1
|
Chen T, Zhou X, Feng R, Shi S, Chen X, Wei B, Hu Z, Peng T. Novel function of single-target regulator NorR involved in swarming motility and biofilm formation revealed in Vibrio alginolyticus. BMC Biol 2024; 22:253. [PMID: 39506750 PMCID: PMC11542441 DOI: 10.1186/s12915-024-02057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
NorR, as a single-target regulator, has been demonstrated to be involved in NO detoxification in bacteria under anaerobic conditions. Here, the norR gene was identified and deleted in the genome of Vibrio alginolyticus. The results showed that deletion of norR in Vibrio alginolyticus led to lower swarming motility and more biofilm formation on aerobic condition. Moreover, we proved that NorR from E. coli had a similar function in controlling motility. NorR overexpression led to increased resistance to oxidative stress and tetracycline. We also observed a reduced ability of the NorR-overexpressing strain to adapt to iron limitation condition. Transcriptome analysis showed that the genes responsible for bacterial motility and biofilm formation were affected by NorR. The expressions of several sigma factors (RpoS, RpoN, and RpoH) and response regulators (LuxR and MarR) were also controlled by NorR. Furthermore, Chip-qPCR showed that there is a direct binding between NorR and the promoter of rpoS. Based on these results, NorR appears to be a central regulator involved in biofilm formation and swarming motility in Vibrio alginolyticus.
Collapse
Affiliation(s)
- Tongxian Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
- Dongguan Nancheng Business District North School, Dongguan, 523000, China
| | - Xiaoling Zhou
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Ruonan Feng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Shuhao Shi
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiyu Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Bingqi Wei
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Tao Peng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China.
- Dongguan Nancheng Business District North School, Dongguan, 523000, China.
| |
Collapse
|
2
|
Islam MS, Alatishe A, Lee-Lopez CC, Serrano F, Yukl ET. H-NOX Influences Biofilm Formation, Central Metabolism, and Quorum Sensing in Paracoccus denitrificans. J Proteome Res 2024; 23:4988-5000. [PMID: 39370609 PMCID: PMC11536421 DOI: 10.1021/acs.jproteome.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The transition from planktonic to biofilm growth in bacteria is often accompanied by greater resistance to antibiotics and other stressors, as well as distinct alterations in physical traits, genetic activity, and metabolic restructuring. In many species, the heme nitric oxide/oxygen binding proteins (H-NOX) play an important role in this process, although the signaling mechanisms and pathways in which they participate are quite diverse and largely unknown. In Paracoccus denitrificans, deletion of the hnox gene results in a severe biofilm-deficient phenotype. Quantitative proteomics was used to assemble a comprehensive data set of P. denitrificans proteins showing altered abundance of those involved in several important metabolic pathways. Further, decreased levels of pyruvate and elevated levels of C16 homoserine lactone were detected for the Δhnox strain, associating the biofilm deficiency with altered central carbon metabolism and quorum sensing, respectively. These results expand our knowledge of the important role of H-NOX signaling in biofilm formation.
Collapse
Affiliation(s)
- Md. Shariful Islam
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
- Department
of Mathematics and Physics, North South
University, Bashundhara
RA, Dhaka 1229, Bangladesh
| | - Aishat Alatishe
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Cameron C. Lee-Lopez
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Fred Serrano
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Erik T. Yukl
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
3
|
Michaelis S, Gomez-Valero L, Chen T, Schmid C, Buchrieser C, Hilbi H. Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. Microbiol Mol Biol Rev 2024; 88:e0009723. [PMID: 39162424 PMCID: PMC11426016 DOI: 10.1128/mmbr.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Michaelis S, Chen T, Schmid C, Hilbi H. Nitric oxide signaling through three receptors regulates virulence, biofilm formation, and phenotypic heterogeneity of Legionella pneumophila. mBio 2024; 15:e0071024. [PMID: 38682908 PMCID: PMC11237717 DOI: 10.1128/mbio.00710-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, is an environmental bacterium, that replicates in macrophages, parasitizes amoeba, and forms biofilms. L. pneumophila employs the Legionella quorum sensing (Lqs) system and the transcription factor LvbR to control various bacterial traits, including virulence and biofilm architecture. LvbR negatively regulates the nitric oxide (NO) receptor Hnox1, linking quorum sensing to NO signaling. Here, we assessed the response of L. pneumophila to NO and investigated bacterial receptors underlying this process. Chemical NO donors, such as dipropylenetriamine (DPTA) NONOate and sodium nitroprusside (SNP), delayed and reduced the expression of the promoters for flagellin (PflaA) and the 6S small regulatory RNA (P6SRNA). Marker-less L. pneumophila mutant strains lacking individual (Hnox1, Hnox2, or NosP) or all three NO receptors (triple knockout, TKO) grew like the parental strain in media. However, in the TKO strain, the reduction of PflaA expression by DPTA NONOate was less pronounced, suggesting that the NO receptors are implicated in NO signaling. In the ΔnosP mutant, the lvbR promoter was upregulated, indicating that NosP negatively regulates LvbR. The single and triple NO receptor mutant strains were impaired for growth in phagocytes, and phenotypic heterogeneity of non-growing/growing bacteria in amoebae was regulated by the NO receptors. The single NO receptor and TKO mutant strains showed altered biofilm architecture and lack of response of biofilms to NO. In summary, we provide evidence that L. pneumophila regulates virulence, intracellular phenotypic heterogeneity, and biofilm formation through NO and three functionally non-redundant NO receptors, Hnox1, Hnox2, and NosP. IMPORTANCE The highly reactive diatomic gas molecule nitric oxide (NO) is produced by eukaryotes and bacteria to promote short-range and transient signaling within and between neighboring cells. Despite its importance as an inter-kingdom and intra-bacterial signaling molecule, the bacterial response and the underlying components of the signaling pathways are poorly characterized. The environmental bacterium Legionella pneumophila forms biofilms and replicates in protozoan and mammalian phagocytes. L. pneumophila harbors three putative NO receptors, one of which crosstalks with the Legionella quorum sensing (Lqs)-LvbR network to regulate various bacterial traits, including virulence and biofilm architecture. In this study, we used pharmacological, genetic, and cell biological approaches to assess the response of L. pneumophila to NO and to demonstrate that the putative NO receptors are implicated in NO detection, bacterial replication in phagocytes, intracellular phenotypic heterogeneity, and biofilm formation.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
6
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
7
|
Williams MT, Yee E, Larson GW, Apiche EA, Rama Damodaran A, Bhagi-Damodaran A. Metalloprotein enabled redox signal transduction in microbes. Curr Opin Chem Biol 2023; 76:102331. [PMID: 37311385 PMCID: PMC10524656 DOI: 10.1016/j.cbpa.2023.102331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023]
Abstract
Microbes utilize numerous metal cofactor-containing proteins to recognize and respond to constantly fluctuating redox stresses in their environment. Gaining an understanding of how these metalloproteins sense redox events, and how they communicate such information downstream to DNA to modulate microbial metabolism, is a topic of great interest to both chemists and biologists. In this article, we review recently characterized examples of metalloprotein sensors, focusing on the coordination and oxidation state of the metals involved, how these metals are able to recognize redox stimuli, and how the signal is transmitted beyond the metal center. We discuss specific examples of iron, nickel, and manganese-based microbial sensors, and identify gaps in knowledge in the field of metalloprotein-based signal transduction pathways.
