1
|
Sun Y, Lu X, Wang M. The different functions of V-ATPase subunits in adipocyte differentiation and their expression in obese mice. Biochem Biophys Res Commun 2024; 733:150733. [PMID: 39332157 DOI: 10.1016/j.bbrc.2024.150733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Obesity is a significant global public health issue linked to numerous chronic diseases, including diabetes, cardiovascular conditions, and various cancers. The vacuolar H + ATPase, a multi-subunit enzyme complex involved in maintaining pH balance, has been implicated in various health conditions, including obesity-related diseases. METHOD This study conducts a comprehensive analysis of V-ATPase subunits' roles in adipogenesis within the context of obesity, using knockdown and RNAseq technologies. RESULT This study conducts a comprehensive analysis of V-ATPase subunits' roles in adipogenesis, highlighting specific subunits, v0d2 and v1a, which show significant expression alterations. Our findings reveal that v1a plays a crucial role in adipocyte differentiation through pathways related to steroid and cholesterol metabolism. CONCLUSION This study provides a comprehensive analysis of the roles played by V-ATPase subunits in adipogenesis and finds the critical role of V-ATPase subunits, particularly v1a, in the differentiation of adipocytes and their potential impact on obesity.
Collapse
Affiliation(s)
- Yuan Sun
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xifeng Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
2
|
Chen Q, Kou H, Demy DL, Liu W, Li J, Wen Z, Herbomel P, Huang Z, Zhang W, Xu J. The different roles of V-ATPase a subunits in phagocytosis/endocytosis and autophagy. Autophagy 2024; 20:2297-2313. [PMID: 38873931 PMCID: PMC11423658 DOI: 10.1080/15548627.2024.2366748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Microglia are specialized macrophages responsible for the clearance of dead neurons and pathogens by phagocytosis and degradation. The degradation requires phagosome maturation and acidification provided by the vesicular- or vacuolar-type H+-translocating adenosine triphosphatase (V-ATPase), which is composed of the cytoplasmic V1 domain and the membrane-embedded Vo domain. The V-ATPase a subunit, an integral part of the Vo domain, has four isoforms in mammals. The functions of different isoforms on phagosome maturation in different cells/species remain controversial. Here we show that mutations of both the V-ATPase Atp6v0a1 and Tcirg1b/Atp6v0a3 subunits lead to the accumulation of phagosomes in zebrafish microglia. However, their mechanisms are different. The V-ATPase Atp6v0a1 subunit is mainly distributed in early and late phagosomes. Defects of this subunit lead to a defective transition from early phagosomes to late phagosomes. In contrast, The V-ATPase Tcirg1b/Atp6v0a3 subunit is primarily located on lysosomes and regulates late phagosome-lysosomal fusion. Defective Tcirg1b/Atp6v0a3, but not Atp6v0a1 subunit leads to reduced acidification and impaired macroautophagy/autophagy in microglia. We further showed that ATP6V0A1/a1 and TCIRG1/a3 subunits in mouse macrophages preferentially located in endosomes and lysosomes, respectively. Blocking these subunits disrupted early-to-late endosome transition and endosome-to-lysosome fusion, respectively. Taken together, our results highlight the essential and conserved roles played by different V-ATPase subunits in multiple steps of phagocytosis and endocytosis across various species.Abbrevations: Apoe: apolipoprotein E; ANXA5/annexin V: annexin A5; ATP6V0A1/a1: ATPase H+-transporting V0 subunit a1; ATP6V0A2/a2: ATPase H+-transporting V0 subunit a2; ATP6V0A4/a4: ATPase H+-transporting V0 subunit a4; dpf: days post-fertilization; EEA1: early endosome antigen 1; HOPS: homotypic fusion and protein sorting; LAMP1: lysosomal associated membrane protein 1; Lcp1: lymphocyte cytosolic protein 1 (L-plastin); Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NR: neutral red; PBS: phosphate-buffered saline; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol (3,5)-bisphosphate; RAB4: RAB4, member RAS oncogene family; RAB5: RAB5, member RAS oncogene family; RAB7: RAB7, member RAS oncogene family; TCIRG1/Atp6v0a3/a3: T cell immune regulator 1, ATPase H+-transporting V0 subunit a3; V-ATPase: vacuolar-type H+-translocating adenosine triphosphatase; Xla.Tubb2b/NBT: tubulin beta 2B class IIb.
Collapse
Affiliation(s)
- Qi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PRChina
| | - Hanjing Kou
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Doris Lou Demy
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, France
- CNRS, UMR 3738, Paris, France
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianchao Li
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong, PRChina
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, France
- CNRS, UMR 3738, Paris, France
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jin Xu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
4
|
Li Z, Alshagawi MA, Oot RA, Alamoudi MK, Su K, Li W, Collins MP, Wilkens S, Forgac M. A nanobody against the V-ATPase c subunit inhibits metastasis of 4T1-12B breast tumor cells to lung in mice. Oncotarget 2024; 15:575-587. [PMID: 39145534 PMCID: PMC11325586 DOI: 10.18632/oncotarget.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that functions to control the pH of intracellular compartments as well as to transport protons across the plasma membrane of various cell types, including cancer cells. We have previously shown that selective inhibition of plasma membrane V-ATPases in breast tumor cells inhibits the invasion of these cells in vitro. We have now developed a nanobody directed against an extracellular epitope of the mouse V-ATPase c subunit. We show that treatment of 4T1-12B mouse breast cancer cells with this nanobody inhibits V-ATPase-dependent acidification of the media and invasion of these cells in vitro. We further find that injection of this nanobody into mice implanted with 4T1-12B cells orthotopically in the mammary fat pad inhibits metastasis of tumor cells to lung. These results suggest that plasma membrane V-ATPases represent a novel therapeutic target to limit breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Mohammed A. Alshagawi
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Pharmacology, University of Minnesota School of Medicine, MN 55455, USA
- These authors contributed equally to this work
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mariam K. Alamoudi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kevin Su
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Korro Bio, Cambridge, MA 02139, USA
| | - Wenhui Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Michael P. Collins
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Foghorn Therapeutics, Cambridge, MA 02139, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
5
|
Jian L, Zhang Q, Yao D, Wang Q, Chen M, Xia Y, Li S, Shen Y, Cao M, Qin A, Li L, Cao Y. The structural insight into the functional modulation of human anion exchanger 3. Nat Commun 2024; 15:6134. [PMID: 39033175 PMCID: PMC11271275 DOI: 10.1038/s41467-024-50572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Anion exchanger 3 (AE3) is pivotal in regulating intracellular pH across excitable tissues, yet its structural intricacies and functional dynamics remain underexplored compared to other anion exchangers. This study unveils the structural insights into human AE3, including the cryo-electron microscopy structures for AE3 transmembrane domains (TMD) and a chimera combining AE3 N-terminal domain (NTD) with AE2 TMD (hAE3NTD2TMD). Our analyzes reveal a substrate binding site, an NTD-TMD interlock mechanism, and a preference for an outward-facing conformation. Unlike AE2, which has more robust acid-loading capabilities, AE3's structure, including a less stable inward-facing conformation due to missing key NTD-TMD interactions, contributes to its moderated pH-modulating activity and increased sensitivity to the inhibitor DIDS. These structural differences underline AE3's distinct functional roles in specific tissues and underscore the complex interplay between structural dynamics and functional specificity within the anion exchanger family, enhancing our understanding of the physiological and pathological roles of the anion exchanger family.
Collapse
Affiliation(s)
- Liyan Jian
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Qing Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Deqiang Yao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Moxin Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lin Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China.
| |
Collapse
|
6
|
Zhao R, Liao W, Tan D, Huang H, Hu C, Chen M. Comparative analysis of the expression patterns of TM9SF family members in mice. Gene Expr Patterns 2024; 52:119366. [PMID: 38719197 DOI: 10.1016/j.gep.2024.119366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Transmembrane 9 superfamily proteins (TM9SFs) define a highly conserved protein family, each member of which is characterized by a variable extracellular domain and presumably nine transmembrane domains. Although previous studies have delineated the potential cytological roles of TM9SFs like autophagy and secretory pathway, their functions during development are largely unknown. To establish the basis for dissecting the functions of TM9SFs in vivo, we employed the open-source database, structure prediction, immunofluorescence and Western blot to describe the gene and protein expression patterns of TM9SFs in human and mouse. While TM9SFs are ubiquitously and homogeneously expressed in all tissues in human with RNA sequencing and proteomics analysis, we found that all mice Tm9sf proteins are preferentially expressed in lung except Tm9sf1 which is enriched in brain although they all distributed in various tissues we examined. In addition, we further explored their expression patterns in the mice central nervous system (CNS) and its extension tissue retina. Interestingly, we could show that Tm9sf1is developmentally up-regulated in brain. In addition, we also detected all Tm9sf proteins are located in neurons and microglia instead of astrocytes. Importantly, Tm9sf3 is localized in the nuclei which is distinct from the other members that are dominantly targeted to the plasma membrane/cytoplasm as expected. Finally, we also found that Tm9sf family members are broadly expressed in the layers of INL, OPL, and GCL of retina and likely targeted to the plasma membrane of retinal cells. Thus, our data provided a comprehensive overview of TM9SFs expression patterns, illustrating their ubiquitous roles in different organs, implying the possible roles of Tm9sf2/3/4 in lung functions and Tm9sf1 in neurodevelopment, and highlighting a unique cell biological functions of TM9SF3 in neuronal and microglia.
Collapse
Affiliation(s)
- Rui Zhao
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China
| | - Wenxiong Liao
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Duo Tan
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Haiyou Huang
- Jianghai Street Community Health Service Center, Haizhu District, Guangzhou, Guangzhou, 510305, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
7
|
Muñoz-Bucio A, Arellano-Reynoso B, Sangari FJ, Sieira R, Thébault P, Espitia C, García Lobo JM, Seoane A, Suárez-Güemes F. Increased Brucella abortus asRNA_0067 expression under intraphagocytic stressors is associated with enhanced virB2 transcription. Arch Microbiol 2024; 206:285. [PMID: 38816572 PMCID: PMC11139718 DOI: 10.1007/s00203-024-03984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.
