1
|
Shoff TA, Van Orman B, Onwudiwe VC, Genereux JC, Julian RR. Unusually Rapid Isomerization of Aspartic Acid in Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626870. [PMID: 39677806 PMCID: PMC11643016 DOI: 10.1101/2024.12.04.626870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins. To remedy this deficiency, we used protein extracts from SH-SY5Y neuroblastoma cells as a source of a complex, brain-relevant proteome with no baseline isomerization. Cell lysates were aged in vitro to generate isomers, and extracted proteins were analyzed by data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS). Although no Asp isomers were detected at Day 0, isomerization increased across time and was quantifiable for 105 proteins by Day 50. Data analysis revealed that isomerization rate is influenced by both primary sequence and secondary structure, suggesting that steric hindrance and backbone rigidity modulate isomerization. Additionally, we examined lysates extracted under gentle conditions to preserve protein complexes and found that protein-protein interactions often slow isomerization. Base catalysis was explored as a means to accelerate Asp isomerization due to findings of accelerated asparagine deamidation. However, no substantial rate enhancement was found for isomerization, suggesting fundamental differences in acid-base chemistry. With an enhanced understanding of Asp isomerization in proteins in general, we next sought to better understand Asp isomerization in tau. In vitro aging of monomeric and aggregated recombinant tau revealed that tau isomerizes significantly faster than any similar protein within our dataset, which is likely related to its correlation with cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas A. Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Brielle Van Orman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Vivian C. Onwudiwe
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Donoso MV, Catalán-Salas V, Pulgar-Sepúlveda R, Eugenín J, Huidobro-Toro JP. Physiology, Pathophysiology and Clinical Relevance of D-Amino Acids Dynamics: From Neurochemistry to Pharmacotherapy. CHEM REC 2024; 24:e202400013. [PMID: 39318079 DOI: 10.1002/tcr.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/18/2024] [Indexed: 09/26/2024]
Abstract
Over three decades ago, two independent groups of investigators identified free D-aspartic and later D-serine in specific brain nuclei and endocrine glands. This finding revealed a novel, non-proteinogenic role of these molecules. Moreover, the finding that aged proteins from the human eye crystallin, teeth, bone, blood vessels or the brain incorporate D-aspartic acids to specific primary protein sequences fostered the hypothesis that aging might be related to D-amino acid isomerization of body proteins. The experimental confirmation that schizophrenia and neurodegenerative diseases modify plasma free D-amino acids or tissue levelsnurtured the opportunity of using D-amino acids as therapeutic agents for several disease treatments, a strategy that prompted the successful current application of D-amino acids to human medicine.
Collapse
Affiliation(s)
- M Verónica Donoso
- Pharmacology Laboratory, Department Biology, Faculty of Chemistry and Biology, Centro Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - Vicente Catalán-Salas
- Pharmacology Laboratory, Department Biology, Faculty of Chemistry and Biology, Centro Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - Raúl Pulgar-Sepúlveda
- Neural System Laboratory, Department Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - Jaime Eugenín
- Neural System Laboratory, Department Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - J Pablo Huidobro-Toro
- Pharmacology Laboratory, Department Biology, Faculty of Chemistry and Biology, Centro Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| |
Collapse
|
3
|
Wijerathne DV, Karabulut S, Gauld JW. Computational Insights into Protein Aging: Spontaneous Deamidation of Glutamine. J Phys Chem B 2024; 128:5545-5556. [PMID: 38815985 DOI: 10.1021/acs.jpcb.3c07628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Spontaneous deamidation of amino acids is a physiologically important process, particularly for protein aging and diseases. Despite its widespread occurrence, the mechanism of glutamine deamidation particularly within proteins remains poorly understood. We have used a multiscale computational approach to investigate glutamine deamidation in the tripeptide Glycine-Glutamine-Glycine (Gly-Gln-Gly) and γS-Crystallin protein. Specifically, both the 5- and 6-membered water-assisted deamidation pathways in the tripeptide have been elucidated and compared. Both are found to occur in three stages: iminol formation, cyclization, and deamination. The rate-limiting step in each mechanism is nucleophilic attack of the backbone iminol nitrogen, formed in the first stage, at the glutamine's side-chain carbonyl carbon. For the 6- and 5-membered mechanisms, this occurs with a free energy cost of 136.4 and 179.5 kJ mol-1, respectively. Thus, overall, in the Gly-Gln-Gly tripeptide, the 6-membered pathway is preferred. Furthermore, the free energies for forming cyclic intermediates and products at selected Gln residues (based on experimentally reported % deamidation) in γS-Crystallin have been obtained. It is found that the 5-membered product complex is exergonic at -25.3 kJ mol-1, while the 6-membered product complex is calculated to be endergonic at 90.7 kJ mol-1. Thus, the deamidation pathway in folded and constrained proteins may not exclusively follow the 6-membered route. Molecular dynamics (MD) simulations of γS-Crystallin indicate that deamidation is more likely to occur when two or more water molecules are in the proximity of the glutamine residue. Consequently, significant conformational changes are found to accompany Gln120 deamidation in γS-Crystallin. This in turn can influence water availability at the other Gln residues considered and hence potentially their deamidation. Collectively, these results provide comprehensive insights into spontaneous water-assisted deamidation of glutamine residues in peptides and into the role and impact of Gln deamidation in proteins.
Collapse
Affiliation(s)
- Dananjana V Wijerathne
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Sedat Karabulut
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
4
|
Shevalev R, Bischof L, Sapegin A, Bunev A, Olga G, Kantin G, Kalinin S, Hartmann MD. Discovery and characterization of potent spiro-isoxazole-based cereblon ligands with a novel binding mode. Eur J Med Chem 2024; 270:116328. [PMID: 38552426 DOI: 10.1016/j.ejmech.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
The vast majority of current cereblon (CRBN) ligands is based on the thalidomide scaffold, relying on glutarimide as the core binding moiety. With this architecture, most of these ligands inherit the overall binding mode, interactions with neo-substrates, and thereby potentially also the cytotoxic and teratogenic properties of the parent thalidomide. In this work, by incorporating a spiro-linker to the glutarimide moiety, we have generated a new chemotype that exhibits an unprecedented binding mode for glutarimide-based CRBN ligands. In total, 16 spirocyclic glutarimide derivatives incorporating an isoxazole moiety were synthesized and tested for different criteria. In particular, all ligands showed a favorable lipophilicity, and several were able to outperform the binding affinity of thalidomide as a reference. In addition, all compounds showed favorable cytotoxicity profiles in myeloma cell lines and human peripheral blood mononuclear cells. The novel binding mode, which we determined in co-crystal structures, provides explanations for these improved properties: The incorporation of the spiro-isoxazole changes both the conformation of the glutarimide moiety within the canonical tri-trp pocket and the orientation of the protruding moiety. In this new orientation it forms additional hydrophobic interactions and is not available for direct interactions with the canonical neo-substrates. We therefore propose this chemotype as an attractive building block for the design of PROTACs.