Collapse
Affiliation(s)
- Murphi T Williams
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Eaindra Yee
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Grant W Larson
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Elizabeth A Apiche
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA.
| |
Collapse
|
8
|
Anantharaman S, Guercio D, Mendoza AG, Withorn JM, Boon EM. Negative regulation of biofilm formation by nitric oxide sensing proteins. Biochem Soc Trans 2023; 51:1447-1458. [PMID: 37610010 PMCID: PMC10625800 DOI: 10.1042/bst20220845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Biofilm-based infections pose a serious threat to public health. Biofilms are surface-attached communities of microorganisms, most commonly bacteria and yeast, residing in an extracellular polymeric substance (EPS). The EPS is composed of several secreted biomolecules that shield the microorganisms from harsh environmental stressors and promote antibiotic resistance. Due to the increasing prominence of multidrug-resistant microorganisms and a decreased development of bactericidal agents in clinical production, there is an increasing need to discover alternative targets and treatment regimens for biofilm-based infections. One promising strategy to combat antibiotic resistance in biofilm-forming bacteria is to trigger biofilm dispersal, which is a natural part of the bacterial biofilm life cycle. One signal for biofilm dispersal is the diatomic gas nitric oxide (NO). Low intracellular levels of NO have been well documented to rapidly disperse biofilm macrostructures and are sensed by a widely conserved NO-sensory protein, NosP, in many pathogenic bacteria. When bound to heme and ligated to NO, NosP inhibits the autophosphorylation of NosP's associated histidine kinase, NahK, reducing overall biofilm formation. This reduction in biofilm formation is regulated by the decrease in secondary metabolite bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). The NosP/NahK signaling pathway is also associated with other major regulatory systems in the maturation of bacterial biofilms, including virulence and quorum sensing. In this review, we will focus on recent discoveries investigating NosP, NahK and NO-mediated biofilm dispersal in pathogenic bacteria.
Collapse
Affiliation(s)
- Sweta Anantharaman
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Danielle Guercio
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Alicia G Mendoza
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Jason M Withorn
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| |
Collapse
|
9
|
Fu J, Nisbett LM, Guo Y, Boon EM. NosP Detection of Heme Modulates Burkholderia thailandensis Biofilm Formation. Biochemistry 2023; 62:2426-2441. [PMID: 37498555 PMCID: PMC10478957 DOI: 10.1021/acs.biochem.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aggregated bacteria embedded within self-secreted extracellular polymeric substances, or biofilms, are resistant to antibiotics and cause chronic infections. As such, they are a significant public health threat. Heme is an abundant iron source for pathogenic bacteria during infection; many bacteria have systems to detect heme assimilated from host cells, which is correlated with the transition between acute and chronic infection states. Here, we investigate the heme-sensing function of a newly discovered multifactorial sensory hemoprotein called NosP and its role in biofilm regulation in the soil-dwelling bacterium Burkholderia thailandensis, the close surrogate of Bio-Safety-Level-3 pathogen Burkholderia pseudomallei. The NosP family protein has previously been shown to exhibit both nitric oxide (NO)- and heme-sensing functions and to regulate biofilms through NosP-associated histidine kinases and two-component systems. Our in vitro studies suggest that BtNosP exhibits heme-binding kinetics and thermodynamics consistent with a labile heme-responsive protein and that the holo-form of BtNosP acts as an inhibitor of its associated histidine kinase BtNahK. Furthermore, our in vivo studies suggest that increasing the concentration of extracellular heme decreases B. thailandensis biofilm formation, and deletion of nosP and nahK abolishes this phenotype, consistent with a model that BtNosP detects heme and exerts an inhibitory effect on BtNahK to decrease the biofilm.
Collapse
Affiliation(s)
- Jiayuan Fu
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lisa-Marie Nisbett
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yulong Guo
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
10
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
11
|
Wang M, Wang Y, Wang M, Liu M, Cheng A. Heme acquisition and tolerance in Gram-positive model bacteria: An orchestrated balance. Heliyon 2023; 9:e18233. [PMID: 37501967 PMCID: PMC10368836 DOI: 10.1016/j.heliyon.2023.e18233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
As a nutrient, heme is important for various cellular processes of organism. Bacteria can obtain heme via heme biosynthesis or/and uptake of exogenous heme from the host. On the other side, absorption of excess heme is cytotoxic to bacteria. Thus, bacteria have developed systems to relieve heme toxicity and contribute to the maintenance of heme homeostasis. In the past decades, the mechanisms underlying heme acquisition and tolerance have been well studied in Gram-positive model bacteria, such as Staphylococcus, Streptococcus and other Gram-positive bacteria. Here, we review the elaborate mechanisms by which these bacteria acquire heme and resist heme toxicity. Since both the heme utilization system and the heme tolerance system contribute to bacterial virulence, this review is not only helpful for a comprehensive understanding of the heme homeostasis mechanism in Gram-positive bacteria but also provides a theoretical basis for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Institute of Livestock Research, Mianyang 621023, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Williams DE, Nesbitt NM, Muralidharan S, Hossain S, Boon EM. H-NOX Regulates Biofilm Formation in Agrobacterium Vitis in Response to NO. Biochemistry 2023; 62:912-922. [PMID: 36746768 PMCID: PMC10332389 DOI: 10.1021/acs.biochem.2c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transitions between motile and biofilm lifestyles are highly regulated and fundamental to microbial pathogenesis. H-NOX (heme-nitric oxide/oxygen-binding domain) is a key regulator of bacterial communal behaviors, such as biofilm formation. A predicted bifunctional cyclic di-GMP metabolizing enzyme, composed of diguanylate cyclase and phosphodiesterase (PDE) domains (avi_3097), is annotated downstream of an hnoX gene in Agrobacterium vitis S4. Here, we demonstrate that avH-NOX is a nitric oxide (NO)-binding hemoprotein that binds to and regulates the activity of avi_3097 (avHaCE; H-NOX-associated cyclic di-GMP processing enzyme). Kinetic analysis of avHaCE indicates a ∼four-fold increase in PDE activity in the presence of NO-bound avH-NOX. Biofilm analysis with crystal violet staining reveals that low concentrations of NO reduce biofilm growth in the wild-type A. vitis S4 strain, but the mutant ΔhnoX strain has no NO phenotype, suggesting that H-NOX is responsible for the NO biofilm phenotype in A. vitis. Together, these data indicate that avH-NOX enhances cyclic di-GMP degradation to reduce biofilm formation in response to NO in A. vitis.
Collapse
Affiliation(s)
| | - Natasha, M. Nesbitt
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, NY, USA
| | - Sandhya Muralidharan
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, NY, USA
| | - Sajjad Hossain
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth M. Boon
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
13
|
Wong A, Bi C, Chi W, Hu N, Gehring C. Amino acid motifs for the identification of novel protein interactants. Comput Struct Biotechnol J 2022; 21:326-334. [PMID: 36582434 PMCID: PMC9791077 DOI: 10.1016/j.csbj.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia 06121, Italy
| |
Collapse
|
14
|
Wang J, Rao L, Huang Z, Ma L, Yang T, Yu Z, Sun A, Ge Y. The nitric oxide synthase gene negatively regulates biofilm formation in Staphylococcus epidermidis. Front Cell Infect Microbiol 2022; 12:1015859. [PMID: 36405963 PMCID: PMC9669438 DOI: 10.3389/fcimb.2022.1015859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2023] Open
Abstract
Staphylococcus epidermidis (S. epidermidis) is a clinically important conditioned pathogen that can cause a troublesome chronic implant-related infection once a biofilm is formed. The nitric oxide synthase (NOS) gene, which is responsible for endogenous nitric oxide synthesis, has already been found in the genome of S. epidermidis; however, the specific mechanisms associated with the effects of NOS on S. epidermidis pathogenicity are still unknown. The purpose of the current study was to investigate whether the NOS gene has an impact on biofilm formation in S. epidermidis. Bioinformatics analysis of the NOS gene was performed, and homologous recombination was subsequently employed to delete this gene. The effects of the NOS gene on biofilm formation of S. epidermidis and its underlying mechanisms were analyzed by bacterial growth assays, biofilm semiquantitative determination, Triton X-100-induced autolysis assays, and bacterial biofilm dispersal assays. Additionally, the transcription levels of fbe, aap, icaA, icaR and sigB, which are related to biofilm formation, were further investigated by qRT-PCR following NOS deletion. Phylogenetic analysis revealed that the NOS gene was conserved between bacterial species originating from different genera. The NOS deletion strain of S. epidermidis 1457 and its counterpart were successfully constructed. Disruption of the NOS gene resulted in significantly enhanced biofilm formation, slightly retarded bacterial growth, a markedly decreased autolysis rate, and drastically weakened bacterial biofilm dispersal. Our data showed that the fbe, aap and icaA genes were significantly upregulated, while the icaR and sigB genes were significantly downregulated, compared with the wild strain. Therefore, these data strongly suggested that the NOS gene can negatively regulate biofilm formation in S. epidermidis by affecting biofilm aggregation and dispersal.