Collapse
Affiliation(s)
- Adrian Muñoz-Bucio
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Félix J Sangari
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Av. Patricias Argentinas 435CABA, CP. 1405, Buenos Aires Argentina, Argentina
| | - Patricia Thébault
- Laboratoire Bordelais de Recherche en Informatique (LaBRI), UMR 5800, CNRS, Bordeaux INP, Université de Bordeaux, 33400, Talence, France
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México MX, CDMX, Circuito Escolar 33, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Juan M García Lobo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Asunción Seoane
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Francisco Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| |
Collapse
|
8
|
Mo S, Liu T, Zhou H, Huang J, Zhao L, Lu F, Kuang Y. ATP6V1B1 regulates ovarian cancer progression and cisplatin sensitivity through the mTOR/autophagy pathway. Mol Cell Biochem 2024:10.1007/s11010-024-05025-w. [PMID: 38735913 DOI: 10.1007/s11010-024-05025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Early detection and effective chemotherapy for ovarian cancer, a serious gynecological malignancy, require further progress. This study aimed to investigate the molecular mechanism of ATPase H+-Transporting V1 Subunit B1 (ATP6V1B1) in ovarian cancer development and chemoresistance. Our data show that ATP6V1B1 is upregulated in ovarian cancer and correlated with decreased progression-free survival. Gain- and loss-of-function experiments demonstrated that ATP6V1B1 promotes the proliferation, migration, and invasion of ovarian cancer cells in vitro, while ATP6V1B1 knockout inhibits tumor growth in vivo. In addition, knocking down ATP6V1B1 increases the sensitivity of ovarian cancer cells to cisplatin. Mechanistic studies showed that ATP6V1B1 regulates the activation of the mTOR/autophagy pathway. Overall, our study confirmed the oncogenic role of ATP6V1B1 in ovarian cancer and revealed that ATP6V1B1 promotes ovarian cancer progression via the mTOR/autophagy axis.
Collapse
Affiliation(s)
- Shien Mo
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingji Liu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqin Zhou
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Junning Huang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Zhao
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangfang Lu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Kuang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China.
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
9
|
Guo B, Li QY, Liu XJ, Luo GH, Wu YJ, Nie J. Diabetes mellitus and Alzheimer's disease: Vacuolar adenosine triphosphatase as a potential link. Eur J Neurosci 2024; 59:2577-2595. [PMID: 38419188 DOI: 10.1111/ejn.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and β-amyloid (Aβ). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aβ by affecting the production and degradation of Aβ. Therefore, v-ATPase may be the bridge between DM and AD.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ye Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue-Jia Liu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo-Hui Luo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Juan Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
10
|
Costa V, Teixeira V. Vacuolar ATPase-mediated regulation of neutral lipid dynamics: Insights into lipid droplet homeostasis and stress response mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159465. [PMID: 38350538 DOI: 10.1016/j.bbalip.2024.159465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
This study explores the intricate relationship between the yeast vacuolar H+-ATPase (V-ATPase) and neutral lipid metabolism. We show that LD generation observed upon loss of V-ATPase activity is crucial for survival in lipotoxic conditions. Moreover, the study uncovers a link between V-ATPase function, inositol metabolism and the activation of the oxidative pentose phosphate pathway, highlighting its pivotal role in counteracting oxidative stress. This work provides foundational insights into metabolic adaptations triggered by V-ATPase dysfunction, shedding light on cellular adaptability under lipotoxic and oxidative stress conditions.
Collapse
Affiliation(s)
- Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
11
|
Choi C, Jeong YL, Park KM, Kim M, Kim S, Jo H, Lee S, Kim H, Choi G, Choi YH, Seong JK, Namgoong S, Chung Y, Jung YS, Granneman JG, Hyun YM, Kim JK, Lee YH. TM4SF19-mediated control of lysosomal activity in macrophages contributes to obesity-induced inflammation and metabolic dysfunction. Nat Commun 2024; 15:2779. [PMID: 38555350 PMCID: PMC10981689 DOI: 10.1038/s41467-024-47108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yujin L Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Koung-Min Park
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minji Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honghyun Jo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Garam Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), and Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sik Namgoong
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea.
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Yanagisawa S, Bukhari ZA, Parra KJ, Frasch WD. Eukaryotic yeast V 1-ATPase rotary mechanism insights revealed by high-resolution single-molecule studies. Front Mol Biosci 2024; 11:1269040. [PMID: 38567099 PMCID: PMC10985318 DOI: 10.3389/fmolb.2024.1269040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Vacuolar ATP-dependent proton pumps (V-ATPases) belong to a super-family of rotary ATPases and ATP synthases. The V1 complex consumes ATP to drive rotation of a central rotor that pumps protons across membranes via the Vo complex. Eukaryotic V-ATPases are regulated by reversible disassembly of subunit C, V1 without C, and VO. ATP hydrolysis is thought to generate an unknown rotary state that initiates regulated disassembly. Dissociated V1 is inhibited by subunit H that traps it in a specific rotational position. Here, we report the first single-molecule studies with high resolution of time and rotational position of Saccharomyces cerevisiae V1-ATPase lacking subunits H and C (V1ΔHC), which resolves previously elusive dwells and angular velocity changes. Rotation occurred in 120° power strokes separated by dwells comparable to catalytic dwells observed in other rotary ATPases. However, unique V1ΔHC rotational features included: 1) faltering power stroke rotation during the first 60°; 2) a dwell often occurring ∼45° after the catalytic dwell, which did not increase in duration at limiting MgATP; 3) a second dwell, ∼2-fold longer occurring 112° that increased in duration and occurrence at limiting MgATP; 4) limiting MgATP-dependent decreases in power stroke angular velocity where dwells were not observed. The results presented here are consistent with MgATP binding to the empty catalytic site at 112° and MgADP released at ∼45°, and provide important new insight concerning the molecular basis for the differences in rotary positions of substrate binding and product release between V-type and F-type ATPases.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zain A. Bukhari
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Karlett J. Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Wayne D. Frasch
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Liu L, Chen X, Wu L, Huang K, Wang Z, Zheng Y, Zheng C, Zhang Z, Chen J, Wei J, Chen S, Jin W, Chen J, Wei D, Xu Y. Ubiquitin ligase subunit FBXO9 inhibits V-ATPase assembly and impedes lung cancer metastasis. Exp Hematol Oncol 2024; 13:32. [PMID: 38486234 PMCID: PMC10938814 DOI: 10.1186/s40164-024-00497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The evolutionarily conserved protein FBXO9 acts as a substrate receptor for the SKP1-cullin-1-RBX1 ubiquitin ligase and is implicated in cancer, exhibiting either tumor-suppressive or oncogenic effects depending on the specific tumor type. However, their role in lung cancer metastasis remains unclear. METHODS Lentiviral vectors carrying miRNA-based shRNA sequences for gene-specific knockdown were generated, and Lenti-CRISPR-Cas9 vectors containing gene-specific sgRNA sequences were designed. Gene overexpression was achieved using doxycycline-inducible lentiviral constructs, while gene knockdown or knockout cells were generated using shRNA and CRISPR-Cas9, respectively. Functional assays included migration, clonogenic survival assays, tumor sphere assays, and protein interaction studies using mass spectrometry, immunoprecipitation, and immunoblot analysis. RESULTS This study identified FBXO9 as a crucial regulator that suppresses lung cancer cell migration, tumor sphere growth and restricts metastasis. We showed that FBXO9 facilitates the ubiquitination of the catalytic subunit A (ATP6V1A) of the Vacuolar-type H+-ATPase (V-ATPase), resulting in its interaction with the cytoplasmic chaperone HSPA8 and subsequent sequestration within the cytoplasm. This process hinders the assembly of functional V-ATPase, resulting in reduced vesicular acidification. In contrast, depletion of FBXO9 reduced ATP6V1A ubiquitination, resulting in increased V-ATPase assembly and vesicular acidification, thus promoting pro-metastatic Wnt signaling and metastasis of lung cancer cells. Furthermore, we demonstrated the effectiveness of inhibitors targeting V-ATPase in inhibiting lung cancer metastasis in a mouse model. Finally, we established a correlation between lower FBXO9 levels and poorer survival outcomes in patients with lung cancer. CONCLUSION These findings collectively elucidate the critical role of FBXO9 in regulating V-ATPase assembly and provide a molecular basis for FBXO9's function in inhibiting lung cancer metastasis. This highlights the potential therapeutic opportunities of FBXO9 supplementation.
Collapse
Affiliation(s)
- Liang Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Institute of Clinical Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodong Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Kaizong Huang
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Zhenyi Wang
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Yaolin Zheng
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Cheng Zheng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Center, Shanghai, 200032, China
| | - Jiayan Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiaming Wei
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, 223300, Jiangsu, China
| | - Song Chen
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, 223300, Jiangsu, China
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Weilin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Jinfei Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 730000, Zhejiang Province, China
| | - Dongping Wei
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China.