Collapse
Affiliation(s)
- Robert Shevalev
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Luca Bischof
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Sapegin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| | - Grigor'eva Olga
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| | - Grigory Kantin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
5
|
Heath SL, Guseman AJ, Gronenborn AM, Horne WS. Probing effects of site-specific aspartic acid isomerization on structure and stability of GB1 through chemical protein synthesis. Protein Sci 2024; 33:e4883. [PMID: 38143426 PMCID: PMC10868458 DOI: 10.1002/pro.4883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Chemical modifications of long-lived proteins, such as isomerization and epimerization, have been evoked as prime triggers for protein-damage related diseases. Deamidation of Asn residues, which results in formation of a mixture of l- and d-Asp and isoAsp via an intermediate aspartyl succinimide, can result in the disruption of cellular proteostasis and toxic protein depositions. In contrast to extensive data on the biological prevalence and functional implications of aspartyl succinimide formation, much less is known about the impact of the resulting altered backbone composition on properties of individual proteins at a molecular level. Here, we report the total chemical synthesis, biophysical characterization, and NMR structural analysis of a series of variants of the B1 domain of protein G from Streptococcal bacteria (GB1) in which all possible Asp isomers as well as an aspartyl succinimide were individually incorporated at a defined position in a solvent-exposed loop. Subtle local structural effects were observed; however, these were accompanied by notable differences in thermodynamic folded stability. Surprisingly, the noncanonical backbone connectivity of d-isoAsp led to a variant that exhibited enhanced stability relative to the natural protein.
Collapse
Affiliation(s)
- Shelby L. Heath
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alex J. Guseman
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Angela M. Gronenborn
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - W. Seth Horne
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Kalailingam P, Mohd‐Kahliab K, Ngan SC, Iyappan R, Melekh E, Lu T, Zien GW, Sharma B, Guo T, MacNeil AJ, MacPherson REK, Tsiani EL, O'Leary DD, Lim KL, Su IH, Gao Y, Richards AM, Kalaria RN, Chen CP, McCarthy NE, Sze SK. Immunotherapy targeting isoDGR-protein damage extends lifespan in a mouse model of protein deamidation. EMBO Mol Med 2023; 15:e18526. [PMID: 37971164 PMCID: PMC10701600 DOI: 10.15252/emmm.202318526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Aging results from the accumulation of molecular damage that impairs normal biochemical processes. We previously reported that age-linked damage to amino acid sequence NGR (Asn-Gly-Arg) results in "gain-of-function" conformational switching to isoDGR (isoAsp-Gly-Arg). This integrin-binding motif activates leukocytes and promotes chronic inflammation, which are characteristic features of age-linked cardiovascular disorders. We now report that anti-isoDGR immunotherapy mitigates lifespan reduction of Pcmt1-/- mouse. We observed extensive accumulation of isoDGR and inflammatory cytokine expression in multiple tissues from Pcmt1-/- and naturally aged WT animals, which could also be induced via injection of isoDGR-modified plasma proteins or synthetic peptides into young WT animals. However, weekly injection of anti-isoDGR mAb (1 mg/kg) was sufficient to significantly reduce isoDGR-protein levels in body tissues, decreased pro-inflammatory cytokine concentrations in blood plasma, improved cognition/coordination metrics, and extended the average lifespan of Pcmt1-/- mice. Mechanistically, isoDGR-mAb mediated immune clearance of damaged isoDGR-proteins via antibody-dependent cellular phagocytosis (ADCP). These results indicate that immunotherapy targeting age-linked protein damage may represent an effective intervention strategy in a range of human degenerative disorders.
Collapse
Affiliation(s)
| | | | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evelin Melekh
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Tian Lu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Gan Wei Zien
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Bhargy Sharma
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Tiannan Guo
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouChina
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Rebecca EK MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Evangelia Litsa Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Kah Leong Lim
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - I Hsin Su
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yong‐Gui Gao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - A Mark Richards
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Department of CardiologyUniversity of OtagoChristchurchNew Zealand
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Christopher P Chen
- Memory, Aging and Cognition CentreNational University Health SystemSingaporeSingapore
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesONCanada
| |
Collapse
|
7
|
Paredes J, Wang Z, Patel P, Rose KL, Schey KL. Dehydroalanine and dehydrobutyrine in aging and cataractous lenses reveal site-specific consequences of spontaneous protein degradation. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1241001. [PMID: 38983090 PMCID: PMC11182102 DOI: 10.3389/fopht.2023.1241001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 07/11/2024]
Abstract
Introduction Protein post-translational modifications (PTMs) have been associated with aging and age-related diseases. PTMs are particularly impactful in long-lived proteins, such as those found in the ocular lens, because they accumulate with age. Two PTMs that lead to protein-protein crosslinks in aged and cataractous lenses are dehydroalanine (DHA) and dehydrobutyrine (DHB); formed from cysteine/serine and threonine residues, respectively. The purpose of this study was to quantitate DHA and DHB in human lens proteins as a function of age and cataract status. Methods Human lenses of various ages were divided into five donor groups: transparent lenses (18-22-year-old, 48-64-year-old, and 70-93-year-old) and cataractous human lenses of two age groups (48-64-year-old lenses, and 70-93-year-old lenses) and were subjected to proteomic analysis. Relative DHA and DHB peptide levels were quantified and compared to their non-modified peptide counterparts. Results For most lens proteins containing DHA or DHB, higher amounts of DHA- and DHB-modified peptides were detected in aged and cataractous lenses. DHA-containing peptides were classified into three groups based on abundance changes with age and cataract: those that (1) increased only in age-related nuclear cataract (ARNC), (2) increased in aged and cataractous lenses, and (3) decreased in aged lenses and ARNC. There was no indication that DHA or DHB levels were dependent on lens region. In most donor groups, proteins with DHA and DHB were more likely to be found among urea-insoluble proteins rather than among water- or urea-soluble proteins. Discussion DHA and DHB formation may induce structural effects that make proteins less soluble in water that leads to age-related protein insolubility and possibly aggregation and light scattering.
Collapse
Affiliation(s)
- Jessica Paredes
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kristie L. Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Rolland AD, Takata T, Donor MT, Lampi KJ, Prell JS. Eye lens β-crystallins are predicted by native ion mobility-mass spectrometry and computations to form compact higher-ordered heterooligomers. Structure 2023; 31:1052-1064.e3. [PMID: 37453416 PMCID: PMC10528727 DOI: 10.1016/j.str.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Eye lens α- and β-/γ-crystallin proteins are not replaced after fiber cell denucleation and maintain lens transparency and refractive properties. The exceptionally high (∼400-500 mg/mL) concentration of crystallins in mature lens tissue and multiple other factors impede precise characterization of β-crystallin interactions, oligomer composition, size, and topology. Native ion mobility-mass spectrometry is used here to probe β-crystallin association and provide insight into homo- and heterooligomerization kinetics for these proteins. These experiments include separation and characterization of higher-order β-crystallin oligomers and illustrate the unique advantages of native IM-MS. Recombinantly expressed βB1, βB2, and βA3 isoforms are found to have different homodimerization propensities, and only βA3 forms larger homooligomers. Heterodimerization of βB2 with βA3 occurs ∼3 times as fast as that of βB1 with βA3, and βB1 and βB2 heterodimerize less readily. Ion mobility experiments, molecular dynamics simulations, and PISA analysis together reveal that observed oligomers are consistent with predominantly compact, ring-like topologies.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA
| | - Takumi Takata
- Kyoto University, Research Reactor Institute 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Micah T Donor
- Department of Biological & Molecular Sciences, George Fox University, 414 N Meridian St, Newberg, OR 97132, USA
| | - Kirsten J Lampi
- Integrative Biosciences, School of Dentistry, 3181 SW Sam Jackson Park Road, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA; Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403-1252, USA.