Collapse
Affiliation(s)
- Jiaxue Wang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Institute of Clinical Microbiology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lulin Rao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuoan Huang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lili Ma
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhongqi Yu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aihua Sun
- Department of basic medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yumei Ge
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Institute of Clinical Microbiology, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of basic medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Huang P, Luo H, Chen C, Li P, Xu B. Bacterial nitric oxide synthase in colorizing meat products: Current development and future directions. Crit Rev Food Sci Nutr 2022; 64:4362-4372. [PMID: 36322689 DOI: 10.1080/10408398.2022.2141679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitrite has been widely used in meat products for its abilities including color formation, antimicrobial properties, flavor formation and preventing lipid oxidation. However, the possible generation of N-nitrosamines through reaction of nitrite with secondary amines arises many concerns in the usage of nitrite. For a long time, nitrite substitution is unsettled issue in the meat industry. Many attempts have been tried, however, the alternative solutions are often ephemeral and palliative. In recent years, bacterial nitric oxide synthase (bNOS) has received attention for its critical roles, especially in reddening meat products. This comprehensive background study summarizes the application of bNOS in colorizing meat products, its functions in bacteria, and methods of regulating the bNOS pathway. Based on this information, some strategies for promoting the nitric oxide yield for effectively substituting nitrite are presented, such as changing the environmental conditions for bacterial survival and adding substrate. Thus, bNOS is a promising nitrite substitute for color formation, and further research on its other roles in meat needs to be carried out to obtain the complete picture.
Collapse
Affiliation(s)
- Pan Huang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huiting Luo
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peijun Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
16
|
Jiang S, Abdalla HB, Bi C, Zhu Y, Tian X, Yang Y, Wong A. HNOXPred: a web tool for the prediction of gas-sensing H-NOX proteins from amino acid sequence. Bioinformatics 2022; 38:4643-4644. [PMID: 35993887 DOI: 10.1093/bioinformatics/btac571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/05/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
SUMMARY HNOXPred is a webserver for the prediction of gas-sensing heme-nitric oxide/oxygen (H-NOX) proteins from amino acid sequence. H-NOX proteins are gas-sensing hemoproteins found in diverse organisms ranging from bacteria to eukaryotes. Recently, gas-sensing complex multi-functional proteins containing only the conserved amino acids at the heme centers of H-NOX proteins, have been identified through a motif-based approach. Based on experimental data and H-NOX candidates reported in the literature, HNOXPred is created to automate and facilitate the identification of similar H-NOX centers across systems. The server features HNOXSCORES scaled from 0 to 1 that consider in its calculation, the physicochemical properties of amino acids constituting the heme center in H-NOX in addition to the conserved amino acids within the center. From user input amino acid sequence, the server returns positive hits and their calculated HNOXSCORES ordered from high to low confidence which are accompanied by interpretation guides and recommendations. The utility of this server is demonstrated using the human proteome as an example. AVAILABILITY AND IMPLEMENTATION The HNOXPred server is available at https://www.hnoxpred.com. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shiyu Jiang
- Department of Computer Science, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China
| | - Hemn Barzan Abdalla
- Department of Computer Science, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| | - Yi Zhu
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| | - Yixin Yang
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| | - Aloysius Wong
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| |
Collapse
|
17
|
Maitreya A, Pal S, Qureshi A, Reyed RM, Purohit HJ. Nitric oxide-secreting probiotics as sustainable bio-cleaners for reverse osmosis membrane systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4911-4929. [PMID: 34797547 DOI: 10.1007/s11356-021-17289-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Membrane biofouling in water purification plants is a serious issue of worldwide concern. Various chemical, physical, and biochemical processes are practised for membrane clean-up. A high-dosage treatment adversely affects the life expectancy of the membrane, and minimum dosage seems unable to deteriorate the biofilms on the membrane. It is reported that quorum quenchers like nitric oxide (NO) disrupt biofilm signals through metabolic rewiring, and also NO is known to be secreted by probiotics (good bacteria). In the present review, it is hypothesized that if probiotic biofilms secreting NO are used, other microbes that aggregate on the filtration membrane could be mitigated. The concept of probiotic administration on filtration membrane seeks to be encouraged because probiotic bacteria will not be hazardous, even if released during filtration. The fundamental motive to present probiotics as a resource for sequestering NO may serve as multifunctional bioweapons for membrane remediation, which will virtually guarantee their long-term sustainability and green approach.
Collapse
Affiliation(s)
- Anuja Maitreya
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smita Pal
- Division of Endocrinology, CSIR -Central Drug Research Institute, Lucknow, 226031, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Reyed M Reyed
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Applied Technology, New Borg Al Arab, Alexandria, Egypt
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| |
Collapse
|
18
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
19
|
Patterson DC, Ruiz MP, Yoon H, Walker JA, Armache JP, Yennawar NH, Weinert EE. Differential ligand-selective control of opposing enzymatic activities within a bifunctional c-di-GMP enzyme. Proc Natl Acad Sci U S A 2021; 118:e2100657118. [PMID: 34475207 PMCID: PMC8433548 DOI: 10.1073/pnas.2100657118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/02/2021] [Indexed: 01/23/2023] Open
Abstract
Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a second messenger that modulates bacterial cellular processes, including biofilm formation. While proteins containing both c-di-GMP synthesizing (GGDEF) and c-di-GMP hydrolyzing (EAL) domains are widely predicted in bacterial genomes, it is poorly understood how domains with opposing enzymatic activity are regulated within a single polypeptide. Herein, we report the characterization of a globin-coupled sensor protein (GCS) from Paenibacillus dendritiformis (DcpG) with bifunctional c-di-GMP enzymatic activity. DcpG contains a regulatory sensor globin domain linked to diguanylate cyclase (GGDEF) and phosphodiesterase (EAL) domains that are differentially regulated by gas binding to the heme; GGDEF domain activity is activated by the Fe(II)-NO state of the globin domain, while EAL domain activity is activated by the Fe(II)-O2 state. The in vitro activity of DcpG is mimicked in vivo by the biofilm formation of P. dendritiformis in response to gaseous environment, with nitric oxide conditions leading to the greatest amount of biofilm formation. The ability of DcpG to differentially control GGDEF and EAL domain activity in response to ligand binding is likely due to the unusual properties of the globin domain, including rapid ligand dissociation rates and high midpoint potentials. Using structural information from small-angle X-ray scattering and negative stain electron microscopy studies, we developed a structural model of DcpG, providing information about the regulatory mechanism. These studies provide information about full-length GCS protein architecture and insight into the mechanism by which a single regulatory domain can selectively control output domains with opposing enzymatic activities.