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Handy J, Macintosh GC, Jenny A. Ups and downs of lysosomal pH: conflicting roles of LAMP proteins? Autophagy 2024; 20:437-440. [PMID: 37960894 PMCID: PMC10813643 DOI: 10.1080/15548627.2023.2274253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
The acidic pH of lysosomes is critical for catabolism in eukaryotic cells and is altered in neurodegenerative disease including Alzheimer and Parkinson. Recent reports using Drosophila and mammalian cell culture systems have identified novel and, at first sight, conflicting roles for the lysosomal associated membrane proteins (LAMPs) in the regulation of the endolysosomal system.Abbreviation: AD: Alzheimer disease; LAMP: lysosomal associated membrane protein; LTR: LysoTracker; PD: Parkinson disease; TMEM175: transmembrane protein 175; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Jonathan Handy
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gustavo C. Macintosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Ekchariyawat P, Saengfak R, Sanongkiet S, Charoenwongpaiboon T, Khongpraphan S, Mala S, Luangjindarat C, Munyoo B, Chabang N, Charoensutthivarakul S, Borwornpinyo S, Tuchinda P, Ponpuak M, Pudla M, Utaisincharoen P. ECDD-S16 targets vacuolar ATPase: A potential inhibitor compound for pyroptosis-induced inflammation. PLoS One 2023; 18:e0292340. [PMID: 38011122 PMCID: PMC10681236 DOI: 10.1371/journal.pone.0292340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cleistanthin A (CA), extracted from Phyllanthus taxodiifolius Beille, was previously reported as a potential V-ATPase inhibitor relevant to cancer cell survival. In the present study, ECDD-S16, a derivative of cleistanthin A, was investigated and found to interfere with pyroptosis induction via V-ATPase inhibition. OBJECTIVE This study examined the ability of ECDD-S16 to inhibit endolysosome acidification leading to the attenuation of pyroptosis in Raw264.7 macrophages activated by both surface and endosomal TLR ligands. METHODS To elucidate the activity of ECDD-S16 on pyroptosis-induced inflammation, Raw264.7 cells were pretreated with the compound before stimulation with surface and endosomal TLR ligands. The release of lactate dehydrogenase (LDH) was determined by LDH assay. Additionally, the production of cytokines and the expression of pyroptosis markers were examined by ELISA and immunoblotting. Moreover, molecular docking was performed to demonstrate the binding of ECDD-S16 to the vacuolar (V-)ATPase. RESULTS This study showed that ECDD-S16 could inhibit pyroptosis in Raw264.7 cells activated with surface and endosomal TLR ligands. The attenuation of pyroptosis by ECDD-S16 was due to the impairment of endosome acidification, which also led to decreased Reactive Oxygen Species (ROS) production. Furthermore, molecular docking also showed the possibility of inhibiting endosome acidification by the binding of ECDD-S16 to the vacuolar (V-)ATPase in the region of V0. CONCLUSION Our findings indicate the potential of ECDD-S16 for inhibiting pyroptosis and prove that vacuolar H+ ATPase is essential for pyroptosis induced by TLR ligands.
Collapse
Affiliation(s)
- Peeraya Ekchariyawat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Sucharat Sanongkiet
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | | | | | - Supaporn Mala
- Research Office, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Bumrung Munyoo
- Excellence Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Napason Chabang
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sitthivut Charoensutthivarakul
- Excellence Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellence Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Patoomratana Tuchinda
- Excellence Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matsayapan Pudla
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
16
|
Zhu M, Jin T, Wu D, Zhang S, Wang A. Transcriptomics Analysis Revealed Key Genes Associated with Macrophage Autophagolysosome in Male ApoE -/- Mice Aortic Atherosclerosis. J Inflamm Res 2023; 16:5125-5144. [PMID: 37965353 PMCID: PMC10642550 DOI: 10.2147/jir.s426155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023] Open
Abstract
Purpose Atherosclerosis (AS) is the most common cause of cardiovascular and cerebrovascular diseases. However, the mechanisms underlying atherosclerotic plaque progression remain unclear. This study aimed to investigate the genes associated with the development of atherosclerosis in the aorta of ApoE-/- male mice, which could serve as novel biomarkers and therapeutic targets in interventions to halt plaque progression. Methods Eight-week-old ApoE-/- mice were fed a normal purified laboratory diet or a Western Diet (WD) for 6 or 22 weeks. High-throughput sequencing technology was used to analyze the transcriptomes of the aortas of four groups of mice that were exposed to different dietary conditions. We retrieved and downloaded the human Arteriosclerosis Disease Chip dataset GSE100927 from the Gene Expression Omnibus (GEO) database and selected 29 cases of carotid atherosclerotic lesions and 12 cases of normal carotid tissues as the experimental and control groups, respectively, to further verify our dataset. In addition, we used quantitative reverse transcription polymerase chain reaction (QT-PCR) to verify the expression levels of the core genes in an atherosclerosis mouse model. Results There were 265 differentially expressed genes (DEGs) between the ApoE-/- Male mice AS22W group and Sham22W group. In addition to the well-known activation of inflammation and immune response, t the autophagy-lysosome system is also an important factor that affects the development of atherosclerosis. We identified five core genes (Atp6ap2, Atp6v0b, Atp6v0d2, Atp6v1a, and Atp6v1d) in the protein-protein interaction (PPI) network that were closely related to autophagosomes. Hub genes were highly expressed in the carotid atherosclerosis group in the GSE100927 dataset (P < 0.001). QT-PCR showed that the RNA level of Atp6v0d2 increased significantly during the development of atherosclerotic plaque in ApoE-/- male mice. Conclusion Five core genes which affect the development of aortic atherosclerosis through the autophagy-lysosome system, especially Atp6v0d2, were screened and identified using bioinformatic techniques.
Collapse
Affiliation(s)
- Meirong Zhu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
- Department of Critical Medicine, Jinan Central Hospital, Jinan, People’s Republic of China
| | - Tongyu Jin
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
| | - Ding Wu
- Vascular Surgery, Jinan Central Hospital, Jinan, People’s Republic of China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| | - Aihua Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
17
|
Choi JT, Choi Y, Lee Y, Lee SH, Kang S, Lee KT, Bahn YS. The hybrid RAVE complex plays V-ATPase-dependent and -independent pathobiological roles in Cryptococcus neoformans. PLoS Pathog 2023; 19:e1011721. [PMID: 37812645 PMCID: PMC10586682 DOI: 10.1371/journal.ppat.1011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/19/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
V-ATPase, which comprises 13-14 subunits, is essential for pH homeostasis in all eukaryotes, but its proper function requires a regulator to assemble its subunits. While RAVE (regulator of H+-ATPase of vacuolar and endosomal membranes) and Raboconnectin-3 complexes assemble V-ATPase subunits in Saccharomyces cerevisiae and humans, respectively, the function of the RAVE complex in fungal pathogens remains largely unknown. In this study, we identified two RAVE complex components, Rav1 and Wdr1, in the fungal meningitis pathogen Cryptococcus neoformans, and analyzed their roles. Rav1 and Wdr1 are orthologous to yeast RAVE and human Rabconnectin-3 counterparts, respectively, forming the hybrid RAVE (hRAVE) complex. Deletion of RAV1 caused severe defects in growth, cell cycle control, morphogenesis, sexual development, stress responses, and virulence factor production, while the deletion of WDR1 resulted in similar but modest changes, suggesting that Rav1 and Wdr1 play central and accessary roles, respectively. Proteomics analysis confirmed that Wdr1 was one of the Rav1-interacting proteins. Although the hRAVE complex generally has V-ATPase-dependent functions, it also has some V-ATPase-independent roles, suggesting a unique role beyond conventional intracellular pH regulation in C. neoformans. The hRAVE complex played a critical role in the pathogenicity of C. neoformans, and RAV1 deletion attenuated virulence and impaired blood-brain barrier crossing ability. This study provides comprehensive insights into the pathobiological roles of the fungal RAVE complex and suggests a novel therapeutic strategy for controlling cryptococcosis.
Collapse
Affiliation(s)
- Jin-Tae Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yujin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seung-Heon Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seun Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
18
|
Xu J, Jiang J, Yin C, Wang Y, Shi B. Identification of ATP6V0A4 as a potential biomarker in renal cell carcinoma using integrated bioinformatics analysis. Oncol Lett 2023; 26:366. [PMID: 37559594 PMCID: PMC10407721 DOI: 10.3892/ol.2023.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 08/11/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common pathological type of renal cancer, and is associated with a high mortality rate, which is related to high rates of tumor recurrence and metastasis. The aim of the present study was to identify reliable molecular biomarkers with high specificity and sensitivity for ccRCC. A total of eight ccRCC-related expression profiles were downloaded from Gene Expression Omnibus for integrated bioinformatics analysis to screen for significantly differentially expressed genes (DEGs). Reverse transcription-quantitative (RT-q)PCR, western blotting and immunohistochemistry staining assays were performed to evaluate the expression levels of candidate biomarkers in ccRCC tissues and cell lines. In total, 255 ccRCC specimens and 165 adjacent normal kidney specimens were analyzed, and 344 significant DEGs, consisting of 115 upregulated DEGs and 229 downregulated DEGs, were identified. The results of Gene Ontology analysis suggested a significant enrichment of DEGs in 'organic anion transport' and 'small molecule catabolic process' in biological processes, in 'apical plasma membrane' and 'apical part of the cell' in cell components, and in 'anion transmembrane transporter activity' and 'active transmembrane transporter activity' in molecular functions. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs were significantly enriched in the 'phagosome', the 'PPAR signaling pathway', 'complement and coagulation cascades', the 'HIF-1 signaling pathway' and 'carbon metabolism'. Next, 7 hub genes (SUCNR1, CXCR4, VCAN, CASR, ATP6V0A4, VEGFA and SERPINE1) were identified and validated using The Cancer Genome Atlas database. Survival analysis showed that low expression of ATP6V0A4 was associated with a poor prognosis in patients with ccRCC. Additionally, received operating characteristic curves indicated that ATP6V0A4 could distinguish ccRCC samples from normal kidney samples. Furthermore, RT-qPCR, western blotting and immunohistochemistry staining results showed that ATP6V0A4 was significantly downregulated in ccRCC tissues and cell lines. In conclusion, ATP6V0A4 may be involved in tumor progression and regarded as a potential therapeutic target for the recurrence and metastasis of ccRCC.