| |
Collapse
|
9
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|
10
|
Heim C, Spring AK, Kirchgäßner S, Schwarzer D, Hartmann MD. Cereblon neo-substrate binding mimics the recognition of the cyclic imide degron. Biochem Biophys Res Commun 2023; 646:30-35. [PMID: 36701892 DOI: 10.1016/j.bbrc.2023.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
In targeted protein degradation, immunomodulatory drugs (IMiDs) or cereblon (CRBN) E3 ligase modulatory drugs (CELMoDs) recruit neo-substrate proteins to the E3 ubiquitin ligase receptor CRBN for ubiquitination and subsequent proteasomal degradation. While the structural basis of this mechanism is generally understood, we have only recently described the recognition mode of the natural CRBN degron. In this communication, we reveal that the IMiD- or CELMoD-mediated binding of neo-substrates closely mimics the recognition of natural degrons. In crystal structures, we identify a conserved binding mode for natural degron peptides with an elaborate hydrogen bonding network involving the backbone of each of the six C-terminal degron residues, without the involvement of side chains. In a structural comparison, we show that neo-substrates recruited by IMiDs or CELMoDs emulate every single hydrogen bond of this network and thereby explain the origins of the largely sequence-independent recognition of neo-substrates. Our results imply that the V388I substitution in CRBN does not impair natural degron recognition and complete the structural basis for the rational design of CRBN effectors.
Collapse
Affiliation(s)
- Christopher Heim
- Max Planck Institute for Biology, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; NanoTemper Technologies GmbH, Munich, Germany
| | | | - Sören Kirchgäßner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Schey KL, Wang Z, Rose KL, Anderson DMG. Imaging Cataract-Specific Peptides in Human Lenses. Cells 2022; 11:cells11244042. [PMID: 36552806 PMCID: PMC9776990 DOI: 10.3390/cells11244042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Age-related protein truncation is a common process in long-lived proteins such as proteins found in the ocular lens. Major truncation products have been reported for soluble and membrane proteins of the lens, including small peptides that can accelerate protein aggregation. However, the spatial localization of age-related protein fragments in the lens has received only limited study. Imaging mass spectrometry (IMS) is an ideal tool for examining the spatial localization of protein products in tissues. In this study we used IMS to determine the spatial localization of small crystallin fragments in aged and cataractous lenses. Consistent with previous reports, the pro-aggregatory αA-crystallin 66-80 peptide as well as αA-crystallin 67-80 and γS-crystallin 167-178 were detected in normal lenses, but found to be increased in nuclear cataract regions. In addition, a series of γS-crystallin C-terminal peptides were observed to be mainly localized to cataractous regions and barely detected in transparent lenses. Other peptides, including abundant αA3-crystallin peptides were present in both normal and cataract lenses. The functional properties of these crystallin peptides remain unstudied; however, their cataract-specific localization suggests further studies are warranted.
Collapse
|
12
|
Silzel JW, Ben-Nissan G, Tang J, Sharon M, Julian RR. Influence of Asp Isomerization on Trypsin and Trypsin-like Proteolysis. Anal Chem 2022; 94:15288-15296. [PMID: 36279259 PMCID: PMC9930443 DOI: 10.1021/acs.analchem.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-lived proteins (LLPs), although less common than their short-lived counterparts, are increasingly recognized to play important roles in age-related diseases such as Alzheimer's. In particular, spontaneous chemical modifications can accrue over time that serve as both indicators of and contributors to disrupted autophagy. For example, isomerization in LLPs is common and occurs in the absence of protein turnover while simultaneously interfering with the protein turnover by impeding proteolysis. In addition to the biological implications this creates, isomerization may also interfere with its own analysis. To clarify, bottom-up proteomics experiments rely on protein digestion by proteases, most commonly trypsin, but the extent to which isomerization might interfere with trypsin digestion is unknown. Here, we use a combination of liquid chromatography and mass spectrometry to examine the effect of isomerization on proteolysis by trypsin and chymotrypsin. Isomerized aspartic acid and serine residues (which represent the most common sites of isomerization in LLPs) were placed at various locations relative to the preferred protease cleavage point to evaluate the influence on digestion efficiency. Trypsin was found to be relatively tolerant of isomerization, except when present at the residue immediately C-terminal to Arg/Lys. For chymotrypsin, the influence of isomerization on digestion was less predictable, resulting in long-range interference for some isomer/peptide combinations. Given the trypsin- and chymotrypsin-like behaviors of the 20S proteasome, and to further establish the biological relevance of isomerization in LLPs, substrates with isomerized sites were also tested against proteasomal degradation. Significant disruption of 20S proteolysis was observed, suggesting that if LLPs persist long enough to isomerize, it will be difficult for the cells to digest them.