Collapse
Affiliation(s)
- Dayna C Patterson
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Myrrh Perez Ruiz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Hyerin Yoon
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | | | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
20
|
Wong A, Hu N, Tian X, Yang Y, Gehring C. Nitric oxide sensing revisited. TRENDS IN PLANT SCIENCE 2021; 26:885-897. [PMID: 33867269 DOI: 10.1016/j.tplants.2021.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) sensing is an ancient trait enabled by hemoproteins harboring a highly conserved Heme-Nitric oxide/OXygen (H-NOX) domain that operates throughout bacteria, fungi, and animal kingdoms including in humans, but that has long thought to be absent in plants. Recently, H-NOX-containing plant hemoproteins mediating crucial NO-dependent responses such as stomatal closure and pollen tube guidance have been reported. There are indications that the detection method that led to these discoveries will uncover many more heme-based NO sensors that operate as regulatory sites in complex proteins. Their characterizations will in turn offer a much more complete picture of plant NO responses at both the molecular and systems level.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China.
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Yixin Yang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, I-06121 Perugia, Italy
| |
Collapse
|
21
|
Guo K, Gao H. Physiological Roles of Nitrite and Nitric Oxide in Bacteria: Similar Consequences from Distinct Cell Targets, Protection, and Sensing Systems. Adv Biol (Weinh) 2021; 5:e2100773. [PMID: 34310085 DOI: 10.1002/adbi.202100773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/19/2021] [Indexed: 12/22/2022]
Abstract
Nitrite and nitric oxide (NO) are two active nitrogen oxides that display similar biochemical properties, especially when interacting with redox-sensitive proteins (i.e., hemoproteins), an observation serving as the foundation of the notion that the antibacterial effect of nitrite is largely attributed to NO formation. However, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. Although both nitrite and NO are formed and decomposed by enzymes participating in the transformation of these nitrogen species, NO can also be generated via amino acid metabolism by bacterial NO synthetase and scavenged by flavohemoglobin. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to heme-copper oxidases. Consequently, the homeostasis of redox-sensitive proteins may be responsible for the substantial difference in NO-targets identified to date among different bacteria. In addition, most protective systems against NO damage have no significant role in alleviating inhibitory effects of nitrite. Furthermore, when functioning as signal molecules, nitrite and NO are perceived by completely different sensing systems, through which they are linked to different biological processes.
Collapse
Affiliation(s)
- Kailun Guo
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
22
|
Marletta MA. Revisiting Nitric Oxide Signaling: Where Was It, and Where Is It Going? Biochemistry 2021; 60:3491-3496. [PMID: 34096266 DOI: 10.1021/acs.biochem.1c00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitric oxide (NO) has long been known to be an intermediate in bacterial pathways of denitrification. Only in the middle to late 1980s was it found to play a central role in a much broader biological context. For example, it is now well established that NO acts as a signaling agent in metazoans, including humans, yet NO is toxic and very reactive under biological conditions. How is the biology in which NO plays a role controlled? How is NO used and the inherent toxicity avoided? Looking back at the initial discovery time, to the present, and on to the future provides many answers to questions such as those listed above.
Collapse
Affiliation(s)
- Michael A Marletta
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, California 94720-3220, United States
| |
Collapse
|
23
|
Wittenborn EC, Marletta MA. Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation. Int J Mol Sci 2021; 22:ijms22115439. [PMID: 34064029 PMCID: PMC8196705 DOI: 10.3390/ijms22115439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
The enzyme soluble guanylate cyclase (sGC) is the prototypical nitric oxide (NO) receptor in humans and other higher eukaryotes and is responsible for transducing the initial NO signal to the secondary messenger cyclic guanosine monophosphate (cGMP). Generation of cGMP in turn leads to diverse physiological effects in the cardiopulmonary, vascular, and neurological systems. Given these important downstream effects, sGC has been biochemically characterized in great detail in the four decades since its discovery. Structures of full-length sGC, however, have proven elusive until very recently. In 2019, advances in single particle cryo–electron microscopy (cryo-EM) enabled visualization of full-length sGC for the first time. This review will summarize insights revealed by the structures of sGC in the unactivated and activated states and discuss their implications in the mechanism of sGC activation.
Collapse
|
24
|
Fu J, Hall S, Boon EM. Recent evidence for multifactorial biofilm regulation by heme sensor proteins NosP and H-NOX. CHEM LETT 2021; 50:1095-1103. [PMID: 36051866 PMCID: PMC9432776 DOI: 10.1246/cl.200945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Heme is involved in signal transduction by either acting as a cofactor of heme-based gas/redox sensors or binding reversely to heme-responsive proteins. Bacteria respond to low concentrations of nitric oxide (NO) to modulate group behaviors such as biofilms through the well-characterized H-NOX family and the newly discovered heme sensor protein NosP. NosP shares functional similarities with H-NOX as a heme-based NO sensor; both regulate two-component systems and/or cyclic-di-GMP metabolizing enzymes, playing roles in processes such as quorum sensing and biofilm regulation. Interestingly, aside from its role in NO signaling, recent studies suggest that NosP may also sense labile heme. In this Highlight Review, we briefly summarize H-NOX-dependent NO signaling in bacteria, then focus on recent advances in NosP-mediated NO signaling and labile heme sensing.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Boon
- To whom correspondence should be addressed: Elizabeth M. Boon: Tel.: (631) 632-7945. Fax: (631) 632-7960.
| |
Collapse
|
25
|
Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR. Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051. Protein Sci 2020; 30:448-463. [PMID: 33236796 DOI: 10.1002/pro.4005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Heme-nitric oxide/oxygen binding (H-NOX) domains bind gaseous ligands for signal transduction in organisms spanning prokaryotic and eukaryotic kingdoms. In the bioluminescent marine bacterium Shewanella woodyi (Sw), H-NOX proteins regulate quorum sensing and biofilm formation. In higher animals, soluble guanylyl cyclase (sGC) binds nitric oxide with an H-NOX domain to induce cyclase activity and regulate vascular tone, wound healing and memory formation. sGC also binds stimulator compounds targeting cardiovascular disease. The molecular details of stimulator binding to sGC remain obscure but involve a binding pocket near an interface between H-NOX and coiled-coil domains. Here, we report the full NMR structure for CO-ligated Sw H-NOX in the presence and absence of stimulator compound IWP-051, and its backbone dynamics. Nonplanar heme geometry was retained using a semi-empirical quantum potential energy approach. Although IWP-051 binding is weak, a single binding conformation was found at the interface of the two H-NOX subdomains, near but not overlapping with sites identified in sGC. Binding leads to rotation of the subdomains and closure of the binding pocket. Backbone dynamics are similar across both domains except for two helix-connecting loops, which display increased dynamics that are further enhanced by compound binding. Structure-based sequence analyses indicate high sequence diversity in the binding pocket, but the pocket itself appears conserved among H-NOX proteins. The largest dynamical loop lies at the interface between Sw H-NOX and its binding partner as well as in the interface with the coiled coil in sGC, suggesting a critical role for the loop in signal transduction.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Joon Jung
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
26
|
A new paradigm for gaseous ligand selectivity of hemoproteins highlighted by soluble guanylate cyclase. J Inorg Biochem 2020; 214:111267. [PMID: 33099233 DOI: 10.1016/j.jinorgbio.2020.111267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several μM while [O2] reaching to hundreds of μM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.