Collapse
Affiliation(s)
- Jinming Xu
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jiahao Jiang
- Department of Urology, Shenzhen Second People's Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong 518035, P.R. China
| | - Cong Yin
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Bentao Shi
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
19
|
De-Thier JS, Pyati P, Bell J, Readshaw JJ, Brown AP, Fitches EC. Heterologous production of the insecticidal pea seed albumin PA1 protein by Pichia pastoris and protein engineering to potentiate aphicidal activity via fusion to snowdrop lectin Galanthus nivalis agglutinin; GNA). Microb Cell Fact 2023; 22:157. [PMID: 37592258 PMCID: PMC10436433 DOI: 10.1186/s12934-023-02176-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND New bioinsecticides with novel modes of action are urgently needed to minimise the environmental and safety hazards associated with the use of synthetic chemical pesticides and to combat growing levels of pesticide resistance. The pea seed albumin PA1b knottin peptide is the only known proteinaceous inhibitor of insect vacuolar adenosine triphosphatase (V-ATPase) rotary proton pumps. Oral toxicity towards insect pests and an absence of activity towards mammals makes Pa1b an attractive candidate for development as a bioinsecticide. The purpose of this study was to investigate if Pichia pastoris could be used to express a functional PA1b peptide and if it's insecticidal activity could be enhanced via engineering to produce a fusion protein comprising the pea albumin protein fused to the mannose-specific snowdrop lectin (Galanthus nivalis agglutinin; GNA). RESULTS We report the production of a recombinant full-length pea albumin protein (designated PAF) and a fusion protein (PAF/GNA) comprised of PAF fused to the N-terminus of GNA in the yeast Pichia pastoris. PAF was orally toxic to pea (Acyrthosiphon pisum) and peach potato (Myzus persicae) aphids with respective, Day 5 LC50 values of 54 µM and 105 µM derived from dose-response assays. PAF/GNA was significantly more orally toxic as compared to PAF, with LC50 values tenfold (5 µM) and 3.3-fold (32 µM) lower for pea and peach potato aphids, respectively. By contrast, no phenotypic effects were observed for worker bumble bees (Bombus terristrus) fed PAF, GNA or PAF/GNA in acute toxicity assays. Confocal microscopy of pea aphid guts after pulse-chase feeding fluorescently labelled proteins provides evidence that enhanced efficacy of the fusion protein is attributable to localisation and retention of PAF/GNA to the gut epithelium. In contact assays the fusion protein was also found to be significantly more toxic towards A. pisum as compared to PAF, GNA or a combination of the two proteins. CONCLUSIONS Our results suggest that GNA mediated binding to V-type ATPase pumps acts to potentiate the oral and contact aphicidal activity of PAF. This work highlights potential for the future commercial development of plant protein-based bioinsecticides that offer enhanced target specificity as compared to chemical pesticides, and compatibility with integrated pest management strategies.
Collapse
Affiliation(s)
- Jake S De-Thier
- School of Biosciences, University of Durham, Durham, DH1 3LE, UK
- FUJIFILM Diosynth Biotechnologies Billingham, Billingham, TS23 1LH, UK
| | - Prashant Pyati
- School of Biosciences, University of Durham, Durham, DH1 3LE, UK
- Plant Biotechnology Research Centre, Ajeet Seeds Pvt. Ltd, Aurangabad, 431133, India
| | - Jack Bell
- School of Biosciences, University of Durham, Durham, DH1 3LE, UK
| | | | - Adrian P Brown
- School of Biosciences, University of Durham, Durham, DH1 3LE, UK
| | - Elaine C Fitches
- School of Biosciences, University of Durham, Durham, DH1 3LE, UK.
| |
Collapse
|
20
|
Lovero D, Porcelli D, Giordano L, Lo Giudice C, Picardi E, Pesole G, Pignataro E, Palazzo A, Marsano RM. Structural and Comparative Analyses of Insects Suggest the Presence of an Ultra-Conserved Regulatory Element of the Genes Encoding Vacuolar-Type ATPase Subunits and Assembly Factors. BIOLOGY 2023; 12:1127. [PMID: 37627011 PMCID: PMC10452791 DOI: 10.3390/biology12081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Gene and genome comparison represent an invaluable tool to identify evolutionarily conserved sequences with possible functional significance. In this work, we have analyzed orthologous genes encoding subunits and assembly factors of the V-ATPase complex, an important enzymatic complex of the vacuolar and lysosomal compartments of the eukaryotic cell with storage and recycling functions, respectively, as well as the main pump in the plasma membrane that energizes the epithelial transport in insects. This study involves 70 insect species belonging to eight insect orders. We highlighted the conservation of a short sequence in the genes encoding subunits of the V-ATPase complex and their assembly factors analyzed with respect to their exon-intron organization of those genes. This study offers the possibility to study ultra-conserved regulatory elements under an evolutionary perspective, with the aim of expanding our knowledge on the regulation of complex gene networks at the basis of organellar biogenesis and cellular organization.
Collapse
Affiliation(s)
- Domenica Lovero
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
- MASMEC Biomed S.p.A., Via Delle Violette 14, 70026 Modugno, Italy
| | - Damiano Porcelli
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
- METALABS S.R.L., Corso A. De Gasperi 381/1, 70125 Bari, Italy
| | - Luca Giordano
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany;
| | - Claudio Lo Giudice
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale Delle Ricerche, Via Giovanni Amendola, 122, 70126 Bari, Italy;
| | - Ernesto Picardi
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - Graziano Pesole
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - Eugenia Pignataro
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - Antonio Palazzo
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| | - René Massimiliano Marsano
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Università Degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.L.); (D.P.); (E.P.); (G.P.); (E.P.); (A.P.)
| |
Collapse
|
21
|
Im E, Jiang Y, Stavrides PH, Darji S, Erdjument-Bromage H, Neubert TA, Choi JY, Wegiel J, Lee JH, Nixon RA. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr 682-phosphorylated APP βCTF. SCIENCE ADVANCES 2023; 9:eadg1925. [PMID: 37494443 PMCID: PMC10371027 DOI: 10.1126/sciadv.adg1925] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-βCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-βCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. Elevated APP-βCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.
Collapse
Affiliation(s)
- Eunju Im
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Philip H. Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A. Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
22
|
Shen Q, Pan X, Li Y, Li J, Zhang C, Jiang X, Liu F, Pang B. Lysosomes, curcumin, and anti-tumor effects: how are they linked? Front Pharmacol 2023; 14:1220983. [PMID: 37484013 PMCID: PMC10359997 DOI: 10.3389/fphar.2023.1220983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Curcumin is a natural active ingredient from traditional Chinese medicine (TCM) that has multi-target characteristics to exert extensive pharmacological activities and thus has been applied in the treatment of various diseases such as cancer, cardiovascular diseases, nervous system, and autoimmune disorders. As an important class of membranous organelles in the intracellular membrane system, lysosomes are involved in biological processes such as programmed cell death, cell metabolism, and immune regulation, thus affecting tumor initiation and progression. It has been shown that curcumin can modulate lysosomal function through the aforementioned pathways, thereby affecting tumor proliferation, invasion, metastasis, drug resistance, and immune function. This review briefly elaborated the regulatory mechanisms of lysosome biogenesis and summarized curcumin-related studies with its anti-tumor effect, providing a reference for the clinical application of curcumin and anti-tumor research targeting lysosomes.
Collapse
Affiliation(s)
- Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Pan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Kong Y, Si M, Wang P, Guo H, Liu X, Zhao M. Enantioselectivity effects of energy metabolism in honeybees (Apis mellifera) by triticonazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162884. [PMID: 36933730 DOI: 10.1016/j.scitotenv.2023.162884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
The heavy use of agrochemicals is considered a major factor contributing to the decline in wild honeybee populations. Development of low-toxicity enantiomers of chiral fungicides is the key to reducing the potential threats to honeybees. In this study, we evaluated the enantioselective toxic effects of triticonazole (TRZ) on honeybees and its molecular mechanisms. The results showed that after long-term exposure to TRZ, the content of thoracic ATP decreased significantly, by 41 % in R-TRZ treatments and by 46 % in S-TRZ treatments. Furthermore, the transcriptomic results indicated that S-TRZ and R-TRZ significantly altered the expression of 584 genes and 332 genes, respectively. Pathway analysis indicated that R- and S-TRZ could affect different genes expressed in GO terms and metabolic pathways, especially the transport GO terms (GO: 0006810) and pathways of alanine, aspartate and glutamate metabolism, drug metabolism - cytochrome P450, and pentose phosphate. Additionally, S-TRZ had a more pronounced effect on honeybee energy metabolism, disrupting a greater number of genes involved in the TCA cycle and glycolysis/glycogenesis, exerting a stronger effect on energy metabolic pathways, including nitrogen metabolism, sulfur metabolism, and oxidative phosphorylation. In summary, we recommend reducing the proportion of S-TRZ in racemate to minimize the threat to the survival of honeybees and protect the diversity of economic insects.