Collapse
Affiliation(s)
- Jacob W. Silzel
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Heim C, Spring AK, Kirchgäßner S, Schwarzer D, Hartmann MD. Identification and structural basis of C-terminal cyclic imides as natural degrons for cereblon. Biochem Biophys Res Commun 2022; 637:66-72. [DOI: 10.1016/j.bbrc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
14
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
15
|
Pandey G, Julian RR. LC-MS Reveals Isomeric Inhibition of Proteolysis by Lysosomal Cathepsins. ANALYSIS & SENSING 2022; 2:e202200017. [PMID: 37621768 PMCID: PMC10449060 DOI: 10.1002/anse.202200017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 08/26/2023]
Abstract
Defects in autophagy are implicated in many age-related diseases that cause neurodegeneration including both Alzheimer's and Parkinson's. Within autophagy, the lysosome plays a crucial role by enabling the breakdown and recycling of a wide range of biomolecular species. Herein, the effects of isomerization of aspartic acid (Asp) on substrate recognition and degradation are investigated for a collection of lysosomal cathepsins using liquid chromatography coupled to mass spectrometry. By examining a series of synthetic peptides with sequences derived from long-lived proteins known to undergo Asp isomerization, we demonstrate that isomerized forms of Asp significantly perturb cathepsin activity by impeding digestion and shifting preferential sites of proteolysis. Although the sensitivity to isomerization varies for each cathepsin, none of the cathepsins were capable of digesting sites within several residues of the C-terminal side of the isomerized Asp. Under physiological conditions, the peptide fragments left behind after such incomplete digestion would not be suitable substrates for transporter recognition and could precipitate autophagic malfunction in the form of lysosomal storage.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
16
|
Butler KE, Dodds JN, Flick T, Campuzano IDG, Baker ES. High-Resolution Demultiplexing (HRdm) Ion Mobility Spectrometry-Mass Spectrometry for Aspartic and Isoaspartic Acid Determination and Screening. Anal Chem 2022; 94:6191-6199. [PMID: 35421308 PMCID: PMC9635094 DOI: 10.1021/acs.analchem.1c05533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isomeric peptide analyses are an analytical challenge of great importance to therapeutic monoclonal antibody and other biotherapeutic product development workflows. Aspartic acid (Asp, D) to isoaspartic acid (isoAsp, isoD) isomerization is a critical quality attribute (CQA) that requires careful control, monitoring, and quantitation during the drug discovery and production processes. While the formation of isoAsp has been implicated in a variety of disease states such as autoimmune diseases and several types of cancer, it is also understood that the formation of isoAsp results in a structural change impacting efficacy, potency, and immunogenic properties, all of which are undesirable. Currently, lengthy ultrahigh-performance liquid chromatography (UPLC) separations are coupled with MS for CQA analyses; however, these measurements often take over an hour and drastically limit analysis throughput. In this manuscript, drift tube ion mobility spectrometry-mass spectrometry (DTIMS-MS) and both a standard and high-resolution demultiplexing approach were utilized to study eight isomeric Asp and isoAsp peptide pairs. While the limited resolving power associated with the standard DTIMS analysis only separated three of the eight pairs, the application of HRdm distinguished seven of the eight and was only unable to separate DL and isoDL. The rapid high-throughput HRdm DTIMS-MS method was also interfaced with both flow injection and an automated solid phase extraction system to present the first application of HRdm for isoAsp and Asp assessment and demonstrate screening capabilities for isomeric peptides in complex samples, resulting in a workflow highly suitable for biopharmaceutical research needs.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tawnya Flick
- Pivotal Attribute Sciences, Amgen Process Development, Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, Thousand Oaks, California 91320, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
17
|
Silzel JW, Lambeth TR, Julian RR. PIMT-Mediated Labeling of l-Isoaspartic Acid with Tris Facilitates Identification of Isomerization Sites in Long-Lived Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:548-556. [PMID: 35113558 PMCID: PMC9930442 DOI: 10.1021/jasms.1c00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isomerization of individual residues in long-lived proteins (LLPs) is a subject of growing interest in connection with many age-related human diseases. When isomerization occurs in LLPs, it can lead to deleterious changes in protein structure, function, and proteolytic degradation. Herein, we present a novel labeling technique for rapid identification of l-isoAsp using the enzyme protein l-isoaspartyl methyltransferase (PIMT) and Tris. The succinimide intermediate formed during reaction of l-isoAsp-containing peptides with PIMT and S-adenosyl methionine (SAM) is reactive with Tris base and results in a Tris-modified aspartic acid residue with a mass shift of +103 Da. Tris-modified aspartic acid exhibits prominent and repeated neutral loss of water when subjected to collisional activation. In addition, another dissociation pathway regenerates the original peptide following loss of a characteristic mass shift. Furthermore, it is demonstrated that Tris modification can be used to identify sites of isomerization in LLPs from biological samples such as the lens of the eye. This approach simplifies identification by labeling isomerization sites with a tag that causes a mass shift and provides characteristic loss during collisional activation.
Collapse
Affiliation(s)
| | | | - Ryan R. Julian
- Corresponding Author correspondence should be sent to: , Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA 92521, USA, (951) 827-3959
| |
Collapse
|
18
|
Savina ED, Tsentalovich YP, Sherin PS. Influence of viscosity on mechanism and products of radical reactions of kynurenic acid and tryptophan. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Hubbard EE, Heil LR, Merrihew GE, Chhatwal JP, Farlow MR, McLean CA, Ghetti B, Newell KL, Frosch MP, Bateman RJ, Larson EB, Keene CD, Perrin RJ, Montine TJ, MacCoss MJ, Julian RR. Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease. J Proteome Res 2022; 21:118-131. [PMID: 34818016 PMCID: PMC8741752 DOI: 10.1021/acs.jproteome.1c00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the potential benefits of using data-independent acquisition (DIA) proteomics protocols is that information not originally targeted by the study may be present and discovered by subsequent analysis. Herein, we reanalyzed DIA data originally recorded for global proteomic analysis to look for isomerized peptides, which occur as a result of spontaneous chemical modifications to long-lived proteins. Examination of a large set of human brain samples revealed a striking relationship between Alzheimer's disease (AD) status and isomerization of aspartic acid in a peptide from tau. Relative to controls, a surprising increase in isomer abundance was found in both autosomal dominant and sporadic AD samples. To explore potential mechanisms that might account for these observations, quantitative analysis of proteins related to isomerization repair and autophagy was performed. Differences consistent with reduced autophagic flux in AD-related samples relative to controls were found for numerous proteins, including most notably p62, a recognized indicator of autophagic inhibition. These results suggest, but do not conclusively demonstrate, that lower autophagic flux may be strongly associated with loss of function in AD brains. This study illustrates that DIA data may contain unforeseen results of interest and may be particularly useful for pilot studies investigating new research directions. In this case, a promising target for future investigations into the therapy and prevention of AD has been identified.
Collapse
Affiliation(s)
- Evan E. Hubbard
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lilian R. Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Jasmeer P. Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, 15 Parkman St, Suite 835, Boston MA 02114
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Kathy L. Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, and Massachusetts Alzheimer Disease Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, 63110, Missouri, USA
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute and Department of Medicine, University of Washington, Seattle WA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, United States
| | - Richard J. Perrin
- Department of Pathology and Immunology, Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States,corresponding author:
| |
Collapse
|
20
|
Friedrich MG, Wang Z, Schey KL, Truscott RJW. Spontaneous Cleavage at Glu and Gln Residues in Long-Lived Proteins. ACS Chem Biol 2021; 16:2244-2254. [PMID: 34677941 DOI: 10.1021/acschembio.1c00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long-lived proteins (LLPs) are prone to deterioration with time, and one prominent breakdown process is the scission of peptide bonds. These cleavages can either be enzymatic or spontaneous. In this study, human lens proteins were examined and many were found to have been cleaved on the C-terminal side of Glu and Gln residues. Such cleavages could be reproduced experimentally by in vitro incubation of Glu- or Gln-containing peptides at physiological pHs. Spontaneous cleavage was dependent on pH and amino acid sequence. These model peptide studies suggested that the mechanism involves a cyclic intermediate and is therefore analogous to that characterized for cleavage of peptide bonds adjacent to Asp and Asn residues. An increased amount of some Glu/Gln cleaved peptides in the insoluble fraction of human lenses suggests that cleavage may act to destabilize proteins. Spontaneous cleavage at Glu and Gln, as well as recently described cross-linking at these residues, can therefore be added to the similar processes affecting long-lived proteins that have already been documented for Asn and Asp residues.