Collapse
|
27
|
Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins. Microb Cell Fact 2020; 19:190. [PMID: 33023596 PMCID: PMC7542351 DOI: 10.1186/s12934-020-01447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Heme proteins and heme-derived molecules are essential in numerous cellular processes. Research into their in vitro functionality requires the production of large amounts of protein. Unfortunately, high yield expression is hampered by the lack of E. coli strains naturally capable of taking up heme from the medium. We recently reported the use of the probiotic E. coli strain Nissle 1917 (EcN) to sufficiently produce heme containing proteins, as it encodes the outer membrane heme receptor, ChuA, which allows for natural uptake of heme. The EcN strain however lacks the gene for T7 RNA polymerase, which is necessary for the expression of genes under the control of the T7-promotor, widely used in expression vectors like the pET or pDuet series. Results A new T7-promoter compatible EcN strain was constructed by integrating the gene for T7-RNA polymerase under the control of a lacUV5 promoter into the malEFG operon of EcN. Test expressions of genes via T7 promoter-based vectors in the new EcN(T7) strain were successful. Expression in EcN(T7) resulted in the efficient production of recombinant heme proteins in which the heme cofactor was incorporated during protein production. In addition, the new EcN(T7) strain can be used to co-express genes for the production of heme-derived molecules like biliverdin or other linear tetrapyrroles. We demonstrate the successful recombinant production of the phytochromes BphP, from Pseudomonas aeruginosa, and Cph1, from Synechocystis sp. PCC6803, loaded with their linear tetrapyrrole cofactors, biliverdin and phycocyanobilin, respectively. Conclusion We present a new E. coli strain for efficient production of heme proteins and heme-derived molecules using T7-promoter based expression vectors. The new EcN(T7) strain enables the use of a broader spectrum of expression vectors, as well as the co-expression of genes using the pDuet expression vectors, for expressing heme containing proteins. By utilizing E. coli strains EcN and EcN(T7), capable of being fed heme, the rate limiting step of heme biosynthesis in E. coli is eliminated, thereby permitting higher heme saturation of heme proteins and also higher yields of heme-derived molecules.
Collapse
|
28
|
Balaure PC, Grumezescu AM. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings. NANOMATERIALS 2020; 10:nano10081527. [PMID: 32759748 PMCID: PMC7466637 DOI: 10.3390/nano10081527] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 01/24/2023]
Abstract
The second part of our review describing new achievements in the field of biofilm prevention and control, begins with a discussion of the active antibiofilm nanocoatings. We present the antibiofilm strategies based on antimicrobial agents that kill pathogens, inhibit their growth, or disrupt the molecular mechanisms of biofilm-associated increase in resistance and tolerance. These agents of various chemical structures act through a plethora of mechanisms targeting vital bacterial metabolic pathways or cellular structures like cell walls and cell membranes or interfering with the processes that underlie different stages of the biofilm life cycle. We illustrate the latter action mechanisms through inhibitors of the quorum sensing signaling pathway, inhibitors of cyclic-di-GMP signaling system, inhibitors of (p)ppGpp regulated stringent response, and disruptors of the biofilm extracellular polymeric substances matrix (EPS). Both main types of active antibiofilm surfaces, namely non-leaching or contact killing systems, which rely on the covalent immobilization of the antimicrobial agent on the surface of the coatings and drug-releasing systems in which the antimicrobial agent is physically entrapped in the bulk of the coatings, are presented, highlighting the advantages of each coating type in terms of antibacterial efficacy, biocompatibility, selective toxicity, as well as drawbacks and limitations. Developments regarding combined strategies that join in a unique platform, both passive and active elements are not omitted. In such platforms with dual functionality, passive and active strategies can be applied either simultaneously or sequentially. We especially emphasize those systems that can be reversely and repeatedly switched between the non-fouling status and the bacterial killing status, thereby allowing several bacteria-killing/surface regeneration cycles to be performed without significant loss of the initial bactericidal activity. Eventually, smart antibiofilm coatings that release their antimicrobial payload on demand, being activated by various triggers such as changes in local pH, temperature, or enzymatic triggers, are presented. Special emphasis is given to the most recent trend in the field of anti-infective surfaces, specifically smart self-defensive surfaces for which activation and switch to the bactericidal status are triggered by the pathogens themselves.
Collapse
Affiliation(s)
- Paul Cătălin Balaure
- “Costin Nenitzescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1–7, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1–7, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-39-97
| |
Collapse
|
29
|
Hochstrasser R, Hilbi H. Legionella quorum sensing meets cyclic-di-GMP signaling. Curr Opin Microbiol 2020; 55:9-16. [PMID: 32045871 DOI: 10.1016/j.mib.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022]
Abstract
Bacterial gene regulation occurs through complex networks, wherein linear systems respond to intracellular or extracellular cues and engage on vivid crosstalk. The ubiquitous water-borne bacterium Legionella pneumophila colonizes various distinct environmental niches ranging from biofilms to protozoa, and - as an 'accidental' pathogen - the human lung. Consequently, L. pneumophila gene regulation evolved to integrate a broad spectrum of different endogenous and exogenous signals. Endogenous signals produced and detected by L. pneumophila comprise the quorum sensing autoinducer LAI-1 (3-hydroxypentadecane-4-one) and c-di-GMP. As an exogenous cue, nitric oxide controls the c-di-GMP regulatory network of L. pneumophila. The Legionella quorum sensing (Lqs) system regulates virulence, motility and natural competence of L. pneumophila. The Lqs system is linked to c-di-GMP signaling through the pleiotropic transcription factor LvbR, which also regulates the architecture of L. pneumophila biofilms. In this review, we highlight recent insights into the crosstalk of Legionella quorum sensing and c-di-GMP signaling.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland.
| |
Collapse
|
30
|
Morinaga K, Yoshida K, Takahashi K, Nomura N, Toyofuku M. Peculiarities of biofilm formation by Paracoccus denitrificans. Appl Microbiol Biotechnol 2020; 104:2427-2433. [PMID: 32002601 PMCID: PMC7223048 DOI: 10.1007/s00253-020-10400-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/24/2023]
Abstract
Most bacteria form biofilms, which are thick multicellular communities covered in extracellular matrix. Biofilms can become thick enough to be even observed by the naked eye, and biofilm formation is a tightly regulated process. Paracoccus denitrificans is a non-motile, Gram-negative bacterium that forms a very thin, unique biofilm. A key factor in the biofilm formed by this bacterium is a large surface protein named biofilm-associated protein A (BapA), which was recently reported to be regulated by cyclic diguanosine monophosphate (cyclic-di-GMP or c-di-GMP). Cyclic-di-GMP is a major second messenger involved in biofilm formation in many bacteria. Though cyclic-di-GMP is generally reported as a positive regulatory factor in biofilm formation, it represses biofilm formation in P. denitrificans. Furthermore, quorum sensing (QS) represses biofilm formation in this bacterium, which is also reported as a positive regulator of biofilm formation in most bacteria. The QS signal used in P. denitrificans is hydrophobic and is delivered through membrane vesicles. Studies on QS show that P. denitrificans can potentially form a thick biofilm but maintains a thin biofilm under normal growth conditions. In this review, we discuss the peculiarities of biofilm formation by P. denitrificans with the aim of deepening the overall understanding of bacterial biofilm formation and functions.