Collapse
Affiliation(s)
- Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Min Si
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Ping Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Xinju Liu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
24
|
Yin J, He W, Zhang M, He W, Zhang G, Ni B. https://elsevier.proofcentral.com/en-us/landing-page.html?token=baf280639f2773e07701834b1c13daInhibition of spermatogenesis by hypoxia is mediated by V-ATPase via the JNK/c-Jun pathway in mice. Reprod Biol 2023; 23:100761. [PMID: 37023662 DOI: 10.1016/j.repbio.2023.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Spermatocyte apoptosis is the primary cause of a poor outcome after hypoxia-triggered spermatogenesis reduction (HSR). Vacuolar H+-ATPase (V-ATPase) is involved in the regulation of hypoxia-induced spermatocyte apoptosis; however, the underlying mechanism remains to be elucidated. The aim of this study was to investigate the effect of V-ATPase deficiency on spermatocyte apoptosis and the relationship between c-Jun and apoptosis in primary spermatocytes induced by hypoxia. We found that mice under hypoxia exposure for 30 days demonstrated a marked spermatogenesis reduction and downregulation of V-ATPase expression, which were assessed by a TUNEL assay and western blotting, respectively. V-ATPase deficiency resulted in more severe spermatogenesis reduction and spermatocyte apoptosis after hypoxia exposure. We also observed that silencing V-ATPase expression enhanced JNK/c-Jun activation and death receptor-mediated apoptosis in primary spermatocytes. However, inhibition of c-Jun attenuated V-ATPase deficiency-induced spermatocyte apoptosis in primary spermatocytes. In conclusion, the data in this study suggest that V-ATPase deficiency aggravated hypoxia-induced spermatogenesis reduction by promoting spermatocyte apoptosis in mice via the JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pathophysiology/Key Laboratory of High Altitude Environment Medicine, Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Wenjuan He
- Department of Pathophysiology/Key Laboratory of High Altitude Environment Medicine, Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Mengjie Zhang
- Department of Pathophysiology/Key Laboratory of High Altitude Environment Medicine, Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Wei He
- Chongqing ILinda Biomedical Research Corporation Limited, PR China
| | - Gang Zhang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, PR China.
| | - Bing Ni
- Department of Pathophysiology/Key Laboratory of High Altitude Environment Medicine, Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
25
|
Hessien M, Donia T, Tabll AA, Adly E, Abdelhafez TH, Attia A, Alkafaas SS, Kuna L, Glasnovic M, Cosic V, Smolic R, Smolic M. Mechanistic-Based Classification of Endocytosis-Related Inhibitors: Does It Aid in Assigning Drugs against SARS-CoV-2? Viruses 2023; 15:v15051040. [PMID: 37243127 DOI: 10.3390/v15051040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) canonically utilizes clathrin-mediated endocytosis (CME) and several other endocytic mechanisms to invade airway epithelial cells. Endocytic inhibitors, particularly those targeting CME-related proteins, have been identified as promising antiviral drugs. Currently, these inhibitors are ambiguously classified as chemical, pharmaceutical, or natural inhibitors. However, their varying mechanisms may suggest a more realistic classification system. Herein, we present a new mechanistic-based classification of endocytosis inhibitors, in which they are segregated among four distinct classes including: (i) inhibitors that disrupt endocytosis-related protein-protein interactions, and assembly or dissociation of complexes; (ii) inhibitors of large dynamin GTPase and/or kinase/phosphatase activities associated with endocytosis; (iii) inhibitors that modulate the structure of subcellular components, especially the plasma membrane, and actin; and (iv) inhibitors that cause physiological or metabolic alterations in the endocytosis niche. Excluding antiviral drugs designed to halt SARS-CoV-2 replication, other drugs, either FDA-approved or suggested through basic research, could be systematically assigned to one of these classes. We observed that many anti-SARS-CoV-2 drugs could be included either in class III or IV as they interfere with the structural or physiological integrity of subcellular components, respectively. This perspective may contribute to our understanding of the relative efficacy of endocytosis-related inhibitors and support the optimization of their individual or combined antiviral potential against SARS-CoV-2. However, their selectivity, combined effects, and possible interactions with non-endocytic cellular targets need more clarification.
Collapse
Affiliation(s)
- Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Thoria Donia
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf A Tabll
- National Research Centre, Microbial Biotechnology Department, Biotechnology Research Institute, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Eiman Adly
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tawfeek H Abdelhafez
- National Research Centre, Microbial Biotechnology Department, Biotechnology Research Institute, Giza 12622, Egypt
| | - Amany Attia
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Lucija Kuna
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Marija Glasnovic
- Department of Medicine, Family Medicine and History of Medicine, Faculty of Medicine Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Vesna Cosic
- Department of Paediatrics and Gynaecology with Obstetrics, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Robert Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
26
|
Khine MN, Sakurai K. Golgi-Targeting Anticancer Natural Products. Cancers (Basel) 2023; 15:cancers15072086. [PMID: 37046746 PMCID: PMC10093635 DOI: 10.3390/cancers15072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023] Open
Abstract
The Golgi apparatus plays an important role in maintaining cell homeostasis by serving as a biosynthetic center for glycans, lipids and post-translationally modified proteins and as a sorting center for vesicular transport of proteins to specific destinations. Moreover, it provides a signaling hub that facilitates not only membrane trafficking processes but also cellular response pathways to various types of stresses. Altered signaling at the Golgi apparatus has emerged as a key regulator of tumor growth and survival. Among the small molecules that can specifically perturb or modulate Golgi proteins and organization, natural products with anticancer property have been identified as powerful chemical probes in deciphering Golgi-related pathways and, in particular, recently described Golgi stress response pathways. In this review, we highlight a set of Golgi-targeting natural products that enabled the characterization of the Golgi-mediated signaling events leading to cancer cell death and discuss the potential for selectively exploiting these pathways for the development of novel chemotherapeutic agents.
Collapse
|
27
|
Distribution and Expression of Pulmonary Ionocyte-Related Factors CFTR, ATP6V0D2, and ATP6V1C2 in the Lungs of Yaks at Different Ages. Genes (Basel) 2023; 14:genes14030597. [PMID: 36980869 PMCID: PMC10048051 DOI: 10.3390/genes14030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
In order to reveal the distribution and expression characteristics of the pulmonary ionocyte-related factors CFTR, ATP6V0D2, and ATP6V1C2 in the lungs of yaks of different ages. Explore the possible regulation of these pulmonary ionocyte-related factors in the yak lung for adaptation to high-altitude hypoxia. The localization and expression of CTFR, ATP6V0D2, and ATP6V1C2 in the lungs of newborn, juvenile, adult, and elderly yaks were studied using immunohistochemistry, quantitative reverse transcription PCR, and Western blotting. Immunohistochemistry showed that CFTR, ATP6V0D2 and ATP6V1C2 were mainly localized in the ciliated cells and club cells of the epithelial mucosal layer of the bronchus and its branches in the lungs. For the qRT-PCR, expression of CFTR, ATP6V0D2 and ATP6V1C2 in the yak lungs varied according to age. For Western blotting, CFTR expression in the newborn group was significantly higher than in the other three groups. ATP6V0D2 expression of the adult group was significantly higher. ATP6V1C2 expression was the highest in the juvenile group (p < 0.05). This study showed that ciliated cells and club cells were related to the pulmonary ionocytes in yaks. CFTR, ATP6V0D2, and ATP6V1C2 were related to adaptations of yak lungs to high altitude hypoxia, through prevention of airway damage.
Collapse
|
28
|
The Lipid Raft-Associated Protein Stomatin Is Required for Accumulation of Dectin-1 in the Phagosomal Membrane and for Full Activity of Macrophages against Aspergillus fumigatus. mSphere 2023; 8:e0052322. [PMID: 36719247 PMCID: PMC9942578 DOI: 10.1128/msphere.00523-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alveolar macrophages belong to the first line of defense against inhaled conidia of the human-pathogenic fungus Aspergillus fumigatus. In lung alveoli, they contribute to phagocytosis and elimination of conidia. As a counterdefense, conidia have a gray-green pigment that enables them to survive in phagosomes of macrophages for some time. Previously, we showed that this conidial pigment interferes with the formation of flotillin-dependent lipid raft microdomains in the phagosomal membrane, thereby preventing the formation of functional phagolysosomes. Besides flotillins, stomatin is a major component of lipid rafts and can be targeted to the membrane. However, only limited information on stomatin is available, in particular on its role in defense against pathogens. To determine the function of this integral membrane protein, a stomatin-deficient macrophage line was generated by CRISPR/Cas9 gene editing. Immunofluorescence microscopy and flow cytometry revealed that stomatin contributes to the phagocytosis of conidia and is important for recruitment of the β-glucan receptor dectin-1 to both the cytoplasmic membrane and phagosomal membrane. In stomatin knockout cells, fusion of phagosomes and lysosomes, recruitment of the vATPase to phagosomes, and tumor necrosis factor alpha (TNF-α) levels were reduced when cells were infected with pigmentless conidia. Thus, our data suggest that stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. IMPORTANCE Stomatin is an integral membrane protein that contributes to the uptake of microbes, e.g., spores of the human-pathogenic fungus Aspergillus fumigatus. By generation of a stomatin-deficient macrophage line by advanced genetic engineering, we found that stomatin is involved in the recruitment of the β-glucan receptor dectin-1 to the phagosomal membrane of macrophages. Furthermore, stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. The data provide new insights on the important role of stomatin in the immune response against human-pathogenic fungi.
