the kind of information this can provide on the biology of human and mouse pluripotent stem cells.
Collapse
Affiliation(s)
- Dennis van Hoof
- Department of Anatomy and Embryology, Leiden University Medical Center, ZC Leiden
| | | | | |
Collapse
|
7
|
Pardo M, Choudhary JS. Assignment of Protein Interactions from Affinity Purification/Mass Spectrometry Data. J Proteome Res 2012; 11:1462-74. [DOI: 10.1021/pr2011632] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mercedes Pardo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridgeshire,
United Kingdom
| | - Jyoti S. Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridgeshire,
United Kingdom
| |
Collapse
|
8
|
Heintz D, Gallien S, Compagnon V, Berna A, Suzuki M, Yoshida S, Muranaka T, Van Dorsselaer A, Schaeffer C, Bach TJ, Schaller H. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis. J Proteome Res 2012; 11:1228-39. [PMID: 22182420 DOI: 10.1021/pr201127u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sterols are membrane-bound isoprenoid lipids that are required for cell viability and growth. In plants, it is generally assumed that 3-hydroxy-3-methylglutaryl-CoA-reductase (HMGR) is a key element of their biosynthesis, but the molecular regulation of that pathway is largely unknown. In an attempt to identify regulators of the biosynthetic flux from acyl-CoA toward phytosterols, we compared the membrane phosphoproteome of wild-type Arabidopsis thaliana and of a mutant being deficient in HMGR1. We performed a N-terminal labeling of microsomal peptides with a trimethoxyphenyl phosphonium (TMPP) derivative, followed by a quantitative assessment of phosphopeptides with a spectral counting method. TMPP derivatization of peptides resulted in an improved LC-MS/MS detection due to increased hydrophobicity in chromatography and ionization efficiency in electrospray. The phosphoproteome coverage was 40% higher with this methodology. We further found that 31 proteins were in a different phosphorylation state in the hmgr1-1 mutant as compared with the wild-type. One-third of these proteins were identified based on novel phosphopeptides. This approach revealed that phosphorylation changes in the Arabidopsis membrane proteome targets major cellular processes such as transports, calcium homeostasis, photomorphogenesis, and carbohydrate synthesis. A reformatting of these processes appears to be a response of a genetically reduced sterol biosynthesis.
Collapse
Affiliation(s)
- Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-Unité Propre de Recherche 2357, Université de Strasbourg , 28 rue Goethe, 67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics 2011; 10:R110.006924. [PMID: 21543789 DOI: 10.1074/mcp.m110.006924] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways.
Collapse
Affiliation(s)
- Charity T Aiken
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|