Collapse
Affiliation(s)
- Kana Morinaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo, Japan
| | - Kohei Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
31
|
A Complex Interplay between Nitric Oxide, Quorum Sensing, and the Unique Secondary Metabolite Tundrenone Constitutes the Hypoxia Response in Methylobacter. mSystems 2020; 5:5/1/e00770-19. [PMID: 31964770 PMCID: PMC6977074 DOI: 10.1128/msystems.00770-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we describe a novel and complex hypoxia response system in a methanotrophic bacterium that involves modules of central carbon metabolism, denitrification, quorum sensing, and a secondary metabolite, tundrenone. This intricate stress response system, so far unique to Methylobacter species, may be responsible for the persistence and activity of these species across gradients of dioxygen tensions and for the cosmopolitan distribution of these organisms in freshwater and soil environments in the Northern Hemisphere, including the fast-melting permafrosts. Methylobacter species, members of the Methylococcales, have recently emerged as some of the globally widespread, cosmopolitan species that play a key role in the environmental consumption of methane across gradients of dioxygen tensions. In this work, we approached the question of how Methylobacter copes with hypoxia, via laboratory manipulation. Through comparative transcriptomics of cultures grown under high dioxygen partial pressure versus cultures exposed to hypoxia, we identified a gene cluster encoding a hybrid cluster protein along with sensing and regulatory functions. Through mutant analysis, we demonstrated that this gene cluster is involved in the hypoxia stress response. Through additional transcriptomic analyses, we uncovered a complex interconnection between the NO-mediated stress response, quorum sensing, the secondary metabolite tundrenone, and methanol dehydrogenase functions. This novel and complex hypoxia stress response system is so far unique to Methylobacter species, and it may play a role in the environmental fitness of these organisms and in their cosmopolitan environmental distribution. IMPORTANCE Here, we describe a novel and complex hypoxia response system in a methanotrophic bacterium that involves modules of central carbon metabolism, denitrification, quorum sensing, and a secondary metabolite, tundrenone. This intricate stress response system, so far unique to Methylobacter species, may be responsible for the persistence and activity of these species across gradients of dioxygen tensions and for the cosmopolitan distribution of these organisms in freshwater and soil environments in the Northern Hemisphere, including the fast-melting permafrosts.
Collapse
|
32
|
Michl TD, Tran DTT, Kuckling HF, Zhalgasbaikyzy A, Ivanovská B, González García LE, Visalakshan RM, Vasilev K. It takes two for chronic wounds to heal: dispersing bacterial biofilm and modulating inflammation with dual action plasma coatings. RSC Adv 2020; 10:7368-7376. [PMID: 35492196 PMCID: PMC9049834 DOI: 10.1039/c9ra09875e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic wounds are affecting increasingly larger portions of the general population and their treatment has essentially remained unchanged for the past century. This lack of progress is due to the complex problem that chronic wounds are simultaneously infected and inflamed. Both aspects need to be addressed together to achieve a better healing outcome. Hence, we hereby demonstrate that the stable nitroxide radical (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) can be plasma polymerized into smooth coatings (TEMPOpp), as seen via atomic force microscopy, X-ray photoelectron spectroscopy and ellipsometry. Upon contact with water, these coatings leach nitroxides into aqueous supernatant, as measured via EPR. We then exploited the known cell-signalling qualities of TEMPO to change the cellular behaviour of bacteria and human cells that come into contact with the surfaces. Specifically, the TEMPOpp coatings not only suppressed biofilm formation of the opportunistic bacterium Staphylococcus epidermidis but also dispersed already formed biofilm in a dose-dependent manner; a crucial aspect in treating chronic wounds that contain bacterial biofilm. Thus the coatings' microbiological efficacy correlated with their thickness and the thickest coating was the most efficient. Furthermore, this dose-dependent effect was mirrored in significant cytokine reduction of activated THP-1 macrophages for the four cytokines TNF-α, IL-1β, IL-6 and IP-10. At the same time, the THP-1 cells retained their ability to adhere and colonize the surfaces, as verified via SEM imaging. Thus, summarily, we have exploited the unique qualities of plasma polymerized TEMPO coatings in targeting both infection and inflammation simultaneously; demonstrating a novel alternative to how chronic wounds could be treated in the future. We plasma polymerized the stable nitroxide radical TEMPO into thin coatings and exploited the coatings' unique qualities in targeting both infection and inflammation simultaneously; demonstrating a novel alternative as to how chronic wounds could be treated in the future.![]()
Collapse
Affiliation(s)
| | | | | | | | - Barbora Ivanovská
- School of Engineering
- University of South Australia
- Mawson Lakes
- Australia
| | | | | | - Krasimir Vasilev
- School of Engineering
- University of South Australia
- Mawson Lakes
- Australia
| |
Collapse
|
33
|
Heckler I, Boon EM. Insights Into Nitric Oxide Modulated Quorum Sensing Pathways. Front Microbiol 2019; 10:2174. [PMID: 31608029 PMCID: PMC6769237 DOI: 10.3389/fmicb.2019.02174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
The emerging threat of drug resistant bacteria has prompted the investigation into bacterial signaling pathways responsible for pathogenesis. One such mechanism by which bacteria regulate their physiology during infection of a host is through a process known as quorum sensing (QS). Bacteria use QS to regulate community-wide gene expression in response to changes in population density. In order to sense these changes in population density, bacteria produce, secrete and detect small molecules called autoinducers. The most common signals detected by Gram-negative and Gram-positive bacteria are acylated homoserine lactones and autoinducing peptides (AIPs), respectively. However, increasing evidence has supported a role for the small molecule nitric oxide (NO) in influencing QS-mediated group behaviors like bioluminescence, biofilm production, and virulence. In this review, we discuss three bacteria that have an established role for NO in influencing bacterial physiology through QS circuits. In two Vibrio species, NO has been shown to affect QS pathways upon coordination of hemoprotein sensors. Further, NO has been demonstrated to serve a protective role against staphylococcal pneumonia through S-nitrosylation of a QS regulator of virulence.
Collapse
|
34
|
Rinaldo S, Giardina G, Mantoni F, Paone A, Cutruzzolà F. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett 2019; 365:4834012. [PMID: 29401255 DOI: 10.1093/femsle/fny029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
The nitrogen cycle pathways are responsible for the circulation of inorganic and organic N-containing molecules in nature. Among these pathways, those involving amino acids, N-oxides and in particular nitric oxide (NO) play strategic roles in the metabolism of microorganisms in natural environments and in host-pathogen interactions. Beyond their role in the N-cycle, amino acids and NO are also signalling molecules able to influence group behaviour in microorganisms and cell-cell communication in multicellular organisms, including humans. In this minireview, we summarise the role of these compounds in the homeostasis of the bacterial communities called biofilms, commonly found in environmental, industrial and medical settings. Biofilms are difficult to eradicate since they are highly resistant to antimicrobials and to the host immune system. We highlight the effect of amino acids such as glutamate, glutamine and arginine and of NO on the signalling pathways involved in the metabolism of 3',5'-cyclic diguanylic acid (c-di-GMP), a master regulator of motility, attachment and group behaviour in bacteria. The study of the metabolic routes involving these N-containing compounds represents an attractive topic to identify targets for biofilm control in both natural and medical settings.
Collapse
Affiliation(s)
- Serena Rinaldo
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Federico Mantoni
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
35
|
Picciano AL, Crane BR. A nitric oxide synthase-like protein from Synechococcus produces NO/NO 3- from l-arginine and NADPH in a tetrahydrobiopterin- and Ca 2+-dependent manner. J Biol Chem 2019; 294:10708-10719. [PMID: 31113865 PMCID: PMC6615690 DOI: 10.1074/jbc.ra119.008399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide synthases (NOSs) are heme-based monooxygenases that convert l-Arg to l-citrulline and nitric oxide (NO), a key signaling molecule and cytotoxic agent in mammals. Bacteria also contain NOS proteins, but the role of NO production within these organisms, where understood, differs considerably from that of mammals. For example, a NOS protein in the marine cyanobacterium Synechococcus sp. PCC 7335 (syNOS) has recently been proposed to function in nitrogen assimilation from l-Arg. syNOS retains the oxygenase (NOSox) and reductase (NOSred) domains present in mammalian NOS enzymes (mNOSs), but also contains an N-terminal globin domain (NOSg) homologous to bacterial flavohemoglobin proteins. Herein, we show that syNOS functions as a dimer and produces NO from l-Arg and NADPH in a tetrahydrobiopterin (H4B)-dependent manner at levels similar to those produced by other NOSs but does not require Ca2+-calmodulin, which regulates NOSred-mediated NOSox reduction in mNOSs. Unlike other bacterial NOSs, syNOS cannot function with tetrahydrofolate and requires high Ca2+ levels (>200 μm) for its activation. NOSg converts NO to NO3- in the presence of O2 and NADPH; however, NOSg did not protect Escherichia coli strains against nitrosative stress, even in a mutant devoid of NO-protective flavohemoglobin. We also found that syNOS does not have NOS activity in E. coli (which lacks H4B) and that the recombinant protein does not confer growth advantages on l-Arg as a nitrogen source. Our findings indicate that syNOS has both NOS and NO oxygenase activities, requires H4B, and may play a role in Ca2+-mediated signaling.