Collapse
|
29
|
Yang M, Ismayil A, Jiang Z, Wang Y, Zheng X, Yan L, Hong Y, Li D, Liu Y. A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO J 2022; 41:e108713. [PMID: 34888888 PMCID: PMC8762549 DOI: 10.15252/embj.2021108713] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/19/2023] Open
Abstract
Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Asigul Ismayil
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan Wang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Xiyin Zheng
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Liming Yan
- MOE Key Laboratory of Protein ScienceSchool of MedicineTsinghua UniversityBeijingChina
| | - Yiguo Hong
- Research Centre for Plant RNA SignalingCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Dawei Li
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yule Liu
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| |
Collapse
|
30
|
Mustaly-Kalimi S, Gallegos W, Marr RA, Gilman-Sachs A, Peterson DA, Sekler I, Stutzmann GE. Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer's disease. Proc Natl Acad Sci U S A 2022; 119:e2211999119. [PMID: 36442130 PMCID: PMC9894236 DOI: 10.1073/pnas.2211999119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Impairments in neural lysosomal- and autophagic-mediated degradation of cellular debris contribute to neuritic dystrophy and synaptic loss. While these are well-characterized features of neurodegenerative disorders such as Alzheimer's disease (AD), the upstream cellular processes driving deficits in pathogenic protein mishandling are less understood. Using a series of fluorescent biosensors and optical imaging in model cells, AD mouse models and human neurons derived from AD patients, we reveal a previously undescribed cellular signaling cascade underlying protein mishandling mediated by intracellular calcium dysregulation, an early component of AD pathogenesis. Increased Ca2+ release via the endoplasmic reticulum (ER)-resident ryanodine receptor (RyR) is associated with reduced expression of the lysosome proton pump vacuolar-ATPase (vATPase) subunits (V1B2 and V0a1), resulting in lysosome deacidification and disrupted proteolytic activity in AD mouse models and human-induced neurons (HiN). As a result of impaired lysosome digestive capacity, mature autophagosomes with hyperphosphorylated tau accumulated in AD murine neurons and AD HiN, exacerbating proteinopathy. Normalizing AD-associated aberrant RyR-Ca2+ signaling with the negative allosteric modulator, dantrolene (Ryanodex), restored vATPase levels, lysosomal acidification and proteolytic activity, and autophagic clearance of intracellular protein aggregates in AD neurons. These results highlight that prior to overt AD histopathology or cognitive deficits, aberrant upstream Ca2+ signaling disrupts lysosomal acidification and contributes to pathological accumulation of intracellular protein aggregates. Importantly, this is demonstrated in animal models of AD, and in human iPSC-derived neurons from AD patients. Furthermore, pharmacological suppression of RyR-Ca2+ release rescued proteolytic function, revealing a target for therapeutic intervention that has demonstrated effects in clinically-relevant assays.
Collapse
Affiliation(s)
- Sarah Mustaly-Kalimi
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Wacey Gallegos
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Robert A. Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Alice Gilman-Sachs
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, Immunology, and Infection, North Chicago, IL60064
| | - Daniel A. Peterson
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| |
Collapse
|
31
|
Li W, Luo L, Gu L, Li H, Zhang Q, Ye Y, Li L. Vacuolar H + -ATPase subunit VAB3 regulates cell growth and ion homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:664-676. [PMID: 36069460 DOI: 10.1111/tpj.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Vacuolar H+ -ATPase (V-ATPase) has diverse functions related to plant development and growth. It creates the turgor pressure that drives cell growth by generating the energy needed for the active transport of solutes across the tonoplast. V-ATPase is a large protein complex made up of multiheteromeric subunits, some of which have unknown functions. In this study, a forward genetics-based strategy was employed to identify the vab3 mutant, which displayed resistance to isoxaben, a cellulose synthase inhibitor that could induce excessive transverse cell expansion. Map-based cloning and genetic complementary assays demonstrated that V-ATPase B subunit 3 (VAB3) is associated with the observed insensitivity of the mutant to isoxaben. Analysis of the vab3 mutant revealed defective ionic homeostasis and hypersensitivity to salt stress. Treatment with a V-ATPase inhibitor exacerbated ionic tolerance and cell elongation defects in the vab3 mutant. Notably, exogenous low-dose Ca2+ or Na+ could partially restore isoxaben resistance of the vab3 mutant, suggesting a relationship between VAB3-regulated cell growth and ion homeostasis. Taken together, the results of this study suggest that the V-ATPase subunit VAB3 is required for cell growth and ion homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Laifu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lili Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haimin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajin Ye
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
32
|
Sun-Wada GH, Wada Y. Exploring the Link between Vacuolar-Type Proton ATPase and Epithelial Cell Polarity. Biol Pharm Bull 2022; 45:1419-1425. [PMID: 36184498 DOI: 10.1248/bpb.b22-00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vacuolar-type H+-ATPase (V-ATPase) was first identified as an electrogenic proton pump that acidifies the lumen of intracellular organelles. Subsequently, it was observed that the proton pump also participates in the acidification of extracellular compartments. V-ATPase plays important roles in a wide range of cell biological processes and physiological functions by generating an acidic pH; therefore, it has attracted much attention not only in basic research but also in pathological and clinical aspects. Emerging evidence indicates that the luminal acidic endocytic organelles and their trafficking may function as important hubs that connect and coordinate various signaling pathways. Various pharmacological analyses have suggested that acidic endocytic organelles are important for the maintenance of cell polarity. Recently, several studies using genetic approaches have revealed the involvement of V-ATPase in the establishment and maintenance of apico-basal polarity. This review provides a brief overview of the relationship between the polarity of epithelial cells and V-ATPase as well as V-ATPase driven luminal acidification.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
33
|
Su K, Collins MP, McGuire CM, Alshagawi MA, Alamoudi MK, Li Z, Forgac M. Isoform a4 of the vacuolar ATPase a subunit promotes 4T1-12B breast cancer cell-dependent tumor growth and metastasis in vivo. J Biol Chem 2022; 298:102395. [PMID: 35988642 PMCID: PMC9508560 DOI: 10.1016/j.jbc.2022.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that governs the pH of various intracellular compartments and also functions at the plasma membrane in certain cell types, including cancer cells. Membrane targeting of the V-ATPase is controlled by isoforms of subunit a, and we have previously shown that isoforms a3 and a4 are important for the migration and invasion of several breast cancer cell lines in vitro. Using CRISPR-mediated genome editing to selectively disrupt each of the four a subunit isoforms, we also recently showed that a4 is critical to plasma membrane V-ATPase localization, as well as in vitro migration and invasion of 4T1-12B murine breast cancer cells. We now report that a4 is important for the growth of 4T1-12B tumors in vivo. We found that BALB/c mice bearing a4-/- 4T1-12B allografts had significantly smaller tumors than mice in the control group. In addition, we determined that a4-/- allografts showed dramatically reduced metastases to the lung and reduced luminescence intensity of metastases to bone relative to the control group. Taken together, these results suggest that the a4 isoform of the V-ATPase represents a novel potential therapeutic target to limit breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Kevin Su
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Michael P Collins
- Department of Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Christina M McGuire
- Department of Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Mohammed A Alshagawi
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Mariam K Alamoudi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Zhen Li
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Michael Forgac
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA; Department of Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA; Department of Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA; Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
34
|
Zapata RC, Carretero M, Reis FCG, Chaudry BS, Ofrecio J, Zhang D, Sasik R, Ciaraldi T, Petrascheck M, Osborn O. Adipocytes control food intake and weight regain via Vacuolar-type H + ATPase. Nat Commun 2022; 13:5092. [PMID: 36042358 PMCID: PMC9427743 DOI: 10.1038/s41467-022-32764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Energy metabolism becomes dysregulated in individuals with obesity and many of these changes persist after weight loss and likely play a role in weight regain. In these studies, we use a mouse model of diet-induced obesity and weight loss to study the transcriptional memory of obesity. We found that the 'metabolic memory' of obesity is predominantly localized in adipocytes. Utilizing a C. elegans-based food intake assay, we identify 'metabolic memory' genes that play a role in food intake regulation. We show that expression of ATP6v0a1, a subunit of V-ATPase, is significantly induced in both obese mouse and human adipocytes that persists after weight loss. C. elegans mutants deficient in Atp6v0A1/unc32 eat less than WT controls. Adipocyte-specific Atp6v0a1 knockout mice have reduced food intake and gain less weight in response to HFD. Pharmacological disruption of V-ATPase assembly leads to decreased food intake and less weight re-gain. In summary, using a series of genetic tools from invertebrates to vertebrates, we identify ATP6v0a1 as a regulator of peripheral metabolic memory, providing a potential target for regulation of food intake, weight loss maintenance and the treatment of obesity.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria Carretero
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Felipe Castellani Gomes Reis
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Besma S Chaudry
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jachelle Ofrecio
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Roman Sasik
- Center for Computational Biology & Bioinformatics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Theodore Ciaraldi
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, La Jolla, CA, 92037, USA
| | - Michael Petrascheck
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Wang F, Yang Y, Boudagh G, Eskelinen EL, Klionsky DJ, Malek SN. Follicular lymphoma-associated mutations in the V-ATPase chaperone VMA21 activate autophagy creating a targetable dependency. Autophagy 2022; 18:1982-2000. [PMID: 35287545 PMCID: PMC9450968 DOI: 10.1080/15548627.2022.2050663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/02/2022] Open
Abstract
The discovery of recurrent mutations in subunits and regulators of the vacuolar-type H+-translocating ATPase (V-ATPase) in follicular lymphoma (FL) highlights a role for macroautophagy/autophagy, amino-acid, and nutrient-sensing pathways in the pathogenesis of this disease. Here, we report on novel mutations in the ER-resident chaperone VMA21, which is involved in V-ATPase assembly in 12% of FL. Mutations in a novel VMA21 hotspot (p.93X) result in the removal of a C-terminal non-canonical ER retrieval signal thus causing VMA21 mislocalization to lysosomes. The resulting impairment in V-ATPase activity prevents full lysosomal acidification and function, including impaired pH-dependent protein degradation as shown via lysosomal metabolomics and ultimately causes a degree of amino acid depletion in the cytoplasm. These deficiencies result in compensatory autophagy activation, as measured using multiple complementary assays in human and yeast cells. Of translational significance, the compensatory activation of autophagy creates a dependency for survival for VMA21-mutated primary human FL as shown using inhibitors to ULK1, the proximal autophagy-regulating kinase. Using high-throughput microscopy-based screening assays for autophagy-inhibiting compounds, we identify multiple clinical grade cyclin-dependent kinase inhibitors as promising drugs and thus provide new rationale for innovative clinical trials in FL harboring aberrant V-ATPase.Abbreviations: ALs: autolysosomes; APs: autophagosomes; ER: endoplasmic reticulum; FL: follicular lymphoma; GFP: green fluorescent protein; IP: immunoprecipitation; LE/LY: late endosomes/lysosomes; Lyso-IP: lysosomal immunoprecipitation; OST: oligosaccharide transferase; prApe1: precursor aminopeptidase I; SEP: super ecliptic pHluorin; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Fangyang Wang
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Yang
- Departments of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel Boudagh
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Daniel J. Klionsky
- Departments of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sami N. Malek
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Bar-Oz M, Meir M, Barkan D. Virulence-Associated Secretion in Mycobacterium abscessus. Front Immunol 2022; 13:938895. [PMID: 35880173 PMCID: PMC9308005 DOI: 10.3389/fimmu.2022.938895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are a heterogeneous group of originally environmental organi3sms, increasingly recognized as pathogens with rising prevalence worldwide. Knowledge of NTM’s mechanisms of virulence is lacking, as molecular research of these bacteria is challenging, sometimes more than that of M. tuberculosis (Mtb), and far less resources are allocated to their investigation. While some of the virulence mechanisms are common to several mycobacteria including Mtb, others NTM species-specific. Among NTMs, Mycobacterium abscessus (Mabs) causes some of the most severe and difficult to treat infections, especially chronic pulmonary infections. Mabs survives and proliferates intracellularly by circumventing host defenses, using multiple mechanisms, many of which remain poorly characterized. Some of these immune-evasion mechanisms are also found in Mtb, including phagosome pore formation, inhibition of phagosome maturation, cytokine response interference and apoptosis delay. While much is known of the role of Mtb-secreted effector molecules in mediating the manipulation of the host response, far less is known of the secreted effector molecules in Mabs. In this review, we briefly summarize the knowledge of secreted effectors in Mtb (such as ESX secretion, SecA2, TAT and others), and draw the parallel pathways in Mabs. We also describe pathways that are unique to Mabs, differentiating it from Mtb. This review will assist researchers interested in virulence-associated secretion in Mabs by providing the knowledge base and framework for their studies.