Collapse
Affiliation(s)
- Michael G. Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhen Wang
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin L. Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Roger J. W. Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
21
|
Morozova OB, Yurkovskaya AV, Sherin PS. Kynurenic acid and its chromophoric core 4-hydroxyquinoline react with tryptophan via proton-coupled electron transfer, and with tyrosine via H-transfer. Phys Chem Chem Phys 2021; 23:22483-22491. [PMID: 34586113 DOI: 10.1039/d1cp03496k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kynurenic acid (KNA) and 4-hydroxyquinoline (4HQN) are photochemically active products of tryptophan catabolism that readily react with tryptophan (Trp) and tyrosine (Tyr) after optical excitation. Recently, transient absorption experiments have shown that at neutral pH Trp reacts with triplet KNA via proton-coupled electron transfer (PCET), and not via electron transfer (ET) as it was suggested before. PCET includes the stepwise transition of both electrons and protons from Trp to triplet KNA. In this work, we confirmed that PCET is the reaction mechanism by the alternative method of time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP). Further studies by TR-CIDNP revealed hydrogen transfer as the mechanism of the reaction between triplet KNA and Tyr in neutral solutions and a transition of both PCET and H-transfer mechanisms to ET under acidic conditions. 4HQN, being the chromophoric core of KNA, exhibits different spectral and photophysical properties from KNA but employs the same mechanisms for the reactions of its triplet state with Trp and Tyr at neutral and acidic pH.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia.
| | | | - Peter S Sherin
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia.
| |
Collapse
|
22
|
Zhuravleva YS, Sherin PS. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part II. Amino acids within the protein globule of lysozyme. Free Radic Biol Med 2021; 174:211-224. [PMID: 34363946 DOI: 10.1016/j.freeradbiomed.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022]
Abstract
An acidosis, a decrease of pH within a living tissue, may alter yields of radical reactions if participating radicals undergo partial or complete protonation. One of photosensitizers found in the human eye lens, kynurenic acid (KNA-), possesses pKa 5.5 for its radical form that is close to physiological pH 6.89 for a healthy lens. In this work we studied the influence of pH on mechanisms and products of photoinduced radical reactions between KNA- and amino acids tryptophan (Trp) and tyrosine (Tyr) within a globule of model protein, Hen White Egg Lysozyme (HEWL). Our results show that the rate constant of back electron transfer from kynurenyl to HEWL• radicals with the restoration of initial reagents - the major decay pathway for these radicals - does not change in the pH 3-7. The quantum yield of HEWL degradation is also pH independent, however a shift of pH from 7 to 5 completely changes the outcome of photoinduced damage to HEWL from intermolecular cross-linking to oxygenation. HPLC-MS analysis has shown that four of six Trp and all Tyr residues of HEWL are modified in different extents at all pH, but the lowering of pH from 7 to 5 significantly changes the direction of main photodamage from Trp62 to Trp108 located at the entrance and bottom of enzymatic center, respectively. A decrease of intermolecular cross-links via Trp62 is followed by an increase in quantities of intramolecular cross-links Tyr20-Tyr23 and Tyr23-Tyr53. The obtained results point out the competence of cross-linking and oxygenation reactions for Trp and Tyr radicals within a protein globule and significant increase of oxygenation to the total damage of protein in the case of cross-linking deceleration by coulombic repulsion of positively charged protein globules.
Collapse
Affiliation(s)
- Yuliya S Zhuravleva
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova street 2, Novosibirsk, Russia.
| |
Collapse
|
23
|
Reeck JC, Hardy MJ, Pu X, Keller-Peck C, Oxford JT. Authentication of a novel antibody to zebrafish collagen type XI alpha 1 chain (Col11a1a). BMC Res Notes 2021; 14:359. [PMID: 34526111 PMCID: PMC8444443 DOI: 10.1186/s13104-021-05770-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Extracellular matrix proteins play important roles in embryonic development and antibodies that specifically detect these proteins are essential to understanding their function. The zebrafish embryo is a popular model for vertebrate development but suffers from a dearth of authenticated antibody reagents for research. Here, we describe a novel antibody designed to detect the minor fibrillar collagen chain Col11a1a in zebrafish (AB strain). RESULTS The Col11a1a antibody was raised in rabbit against a peptide comprising a unique sequence within the zebrafish Col11a1a gene product. The antibody was affinity-purified and characterized by ELISA. The antibody is effective for immunoblot and immunohistochemistry applications. Protein bands identified by immunoblot were confirmed by mass spectrometry and sensitivity to collagenase. Col11a1a knockout zebrafish were used to confirm specificity of the antibody. The Col11a1a antibody labeled cartilaginous structures within the developing jaw, consistent with previously characterized Col11a1 antibodies in other species. Col11a1a within formalin-fixed paraffin-embedded zebrafish were recognized by the antibody. The antibodies and the approaches described here will help to address the lack of well-defined antibody reagents in zebrafish research.
Collapse
Affiliation(s)
- Jonathon C. Reeck
- Department of Biological Sciences, Biomolecular Sciences Graduate Program, and Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Makenna J. Hardy
- Biomolecular Sciences Graduate Program, Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | | | - Julia Thom Oxford
- Department of Biological Sciences, Biomolecular Sciences Graduate Program, and Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
24
|
Zhuravleva YS, Sherin PS. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part I. Amino acids in free state. Free Radic Biol Med 2021; 172:331-339. [PMID: 34146664 DOI: 10.1016/j.freeradbiomed.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 01/06/2023]
Abstract
In the human eye lens the endogenous chromophores of UV-A light (315-400 nm) are able to sensitize radical reactions leading to protein modifications during normal aging and the cataract progression. Kynurenic acid (KNA-) is the most photochemically active dye of the human eye lens reported to date with pKa(KNAH2•) 5.5 for its radical form. Cataract is thought to develop under oxidative stress which could be accompanied by acidosis, an acidification of the intracellular environment. Protonation of kynurenyl radicals at mildly acidic conditions may change the outcome of radical reactions leading to additional damage to proteins. In this work we investigated the influence of pH on the degradation of initial reagents and the formation of products in photoinduced radical reactions between KNA- and amino acids tryptophan (Trp) and tyrosine (Tyr) in free states. Our results have shown that pH variation has minor influence on kinetics of reagent decay and accumulation of products in reactions between tyrosyl and kynurenic acid radicals. However in the case of Trp a two-fold decrease of the reagent degradation without visible changes in the composition of formed products was observed with pH decrease from 7 to 3. Time-resolved measurements have shown similar acidification-induced two-fold acceleration of decay of kynurenyl and tryptophanyl radicals via Back Electron Transfer (BET) with the restoration of initial reagents. Experiments with tryptophan derivatives with different pKa values for their radical forms point out the protonation of tryptophanyl radical as the driving force for BET acceleration at low pH. Our results demonstrate that the protonation of kynurenyl radical does not change its reactivity towards amino acids radicals but the total yield of radical photodamage decreases with the protonation of tryptophanyl radicals. It could be expected that radical induced damage to proteins will depend on the pKa of tryptophanyl radicals within a protein globule.