Collapse
Affiliation(s)
- Angela L Picciano
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Brian R Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
36
|
Caranto JD. The emergence of nitric oxide in the biosynthesis of bacterial natural products. Curr Opin Chem Biol 2019; 49:130-138. [DOI: 10.1016/j.cbpa.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
|
37
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
38
|
Thompson CM, Tischler AH, Tarnowski DA, Mandel MJ, Visick KL. Nitric oxide inhibits biofilm formation by Vibrio fischeri via the nitric oxide sensor HnoX. Mol Microbiol 2019; 111:187-203. [PMID: 30299554 PMCID: PMC6392066 DOI: 10.1111/mmi.14147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) is an important defense molecule secreted by the squid Euprymna scolopes and sensed by the bacterial symbiont, Vibrio fischeri, via the NO sensor HnoX. HnoX inhibits colonization through an unknown mechanism. The genomic location of hnoX adjacent to hahK, a recently identified positive regulator of biofilm formation, suggested that HnoX may inhibit colonization by controlling biofilm formation, a key early step in colonization. Indeed, the deletion of hnoX resulted in early biofilm formation in vitro, an effect that was dependent on HahK and its putative phosphotransfer residues. An allele of hnoX that encodes a protein with increased activity severely delayed wrinkled colony formation. Control occurred at the level of transcription of the syp genes, which produce the polysaccharide matrix component. The addition of NO abrogated biofilm formation and diminished syp transcription, effects that required HnoX. Finally, an hnoX mutant formed larger symbiotic biofilms. This work has thus uncovered a host-relevant signal controlling biofilm and a mechanism for the inhibition of biofilm formation by V. fischeri. The study of V. fischeri HnoX permits us to understand not only host-associated biofilm mechanisms, but also the function of HnoX domain proteins as regulators of important bacterial processes.
Collapse
Affiliation(s)
- Cecilia M. Thompson
- Department of Microbiology and Immunology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Alice H. Tischler
- Department of Microbiology and Immunology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Denise A. Tarnowski
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA,Address correspondence to Karen L. Visick,
| |
Collapse
|
39
|
Bhagi-Damodaran A, Lu Y. The Periodic Table's Impact on Bioinorganic Chemistry and Biology's Selective Use of Metal Ions. STRUCTURE AND BONDING 2019; 182:153-173. [PMID: 36567794 PMCID: PMC9788643 DOI: 10.1007/430_2019_45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the availability of a vast variety of metal ions in the periodic table, biology uses only a selective few metal ions. Most of the redox active metals used belong to the first row of transition metals in the periodic table and include Fe, Co, Ni, Mn and Cu. On the other hand, Ca, Zn and Mg are the most commonly used redox inactive metals in biology. In this chapter, we discuss the periodic table's impact on bio-inorganic chemistry, by exploring reasons behind this selective choice of metals biology. A special focus is placed on the chemical and functional reasons why one metal ion is preferred over another one. We discuss the implications of metal choice in various biological processes including catalysis, electron transfer, redox sensing and signaling. We find that bioavailability of metal ions along with their redox potentials, coordination flexibility, valency and ligand affinity determine the specificity of metals for biological processes. Understanding the implications underlying the selective choice of metals of the periodic table in these biological processes can help design more efficient catalysts, more precise biosensors and more effective drugs.
Collapse
Affiliation(s)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
40
|
Abstract
SIGNIFICANCE The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. CRITICAL ISSUES The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. FUTURE DIRECTIONS The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.
Collapse
Affiliation(s)
| | - Lisa-Marie Nisbett
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Bezalel Bacon
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Elizabeth Boon
- 1 Department of Chemistry, Stony Brook University , Stony Brook, New York.,2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York.,3 Institute of Chemical Biology and Drug Design, Stony Brook University , Stony Brook, New York
| |
Collapse
|
41
|
Williams DE, Boon EM. Towards Understanding the Molecular Basis of Nitric Oxide-Regulated Group Behaviors in Pathogenic Bacteria. J Innate Immun 2018; 11:205-215. [PMID: 30557874 DOI: 10.1159/000494740] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria have many strategies for causing disease in humans. One such strategy is the ability to live both as single-celled motile organisms or as part of a community of bacteria called a biofilm. Biofilms are frequently adhered to biotic or abiotic surfaces and are extremely antibiotic resistant. Upon biofilm dispersal, bacteria become more antibiotic susceptible but are also able to readily infect another host. Various studies have shown that low, nontoxic levels of nitric oxide (NO) may induce biofilm dispersal in many bacterial species. While the molecular details of this phenotype remain largely unknown, in several species, NO has been implicated in biofilm-to-planktonic cell transitions via ligation to 1 of 2 characterized NO sensors, NosP or H-NOX. Based on the data available to date, it appears that NO binding to H-NOX or NosP triggers a downstream response based on changes in cellular cyclic di-GMP concentrations and/or the modulation of quorum sensing. In order to develop applications for control of biofilm infections, the identification and characterization of biofilm dispersal mechanisms is vital. This review focuses on the efforts made to understand NO-mediated control of H-NOX and NosP pathways in the 3 pathogenic bacteria Legionella pneumophila, Vibrio cholerae, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Dominique E Williams
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, New York, USA,
| |
Collapse
|
42
|
Guo Y, Cooper MM, Bromberg R, Marletta MA. A Dual-H-NOX Signaling System in Saccharophagus degradans. Biochemistry 2018; 57:6570-6580. [PMID: 30398342 DOI: 10.1021/acs.biochem.8b01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a critical signaling molecule involved in the regulation of a wide variety of physiological processes across every domain of life. In most aerobic and facultative anaerobic bacteria, heme-nitric oxide/oxygen binding (H-NOX) proteins selectively sense NO and inhibit the activity of a histidine kinase (HK) located on the same operon. This NO-dependent inhibition of the cognate HK alters the phosphorylation of the downstream response regulators. In the marine bacterium Saccharophagus degradans ( Sde), in addition to a typical H-NOX ( Sde 3804)/HK ( Sde 3803) pair, an orphan H-NOX ( Sde 3557) with no associated signaling protein has been identified distant from the H-NOX/HK pair in the genome. The characterization reported here elucidates the function of both H-NOX proteins. Sde 3557 exhibits a weaker binding affinity with the kinase, yet both Sde 3804 and Sde 3557 are functional H-NOXs with proper gas binding properties and kinase inhibition activity. Additionally, Sde 3557 has an NO dissociation rate that is significantly slower than that of Sde 3804, which may confer prolonged kinase inhibition in vivo. While it is still unclear whether Sde 3557 has another signaling partner or shares the histidine kinase with Sde 3804, Sde 3557 is the only orphan H-NOX characterized to date. S. degradans is likely using a dual-H-NOX system to fine-tune the downstream response of NO signaling.