Collapse
Affiliation(s)
- Michal Bar-Oz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michal Meir
- The Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa, Israel
| | - Daniel Barkan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Daniel Barkan,
| |
Collapse
|
37
|
Endosomal v-ATPase as a Sensor Determining Myocardial Substrate Preference. Metabolites 2022; 12:metabo12070579. [PMID: 35888703 PMCID: PMC9316095 DOI: 10.3390/metabo12070579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The heart is a metabolically flexible omnivore that can utilize a variety of substrates for energy provision. To fulfill cardiac energy requirements, the healthy adult heart mainly uses long-chain fatty acids and glucose in a balanced manner, but when exposed to physiological or pathological stimuli, it can switch its substrate preference to alternative substrates such as amino acids (AAs) and ketone bodies. Using the failing heart as an example, upon stress, the fatty acid/glucose substrate balance is upset, resulting in an over-reliance on either fatty acids or glucose. A chronic fuel shift towards a single type of substrate is linked with cardiac dysfunction. Re-balancing myocardial substrate preference is suggested as an effective strategy to rescue the failing heart. In the last decade, we revealed that vacuolar-type H+-ATPase (v-ATPase) functions as a key regulator of myocardial substrate preference and, therefore, as a novel potential treatment approach for the failing heart. Fatty acids, glucose, and AAs selectively influence the assembly state of v-ATPase resulting in modulation of its proton-pumping activity. In this review, we summarize these novel insights on v-ATPase as an integrator of nutritional information. We also describe its exploitation as a therapeutic target with focus on supplementation of AA as a nutraceutical approach to fight lipid-induced insulin resistance and contractile dysfunction of the heart.
Collapse
|
38
|
Efferocytosis requires periphagosomal Ca 2+-signaling and TRPM7-mediated electrical activity. Nat Commun 2022; 13:3230. [PMID: 35680919 PMCID: PMC9184625 DOI: 10.1038/s41467-022-30959-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient clearance of apoptotic cells by phagocytosis, also known as efferocytosis, is fundamental to developmental biology, organ physiology, and immunology. Macrophages use multiple mechanisms to detect and engulf apoptotic cells, but the signaling pathways that regulate the digestion of the apoptotic cell cargo, such as the dynamic Ca2+ signals, are poorly understood. Using an siRNA screen, we identify TRPM7 as a Ca2+-conducting ion channel essential for phagosome maturation during efferocytosis. Trpm7-targeted macrophages fail to fully acidify or digest their phagosomal cargo in the absence of TRPM7. Through perforated patch electrophysiology, we demonstrate that TRPM7 mediates a pH-activated cationic current necessary to sustain phagosomal acidification. Using mice expressing a genetically-encoded Ca2+ sensor, we observe that phagosome maturation requires peri-phagosomal Ca2+-signals dependent on TRPM7. Overall, we reveal TRPM7 as a central regulator of phagosome maturation during macrophage efferocytosis. Efficient removal of apoptotic cells by phagocytosis underlies tissue development, wound repair, host defense and organ homeostasis. Here, authors identify TRPM7 as a regulator of cargo acidification and Ca2+ signaling during apoptotic cell clearance.
Collapse
|
39
|
Cai R, Li Y, Zhu L, Wei C, Bao X, Zhao Y. 2, 4, 5-Trideoxyhexopyranosides derivatives of diphyllin: Synthesis and anticancer activity. Chem Biol Drug Des 2022; 100:256-266. [PMID: 35614538 DOI: 10.1111/cbdd.14095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
Diphyllin and its natural derivatives were identified as potent vacuolar H+ -ATPase (V-ATPase) inhibitors. In this study, twelve 2, 4, 5-trideoxyhexopyranosides derivatives of diphyllin were synthesized. Most of these compounds showed potent abilities to inhibit the growth of HT-29, MCF-7, HepG2 cancer cells with IC50 values at submicromolar concentration. The compounds 5c3 and 5c4 showed the best inhibitory activity on breast cancer cell lines MCF-7 with IC50 values of 0.09 and 0.10 μM. Compounds 5c3 and 5c4 showed similar V-ATPase inhibitory potency to diphyllin. Molecular docking showed that a hydrogen bond was found between the hydroxyl of 5c3 and SerA534 in the pocket of the V-ATPase receptor.
Collapse
Affiliation(s)
- Rui Cai
- Department of Pharmacy, Changzhou maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yu Li
- School of Pharmacy, Nantong University, Nantong, China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong, China
| | - Caiyan Wei
- School of Pharmacy, Nantong University, Nantong, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
40
|
Proteomic profiling of exosomes in a mouse model of Candida albicans endophthalmitis. Exp Cell Res 2022; 417:113222. [PMID: 35618014 DOI: 10.1016/j.yexcr.2022.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
Exosomes play pivotal roles in intercellular communication, and pathophysiological functions. In this study, we aimed to understand the role of exosomal proteome derived from C. albicans infected mice (C57BL/6) eyeball. Exosomes were characterized by Dynamic Light Scattering and western blot, quantified and subjected to LC-MS/MS and cytokine quantification by ELISA. The average size of exosomes was 170-200 nm with number of exosomes amounted to 1.42 × 1010 in infected set compared to control (1.24 × 109). Western blot was positive for CD9, CD63 and CD81 confirming the presence of exosomes. IL-6, IL1β, TNF-α, and IFN-γ levels were significantly elevated in infected eye at 72 h.p.i. Proteomic analysis identified 42 differentially expressed proteins, of these 37 were upregulated and 5 were downregulated. Gene Ontology (GO) revealed enrichment of cell adhesion, cytoskeleton organization, and cellular response proteins such as aquaporin-5, gasdermin-A, CD5 antigen-like, Catenin, V-ATPase, and vesicle associated protein. Additionally, KEGG pathway analysis indicated the association of metabolic and carbon signalling pathways with exosomes from C. albicans infected eye. The protein cargo in exosomes released during endophthalmitis with C. albicans seems to play a unique role in the pathogenesis of the disease and further validations with larger cohort of patients is required to confirm them as biomarkers. .
Collapse
|
41
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
42
|
Suda M, Shimizu I, Katsuumi G, Hsiao CL, Yoshida Y, Matsumoto N, Yoshida Y, Katayama A, Wada J, Seki M, Suzuki Y, Okuda S, Ozaki K, Nakanishi-Matsui M, Minamino T. Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Sci Rep 2022; 12:6522. [PMID: 35444208 PMCID: PMC9021310 DOI: 10.1038/s41598-022-10522-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/30/2022] [Indexed: 12/31/2022] Open
Abstract
Accumulation of senescent cells in various tissues has been reported to have a pathological role in age-associated diseases. Elimination of senescent cells (senolysis) was recently reported to reversibly improve pathological aging phenotypes without increasing rates of cancer. We previously identified glycoprotein nonmetastatic melanoma protein B (GPNMB) as a seno-antigen specifically expressed by senescent human vascular endothelial cells and demonstrated that vaccination against Gpnmb eliminated Gpnmb-positive senescent cells, leading to an improvement of age-associated pathologies in mice. The aim of this study was to elucidate whether GPNMB plays a role in senescent cells. We examined the potential role of GPNMB in senescent cells by testing the effects of GPNMB depletion and overexpression in vitro and in vivo. Depletion of GPNMB from human vascular endothelial cells shortened their replicative lifespan and increased the expression of negative cell cycle regulators. Conversely, GPNMB overexpression protected these cells against stress-induced premature senescence. Depletion of Gpnmb led to impairment of vascular function and enhanced atherogenesis in mice, whereas overexpression attenuated dietary vascular dysfunction and atherogenesis. GPNMB was upregulated by lysosomal stress associated with cellular senescence and was a crucial protective factor in maintaining lysosomal integrity. GPNMB is a seno-antigen that acts as a survival factor in senescent cells, suggesting that targeting seno-antigens such as GPNMB may be a novel strategy for senolytic treatments.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Chieh Lun Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Advanced Senotherapeautics, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kazuyuki Ozaki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Mayumi Nakanishi-Matsui
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
43
|
Chen H, Zhang Y, Li X, Zhang W, He H, Du B, Li T, Tang H, Liu Y, Li L, Shi M. Transcriptome Changes and Potential Immunotoxicity Analysis in RAW264.7 Macrophages Caused by Bisphenol F. Front Pharmacol 2022; 13:846562. [PMID: 35387338 PMCID: PMC8978606 DOI: 10.3389/fphar.2022.846562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
As a viable substitute for bisphenol A (BPA), BPF has been widely used in the plastic industry and daily consumer goods, resulting in its detection in humans at a comparable concentration. Evidence reveals that BPF and BPA may have similar toxic effects due to their similar structures. However, there is less information about BPF and its latent implications on the immune system, which is associated with many disorders. In this study, the in vitro toxicity of BPF on RAW264.7 macrophages was explored. The cells were treated with different concentrations of BPF (5, 10, 20, 50, 100, and 200 μM), the cell viability and apoptosis were detected, the gene expression profile was analyzed by whole-transcriptome sequencing, and the mRNA levels were detected by qRT-PCR. The results showed a high concentration of BPF could significantly reduce the survival rate of RAW264.7 macrophages. Although the medium concentration (20–50 μM) of BPF seemed to have no impact on the cell activity of macrophages, it caused the occurrence of apoptosis. The results of differential transcription showed that compared with the control group, 121 genes were upregulated and 82 genes were downregulated in the BPF group. The significantly changed gene functions were mainly concentrated in cell cycle, phagosome, lysosome, and antigen processing and presentation. These findings provide valuable information for correctly understanding the immunotoxicity risk of BPF and may help to improve the hazard identification of bisphenol compounds.