Collapse
Affiliation(s)
- Yuliya S Zhuravleva
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya Street 3a, Novosibirsk, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk, Russia.
| |
Collapse
|
25
|
Bomba-Warczak E, Edassery SL, Hark TJ, Savas JN. Long-lived mitochondrial cristae proteins in mouse heart and brain. J Cell Biol 2021; 220:212469. [PMID: 34259807 PMCID: PMC8282663 DOI: 10.1083/jcb.202005193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
Long-lived proteins (LLPs) have recently emerged as vital components of intracellular structures whose function is coupled to long-term stability. Mitochondria are multifaceted organelles, and their function hinges on efficient proteome renewal and replacement. Here, using metabolic stable isotope labeling of mice combined with mass spectrometry (MS)–based proteomic analysis, we demonstrate remarkable longevity for a subset of the mitochondrial proteome. We discovered that mitochondrial LLPs (mt-LLPs) can persist for months in tissues harboring long-lived cells, such as brain and heart. Our analysis revealed enrichment of mt-LLPs within the inner mitochondrial membrane, specifically in the cristae subcompartment, and demonstrates that the mitochondrial proteome is not turned over in bulk. Pioneering cross-linking experiments revealed that mt-LLPs are spatially restricted and copreserved within protein OXPHOS complexes, with limited subunit exchange throughout their lifetimes. This study provides an explanation for the exceptional mitochondrial protein lifetimes and supports the concept that LLPs provide key structural stability to multiple large and dynamic intracellular structures.
Collapse
Affiliation(s)
- Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seby L Edassery
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Timothy J Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
26
|
New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Exp Eye Res 2021; 209:108679. [PMID: 34147508 DOI: 10.1016/j.exer.2021.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Although protein crosslinking is often linked with aging as well as some age-related diseases, very few molecular details are available on the nature of the amino acids involved, or mechanisms that are responsible for crosslinking. Recent research has shown that several amino acids are able to generate reactive intermediates that ultimately lead to covalent crosslinking through multiple non-enzymatic mechanisms. This information has been derived from proteomic investigations on aged human lenses and the mechanisms of crosslinking, in each case, have been elucidated using model peptides. Residues involved in spontaneous protein-protein crosslinking include aspartic acid, asparagine, cysteine, lysine, phosphoserine, phosphothreonine, glutamic acid and glutamine. It has become clear, therefore, that several amino acids can act as potential sites for crosslinking in the long-lived proteins that are present in aged individuals. Moreover, the lens has been an invaluable model tissue and source of crosslinked proteins from which to determine crosslinking mechanisms that may lead to crosslinking in other human tissues.
Collapse
|
27
|
Nutzung von Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung zur postmortalen Lebensaltersschätzung. Rechtsmedizin (Berl) 2021. [DOI: 10.1007/s00194-021-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungMit der Identifikation und Beschreibung „molekularer Uhren“ (posttranslationale Proteinmodifikationen, DNA-Methylierung) eröffnen sich neue Möglichkeiten zur Entwicklung von Verfahren zur postmortalen Lebensaltersschätzung. Bislang werden diese Ansätze aber nur unabhängig voneinander eingesetzt. Ihre Verknüpfung verspricht eine bessere Erfassung hochkomplexer Alterungsprozesse und damit die Möglichkeit zur Entwicklung optimierter Verfahren zur Altersschätzung für verschiedenste Szenarien der forensischen Praxis.In Vorbereitung umfangreicher Untersuchungen zur Überprüfung dieser Hypothese wurden verschiedene molekulare Uhren (Akkumulation von D‑Asparaginsäure, Akkumulation von Pentosidin und DNA-Methylierungsmarker [RPA2, ZYG11A, F5, HOXC4, NKIRAS2, TRIM59, ELOVL2, DDO, KLF14 und PDE4C]) in 4 fäulnisresistenten Geweben (Knochen, Sehne, Bandscheibe, Epiglottis) von 15 Individuen untersucht.In allen untersuchten Geweben fand sich eine starke Korrelation beider Proteinmarker sowie jeweils mehrerer DNA-Methylierungsmarker mit dem Lebensalter. Dabei zeigten die untersuchten Parameter gewebsspezifische Veränderungen mit dem Alter.Die Ergebnisse der Pilotstudie belegen das Potenzial der Verknüpfung molekularer Verfahren für die postmortale Altersschätzung. Weitere Untersuchungen werden zeigen, wie genau postmortale Altersschätzungen sein können, wenn Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung aus verschiedenen Geweben in multivariaten Modellen verknüpft werden.
Collapse
|
28
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|
29
|
Park JE, JebaMercy G, Pazhanchamy K, Guo X, Ngan SC, Liou KCK, Lynn SE, Ng SS, Meng W, Lim SC, Leow MKS, Richards AM, Pennington DJ, de Kleijn DPV, Sorokin V, Ho HH, McCarthy NE, Sze SK. Aging-induced isoDGR-modified fibronectin activates monocytic and endothelial cells to promote atherosclerosis. Atherosclerosis 2021; 324:58-68. [PMID: 33831670 DOI: 10.1016/j.atherosclerosis.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Aging is the primary risk factor for cardiovascular disease (CVD), but the mechanisms underlying age-linked atherosclerosis remain unclear. We previously observed that long-lived vascular matrix proteins can acquire 'gain-of-function' isoDGR motifs that might play a role in atherosclerotic pathology. METHODS IsoDGR-specific mAb were generated and used for ELISA-based measurement of motif levels in plasma samples from patients with coronary artery diseases (CAD) and non-CAD controls. Functional consequences of isoDGR accumulation in age-damaged fibronectin were determined by bioassay for capacity to activate monocytes, macrophages, and endothelial cells (signalling activity, pro-inflammatory cytokine expression, and recruitment/adhesion potential). Mice deficient in the isoDGR repair enzyme PCMT1 were used to assess motif distribution and macrophage localisation in vivo. RESULTS IsoDGR-modified fibronectin and fibrinogen levels in patient plasma were significantly enhanced in CAD and further associated with smoking status. Functional assays demonstrated that isoDGR-modified fibronectin activated both monocytes and macrophages via integrin receptor 'outside in' signalling, triggering an ERK:AP-1 cascade and expression of pro-inflammatory cytokines MCP-1 and TNFα to drive additional recruitment of circulating leukocytes. IsoDGR-modified fibronectin also induced endothelial cell expression of integrin β1 to further enhance cellular adhesion and matrix deposition. Analysis of murine aortic tissues confirmed accumulation of isoDGR-modified proteins co-localised with CD68+ macrophages in vivo. CONCLUSIONS Age-damaged fibronectin features isoDGR motifs that increase binding to integrins on the surface of monocytes, macrophages, and endothelial cells. Subsequent activation of 'outside-in' signalling elicits a range of potent cytokines and chemokines that drive additional leukocyte recruitment to the developing atherosclerotic matrix.