Collapse
Affiliation(s)
- Yirui Guo
- California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Matthew M Cooper
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Raquel Bromberg
- Department of Biophysics , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Michael A Marletta
- California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
43
|
Guo Y, Marletta MA. Structural Insight into H‐NOX Gas Sensing and Cognate Signaling Protein Regulation. Chembiochem 2018; 20:7-19. [DOI: 10.1002/cbic.201800478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yirui Guo
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
| | - Michael A. Marletta
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of Molecular and Cell BiologyUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of ChemistryUniversity of California, Berkeley Berkeley, CA 94720 USA
| |
Collapse
|
44
|
Host Nitric Oxide Disrupts Microbial Cell-to-Cell Communication to Inhibit Staphylococcal Virulence. Cell Host Microbe 2018; 23:594-606.e7. [PMID: 29706505 DOI: 10.1016/j.chom.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a commensal bacterium that can asymptomatically colonize its host but also causes invasive infections. Quorum sensing regulates S. aureus virulence and the transition from a commensal to a pathogenic organism. However, little is known about how host innate immunity affects interbacterial communication. We show that nitric oxide suppresses staphylococcal virulence by targeting the Agr quorum sensing system. Nitric oxide-mediated inhibition occurs through direct modification of cysteine residues C55, C123, and C199 of the AgrA transcription factor. Cysteine modification decreases AgrA promoter occupancy as well as transcription of the agr operon and quorum sensing-activated toxin genes. In a staphylococcal pneumonia model, mice lacking inducible nitric oxide synthase develop more severe disease with heightened mortality and proinflammatory cytokine responses. In addition, staphylococcal α-toxin production increases in the absence of nitric oxide or nitric oxide-sensitive AgrA cysteine residues. Our findings demonstrate an anti-virulence mechanism for nitric oxide in innate immunity.
Collapse
|
45
|
|
46
|
Bedrunka P, Olbrisch F, Rüger M, Zehner S, Frankenberg-Dinkel N. Nitric oxide controls c-di-GMP turnover in Dinoroseobacter shibae. MICROBIOLOGY-SGM 2018; 164:1405-1415. [PMID: 30222100 DOI: 10.1099/mic.0.000714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ubiquitous bacterial second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is involved in the regulation of numerous processes including biofilm formation, motility, virulence, cell cycle and differentiation. In this study, we searched the genome of the ecologically important marine alphaproteobacterium Dinoroseobacter shibae DFL12T for genes encoding putative c-di-GMP-modulating enzymes. Overall, D. shibae was found to possess two diguanylate cyclases (Dshi_2814 and Dshi_2820) as well as two c-di-GMP-specific phosphodiesterases (Dhi_0329 and Dshi_3065). Recombinant expression and purification followed by enzymatic analysis revealed that all four proteins exhibit their proposed activity. Furthermore, adjacent to Dshi_2814 we identified a gene encoding a heme nitric oxide/oxygen binding (H-NOX) protein. These proteins are often found in association with c-di-GMP signal transduction pathways and modulate their function through binding of diatomic gases such as nitric oxide. Here, we demonstrate that H-NOX constitutes a functional unit together with the diguanylate cyclase Dshi_2814. NO-bound H-NOX strongly inhibits DGC activity. Based on these results, and with respect to previously published data including micro-array analysis, we propose an interlinkage of c-di-GMP signalling with cell-cell communication and differentiation in D. shibae.
Collapse
Affiliation(s)
- Patricia Bedrunka
- 1Ruhr-Universität Bochum, Physiologie der Mikroorganismen, 44780 Bochum, Germany.,†Present address: LOEWE-Zentrum für Synthetische Mikrobiologie & Fachbereich Chemie, Hans-Meerwein-Str., C07, 35043 Marburg, Germany
| | - Fabien Olbrisch
- 1Ruhr-Universität Bochum, Physiologie der Mikroorganismen, 44780 Bochum, Germany
| | - Martina Rüger
- 2Technische Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, 67663 Kaiserslautern, Germany
| | - Susanne Zehner
- 2Technische Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, 67663 Kaiserslautern, Germany
| | - Nicole Frankenberg-Dinkel
- 1Ruhr-Universität Bochum, Physiologie der Mikroorganismen, 44780 Bochum, Germany.,2Technische Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, 67663 Kaiserslautern, Germany
| |
Collapse
|
47
|
Dong X, Liu Y, Zhang G, Wang D, Zhou X, Shao J, Shen Q, Zhang R. Synthesis and detoxification of nitric oxide in the plant beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 and its effect on biofilm formation. Biochem Biophys Res Commun 2018; 503:784-790. [PMID: 29913149 DOI: 10.1016/j.bbrc.2018.06.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Nitric oxide (NO) is an important gas signal that regulates many biological processes, and due to the high nitrogen recycling activity in the rhizosphere, NO is an important signaling molecule in this region. Thus, an understanding of the effect of NO on the rhizomicrobiome, especially on plant beneficial rhizobacteria, is important for the use of these bacteria in agriculture. In this study, the effect of exogenous NO on the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 was investigated. The results showed that low concentrations of NO increased the ability of the strain SQR9 to form biofilms, while high concentrations of NO inhibited the growth of this bacterium. The SQR9 gene yflM encodes nitric oxide synthase (NOS), which is used to synthesize NO, while the gene ykvO encodes a sepiapterin reductase that is used to synthesize tetrahydrobiopterin, the coenzyme of NOS. Isothermal titration calorimetry and high-performance liquid chromatography analyses demonstrated an interaction between YkvO and NADPH. SQR9 has two hmp genes, although only one was observed to be responsible for NO detoxification through oxidization. This study revealed the effect of NO on plant beneficial rhizobacterium and assessed the ability of this strain to adapt to exogenous NO, which will help to improve the application of this strain in agricultural production.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dandan Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xuan Zhou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
48
|
Hossain S, Heckler I, Boon EM. Discovery of a Nitric Oxide Responsive Quorum Sensing Circuit in Vibrio cholerae. ACS Chem Biol 2018; 13:1964-1969. [PMID: 30060647 DOI: 10.1021/acschembio.8b00360] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Group behavior of the human pathogen Vibrio cholerae, including biofilm formation and virulence factor secretion, is mediated by a process known as quorum sensing. Quorum sensing is a way by which bacteria coordinate gene expression in response to population density through the production, secretion, and detection of small molecules called autoinducers. Four autoinducer-mediated receptor histidine kinases have been implicated in quorum sensing through the phosphotransfer protein LuxU: CqsS, LuxP/Q, CqsR, and VpsS (Vc1445). Of these receptor kinases, VpsS is predicted to be cytosolic, and its cognate autoinducer is currently unknown. In this study, we demonstrate that the nitric oxide-bound complex of a member of the recently discovered family of nitric oxide-responsive hemoproteins called NosP (VcNosP is encoded by Vc1444; this gene product is also known as VpsV) inhibits the autophosphorylation activity of VpsS and thus phosphate flow to LuxU. Therefore, we propose that VpsS contributes to the regulation of quorum sensing in a nitric-oxide-dependent manner through its interaction with NosP.
Collapse
Affiliation(s)
- Sajjad Hossain
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ilana Heckler
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Elizabeth M. Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
49
|
Hespen CW, Bruegger JJ, Guo Y, Marletta MA. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins. ACS Chem Biol 2018; 13:1631-1639. [PMID: 29757599 DOI: 10.1021/acschembio.8b00248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.
Collapse
Affiliation(s)
- Charles W. Hespen
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Joel J. Bruegger
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Yirui Guo
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Michael A. Marletta
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
- Department of Chemistry, Department of Molecular and Cell Biology, QB3 Institute, University of California—Berkeley, 374B Stanley Hall, Berkeley, California 94720-3220, United States
| |
Collapse
|
50
|
Childers KC, Garcin ED. Structure/function of the soluble guanylyl cyclase catalytic domain. Nitric Oxide 2018; 77:53-64. [PMID: 29702251 PMCID: PMC6005667 DOI: 10.1016/j.niox.2018.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5′-triphosphate (GTP) into cyclic guanosine 3′,5′-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.
Collapse
Affiliation(s)
- Kenneth C Childers
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA
| | - Elsa D Garcin
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA.
| |
Collapse
|