Collapse
Affiliation(s)
- Huiling Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanchao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Wei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Dongguan Liaobu Hospital, Dongguan, China
| |
Collapse
|
44
|
Vanmechelen B, Stroobants J, Chiu W, Schepers J, Marchand A, Chaltin P, Vermeire K, Maes P. Identification of novel Ebola virus inhibitors using biologically contained virus. Antiviral Res 2022; 200:105294. [PMID: 35337896 DOI: 10.1016/j.antiviral.2022.105294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
Despite recent advancements in the development of vaccines and monoclonal antibody therapies for Ebola virus disease, treatment options remain limited. Moreover, management and containment of Ebola virus outbreaks is often hindered by the remote nature of the locations in which the outbreaks originate. Small-molecule compounds offer the advantage of being relatively cheap and easy to produce, transport and store, making them an interesting modality for the development of novel therapeutics against Ebola virus disease. Furthermore, the repurposing of small-molecule compounds, previously developed for alternative applications, can aid in reducing the time needed to bring potential therapeutics from bench to bedside. For this purpose, the Medicines for Malaria Venture provides collections of previously developed small-molecule compounds for screening against other infectious diseases. In this study, we used biologically contained Ebola virus to screen over 4,200 small-molecule drugs and drug-like compounds provided by the Medicines for Malaria Venture (i.e., the Pandemic Response Box and the COVID Box) and the Centre for Drug Design and Discovery (CD3, KU Leuven, Belgium). In addition to confirming known Ebola virus inhibitors, illustrating the validity of our screening assays, we identified eight novel selective Ebola virus inhibitors. Although the inhibitory potential of these compounds remains to be validated in vivo, they represent interesting compounds for the study of potential interventions against Ebola virus disease and might serve as a basis for the development of new therapeutics.
Collapse
Affiliation(s)
- Bert Vanmechelen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Joren Stroobants
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Joost Schepers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3000, Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3000, Leuven, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.
| |
Collapse
|
45
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
46
|
Zhang W, Bai J, Hang K, Xu J, Zhou C, Li L, Wang Z, Wang Y, Wang K, Xue D. Role of Lysosomal Acidification Dysfunction in Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2022; 10:817877. [PMID: 35198560 PMCID: PMC8858834 DOI: 10.3389/fcell.2022.817877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been widely used as a potential treatment for a variety of diseases. However, the contradiction between the low survival rate of transplanted cells and the beneficial therapeutic effects has affected its clinical use. Lysosomes as organelles at the center of cellular recycling and metabolic signaling, play essential roles in MSC homeostasis. In the first part of this review, we summarize the role of lysosomal acidification dysfunction in MSC senescence. In the second part, we summarize some of the potential strategies targeting lysosomal proteins to enhance the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwu Bai
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengwei Zhou
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Li
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Deting Xue,
| |
Collapse
|
47
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
48
|
Genome-wide analysis of V-ATPase genes in Plutella xylostella (L.) and the potential role of PxVHA-G1 in resistance to Bacillus thuringiensis Cry1Ac toxin. Int J Biol Macromol 2022; 194:74-83. [PMID: 34861270 DOI: 10.1016/j.ijbiomac.2021.11.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
The rapid development of insecticide resistance has hampered the use of Bacillus thuringiensis (Bt), a widely used bio-pesticide. Plutella xylostella (L.) is a globally distributed lepidopteran pest of cruciferous vegetables and has developed severe field resistance to the Bt toxin. Vacuolar H+-ATPases (VHA) are multi-subunit complexes and participate in multiple physiological processes. However, the characterization and functional studies of VHA genes are lacking in insects. This study performed a genome-wide analysis and identified 35 VHA gene family members divided into 15 subfamilies in P. xylostella. We cloned a V-ATPase subunit G gene, PxVHA-G1, in our previous midgut transcriptome profiles. Quantitative reverse transcriptase-polymerase chain reaction results showed that PxVHA-G1 was upregulated in the Cry1S1000-resistant strain than in the G88-susceptible strain, and its expression profile revealed that the midgut, Malpighian tubules, and larva stages generally showed high expression levels. RNAi-mediated knockdown of the PxVHA-G1 gene increased the susceptibility of P. xylostella (G88 and Cry1S1000) to Cry1Ac toxin. Our study is the first to explore the role of PxVHA-G1 on regulating Cry1Ac toxicity in P. xylostella, thus, providing new insights into the role of VHAs in the development of Cry1Ac resistance and sustainable development of pest management.
Collapse
|
49
|
Ion Channels and Pumps in Autophagy: A Reciprocal Relationship. Cells 2021; 10:cells10123537. [PMID: 34944044 PMCID: PMC8700256 DOI: 10.3390/cells10123537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy, the process of cellular self-degradation, is intrinsically tied to the degradative function of the lysosome. Several diseases have been linked to lysosomal degradative defects, including rare lysosomal storage disorders and neurodegenerative diseases. Ion channels and pumps play a major regulatory role in autophagy. Importantly, calcium signaling produced by TRPML1 (transient receptor potential cation channel, mucolipin subfamily) has been shown to regulate autophagic progression through biogenesis of autophagic-lysosomal organelles, activation of mTORC1 (mechanistic target of rapamycin complex 1) and degradation of autophagic cargo. ER calcium channels such as IP3Rs supply calcium for the lysosome, and lysosomal function is severely disrupted in the absence of lysosomal calcium replenishment by the ER. TRPML1 function is also regulated by LC3 (microtubule-associated protein light chain 3) and mTORC1, two critical components of the autophagic network. Here we provide an overview of the current knowledge about ion channels and pumps-including lysosomal V-ATPase (vacuolar proton-ATPase), which is required for acidification and hence proper enzymatic activity of lysosomal hydrolases-in the regulation of autophagy, and discuss how functional impairment of some of these leads to diseases.
Collapse
|
50
|
Yue Z, Niu X, Yuan Z, Qin Q, Jiang W, He L, Gao J, Ding Y, Liu Y, Xu Z, Li Z, Yang Z, Li R, Xue X, Gao Y, Yue F, Zhang XHF, Hu G, Wang Y, Li Y, Chen G, Siwko S, Gartland A, Wang N, Xiao J, Liu M, Luo J. RSPO2/RANKL-LGR4 signaling regulates osteoclastic pre-metastatic niche formation and bone metastasis. J Clin Invest 2021; 132:144579. [PMID: 34847079 PMCID: PMC8759794 DOI: 10.1172/jci144579] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Therapeutics targeting osteoclasts are commonly used treatments for bone metastasis; however, whether and how osteoclasts regulate pre-metastatic niche and bone tropism is largely unknown. In this study, we report that osteoclast precursors (OPs) can function as a pre-metastatic niche component that facilitates breast cancer (BCa) bone metastasis at early stages. At the molecular level, unbiased GPCR ligand/agonist screening in BCa cells suggested that R-spondin 2 (RSPO2) and RANKL, through interacting with their receptor LGR4, promoted osteoclastic pre-metastatic niche formation and enhanced BCa bone metastasis. This was achieved by RSPO2/RANKL-LGR4 signal modulating WNT inhibitor DKK1 through Gαq and β-catenin signaling. DKK1 directly facilitated OP recruitment through suppressing its receptor low-density lipoprotein-related receptors 5 (LRP5) but not LRP6, upregulating Rnasek expression via inhibiting canonical WNT signaling. In clinical samples, RSPO2, LGR4 and DKK1 expression showed positive correlation with BCa bone metastasis. Furthermore, soluble LGR4 extracellular domain (ECD) protein, acting as a decoy receptor for RSPO2 and RANKL, significantly alleviated bone metastasis and osteolytic lesions in mouse bone metastasis model. These findings provide unique insights into the functional role of OPs as key components of pre-metastatic niche for BCa bone metastasis, indicate RSPO2/RANKL-LGR4 signaling as a promising target for inhibiting BCa bone metastasis.
Collapse
Affiliation(s)
- Zhiying Yue
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Niu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zengjin Yuan
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qin Qin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Jingduo Gao
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Ding
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanxi Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ziwei Xu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenxi Li
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhengfeng Yang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rong Li
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiwen Xue
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yankun Gao
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Geng Chen
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States of America
| | - Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|