Collapse
Affiliation(s)
- Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Kalailingam Pazhanchamy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Xue Guo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ken Cheng Kang Liou
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Soe EinSi Lynn
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ser Sue Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Su Chi Lim
- Diabetes Center, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, NTU, Singapore; Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, 119228; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, 8140, New Zealand
| | - Daniel J Pennington
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore, 119228
| | - Hee Hwa Ho
- Department of Cardiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551.
| |
Collapse
|
30
|
Cantrell LS, Schey KL. Proteomic characterization of the human lens and Cataractogenesis. Expert Rev Proteomics 2021; 18:119-135. [PMID: 33849365 DOI: 10.1080/14789450.2021.1913062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The goal of this review is to highlight the triumphs and frontiers in measurement of the lens proteome as it relates to onset of age-related nuclear cataract. As global life expectancy increases, so too does the frequency of age-related nuclear cataracts. Molecular therapeutics do not exist for delay or relief of cataract onset in humans. Since lens fiber cells are incapable of protein synthesis after initial maturation, age-related changes in proteome composition and post-translational modification accumulation can be measured with various techniques. Several of these modifications have been associated with cataract onset. AREAS COVERED We discuss the impact of long-lived proteins on the lens proteome and lens homeostasis as well as proteomic techniques that may be used to measure proteomes at various levels of proteomic specificity and spatial resolution. EXPERT OPINION There is clear evidence that several proteome modifications are correlated with cataract formation. Past studies should be enhanced with cutting-edge, spatially resolved mass spectrometry techniques to enhance the specificity and sensitivity of modification detection as it relates to cataract formation.
Collapse
Affiliation(s)
- Lee S Cantrell
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
31
|
Adav SS, Wang Y. Metabolomics Signatures of Aging: Recent Advances. Aging Dis 2021; 12:646-661. [PMID: 33815888 PMCID: PMC7990359 DOI: 10.14336/ad.2020.0909] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Metabolomics is the latest state-of-the-art omics technology that provides a comprehensive quantitative profile of metabolites. The metabolites are the cellular end products of metabolic reactions that explain the ultimate response to genomic, transcriptomic, proteomic, or environmental changes. Aging is a natural inevitable process characterized by a time-dependent decline of various physiological and metabolic functions and are dominated collectively by genetics, proteomics, metabolomics, environmental factors, diet, and lifestyle. The precise mechanism of the aging process is unclear, but the metabolomics has the potential to add significant insight by providing a detailed metabolite profile and altered metabolomic functions with age. Although the application of metabolomics to aging research is still relatively new, extensive attempts have been made to understand the biology of aging through a quantitative metabolite profile. This review summarises recent developments and up-to-date information on metabolomics studies in aging research with a major emphasis on aging biomarkers in less invasive biofluids. The importance of an integrative approach that combines multi-omics data to understand the complex aging process is discussed. Despite various innovations in metabolomics and metabolite associated with redox homeostasis, central energy pathways, lipid metabolism, and amino acid, a major challenge remains to provide conclusive aging biomarkers.
Collapse
Affiliation(s)
- Sunil S Adav
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
32
|
Tau Is Truncated in Five Regions of the Normal Adult Human Brain. Int J Mol Sci 2021; 22:ijms22073521. [PMID: 33805376 PMCID: PMC8036332 DOI: 10.3390/ijms22073521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
The truncation of Tau is thought to be important in promoting aggregation, with this feature characterising the pathology of dementias such as Alzheimer disease. Antibodies to the C-terminal and N-terminal regions of Tau were employed to examine Tau cleavage in five human brain regions: the entorhinal cortex, prefrontal cortex, motor cortex, hippocampus, and cerebellum. These were obtained from normal subjects ranging in age from 18 to 104 years. Tau fragments of approximately 40 kDa and 45 kDa with an intact N-terminus retained were found in soluble and insoluble brain fractions. In addition, smaller C-terminal Tau fragments ranging in mass from 17 kDa to 25 kDa were also detected. These findings are consistent with significant Tau cleavage taking place in brain regions from 18 years onwards. It appears that site-specific cleavage of Tau is widespread in the normal human brain, and that large Tau fragments that contain the N-terminus, as well as shorter C-terminal Tau fragments, are present in brain cells across the age range.
Collapse
|
33
|
Mukherjee S, Perez KA, Lago LC, Klatt S, McLean CA, Birchall IE, Barnham KJ, Masters CL, Roberts BR. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Commun 2021; 3:fcab028. [PMID: 33928245 PMCID: PMC8062259 DOI: 10.1093/braincomms/fcab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Plaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-β peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-β peptides present in the temporal cortex of sporadic Alzheimer's disease brains. Quantitative assessment of amyloid-β N-terminus revealed that > 80% of aspartates (Asp-1 and Asp-7) in the N-terminus was isomerized, making isomerization the most dominant post-translational modification of amyloid-β in Alzheimer's disease brain. Total amyloid-β1-15 was ∼85% isomerized at Asp-1 and/or Asp-7 residues, with only 15% unmodified amyloid-β1-15 left in Alzheimer's disease. While amyloid-β4-15 the next most abundant N-terminus found in Alzheimer's disease brain, was only ∼50% isomerized at Asp-7 in Alzheimer's disease. Further investigations into different biochemically defined amyloid-β-pools indicated a distinct pattern of accumulation of extensively isomerized amyloid-β in the insoluble fibrillar plaque and membrane-associated pools, while the extent of isomerization was lower in peripheral membrane/vesicular and soluble pools. This pattern correlated with the accumulation of aggregation-prone amyloid-β42 in Alzheimer's disease brains. Isomerization significantly alters the structure of the amyloid-β peptide, which not only has implications for its degradation, but also for oligomer assembly, and the binding of therapeutic antibodies that directly target the N-terminus, where these modifications are located.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keyla A Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Larissa C Lago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephan Klatt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Catriona A McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3004, Australia
| | - Ian E Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Blaine R Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
35
|
Minaeva O, Sarangi S, Ledoux DM, Moncaster JA, Parsons DS, Washicosky KJ, Black CA, Weng FJ, Ericsson M, Moir RD, Tripodis Y, Clark JI, Tanzi RE, Hunter DG, Goldstein LE. In Vivo Quasi-Elastic Light Scattering Eye Scanner Detects Molecular Aging in Humans. J Gerontol A Biol Sci Med Sci 2021; 75:e53-e62. [PMID: 32515825 DOI: 10.1093/gerona/glaa121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
The absence of clinical tools to evaluate individual variation in the pace of aging represents a major impediment to understanding aging and maximizing health throughout life. The human lens is an ideal tissue for quantitative assessment of molecular aging in vivo. Long-lived proteins in lens fiber cells are expressed during fetal life, do not undergo turnover, accumulate molecular alterations throughout life, and are optically accessible in vivo. We used quasi-elastic light scattering (QLS) to measure age-dependent signals in lenses of healthy human subjects. Age-dependent QLS signal changes detected in vivo recapitulated time-dependent changes in hydrodynamic radius, protein polydispersity, and supramolecular order of human lens proteins during long-term incubation (~1 year) and in response to sustained oxidation (~2.5 months) in vitro. Our findings demonstrate that QLS analysis of human lens proteins provides a practical technique for noninvasive assessment of molecular aging in vivo.
Collapse
Affiliation(s)
- Olga Minaeva
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital, Massachusetts
| | - Srikant Sarangi
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Massachusetts.,Department of Biomedical Engineering, Boston University, Massachusetts
| | - Danielle M Ledoux
- Department of Ophthalmology, Boston Children's Hospital, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Juliet A Moncaster
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Massachusetts.,Boston University Photonics Center, Boston University, Massachusetts
| | - Douglas S Parsons
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Massachusetts.,Boston University Photonics Center, Boston University, Massachusetts
| | - Kevin J Washicosky
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown
| | - Caitlin A Black
- Department of Ophthalmology, Boston Children's Hospital, Massachusetts
| | - Frank J Weng
- Department of Ophthalmology, Boston Children's Hospital, Massachusetts
| | - Maria Ericsson
- Electron Microscopy Facility, Harvard Medical School, Boston, Massachusetts
| | - Robert D Moir
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Lee E Goldstein
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Massachusetts.,Boston University Alzheimer's Disease Center, Massachusetts
| |
Collapse
|
36
|
Nagashima H, Sasaki N, Amano S, Nakamura S, Hayano M, Tsubota K. Oral administration of resveratrol or lactic acid bacterium improves lens elasticity. Sci Rep 2021; 11:2174. [PMID: 33500490 PMCID: PMC7838312 DOI: 10.1038/s41598-021-81748-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 02/03/2023] Open
Abstract
A decrease in the elasticity of the ocular lens during aging is associated with loss of the accommodative ability of the eye, leading to presbyopia. Although near vision impairment is a social issue affecting the length of healthy life expectancy and productivity of elderly people, an effective treatment to improve near vision has not yet become available. Here we examined the effect of Enterococcus faecium WB2000, Lactobacillus pentosus TJ515, and resveratrol on lens elasticity in rats, where the stiffness of the ocular lens increases exponentially during the aging process. A combination of WB2000 and resveratrol improved lens elasticity not only in the long term but also with just short-term treatment. In addition, TJ515 decreased stiffness in the eye lens with long-term treatment. Therefore, the oral administration of WB2000 and resveratrol or TJ515 may be a potential approach for managing the progression of near vision impairment.
Collapse
Affiliation(s)
- Hayato Nagashima
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Nobunari Sasaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Sachie Amano
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Motoshi Hayano
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Tsubota Laboratory, Inc., Tokyo, Japan.
| |
Collapse
|
37
|
Bonnin EA, Fornasiero EF, Lange F, Turck CW, Rizzoli SO. NanoSIMS observations of mouse retinal cells reveal strict metabolic controls on nitrogen turnover. BMC Mol Cell Biol 2021; 22:5. [PMID: 33430763 PMCID: PMC7798281 DOI: 10.1186/s12860-020-00339-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Most of the cells of the mammalian retina are terminally differentiated, and do not regenerate once fully developed. This implies that these cells have strict controls over their metabolic processes, including protein turnover. We report the use of metabolic labelling procedures and secondary ion mass spectrometry imaging to examine nitrogen turnover in retinal cells, with a focus on the outer nuclear layer, inner nuclear layer, and outer plexiform layer. RESULTS We find that turnover can be observed in all cells imaged using NanoSIMS. However, the rate of turnover is not constant, but varies between different cellular types and cell regions. In the inner and outer nuclear layers, turnover rate is higher in the cytosol than in the nucleus of each cell. Turnover rates are also higher in the outer plexiform layer. An examination of retinal cells from mice that were isotopically labeled very early in embryonic development shows that proteins produced during this period can be found in all cells and cell regions up to 2 months after birth, even in regions of high turnover. CONCLUSIONS Our results indicate that turnover in retinal cells is a highly regulated process, with strict metabolic controls. We also observe that turnover is several-fold higher in the synaptic layer than in cell layers. Nevertheless, embryonic proteins can still be found in this layer 2 months after birth, suggesting that stable structures persist within the synapses, which remain to be determined.
Collapse
Affiliation(s)
- Elisa A Bonnin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany
| | - Felix Lange
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- Clinic for Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany
| |
Collapse
|
38
|
Wu HT, Julian RR. Two-dimensional identification and localization of isomers in crystallin peptides using TWIM-MS. Analyst 2020; 145:5232-5241. [PMID: 32608408 DOI: 10.1039/d0an01036g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies have illuminated connections between spontaneous chemical reactions that cause isomerization at specific protein residues and various age-related diseases including cataracts and Alzheimer's. These discoveries provide impetus for better analytical methods to detect and characterize isomerization in proteins, which will enable a more complete understanding of the underlying relationship between these modifications and biology. Herein we employ a two-dimensional approach for identification of peptides isomers that also includes pinpointing of the modified residue. Collision-induced dissociation is used to fragment ions in the first dimension, followed by separation of the fragments with travelling-wave ion mobility. By comparing data obtained from both isomers, differences in either fragment-ion intensities or arrival-time distributions can be used to identify isomeric forms and the specific site of modification within the peptides. Synthetic peptide standards with sequences derived from long-lived proteins in the eye lens and isomerization at serine, aspartic acid, and glutamic acid were examined. Although both dimensions are capable of isomer identification, ion mobility is much better at determining the site of modification. In general, separation of isomeric forms by ion mobility is possible but does not follow predictable trends dictated by sequence or fragment-ion length. In most cases, however, the site of isomerization can be precisely determined.
Collapse
Affiliation(s)
- Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
39
|
Mizuno H, Shindo T, Ito K, Sakane I, Miyazaki Y, Toyo'oka T, Todoroki K. Development of a selective and sensitive analytical method to detect isomerized aspartic acid residues in crystallin using a combination of derivatization and liquid chromatography mass spectrometry. J Chromatogr A 2020; 1623:461134. [PMID: 32345439 DOI: 10.1016/j.chroma.2020.461134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022]
Abstract
The isomerization of amino acids in peptides and proteins induces structural changes and aggregation. The isomerization rate of aspartic acid (Asp) is high and causes various serious diseases including Alzheimer's disease and cataract. Herein, a method for the comprehensive separation and sensitive detection of isomerized crystallin containing Asp (l-α-Asp, l-β-Asp, d-α-Asp, and d-β-Asp) was developed using chiral derivatization and reversed-phase UHPLC separation. Of three candidate derivatization reagents tested for the separation of peptides containing isomerized aspartic acid, 2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazine-2-yl) pyrrolidine-2-carboxylate (DMT-(R)-Pro-OSu) was the most suitable reagent for separating isomerized peptides and improved the sensitivity of mass spectrometry by 50-fold. This method was applied to analyze heat-denatured crystallin. Asp58 and Asp151 residues in αA-crystallin (AAC) exhibited the highest isomerization rate in heated crystallin. Furthermore, the analysis of α-crystallin extracted from bovine eye lens identified isomerized Asp residues (Asp24/35, Asp58, and Asp151 in AAC and Asp140 in αB-crystallin (ABC)). These results indicate that the newly developed method using chiral derivatization provides selective and sensitive analysis of isomerized Asp sites in α-crystallin protein. This novel method will allow for the identification and quantification of isomerized amino acids in crystallin proteins.
Collapse
Affiliation(s)
- Hajime Mizuno
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuya Shindo
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keisuke Ito
- Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516, Japan
| | - Yasuto Miyazaki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
40
|
Mechanism of protein cleavage at asparagine leading to protein-protein cross-links. Biochem J 2020; 476:3817-3834. [PMID: 31794011 DOI: 10.1042/bcj20190743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Long-lived proteins (LLPs) are present in numerous tissues within the human body. With age, they deteriorate, often leading to the formation of irreversible modifications such as peptide bond cleavage and covalent cross-linking. Currently understanding of the mechanism of formation of these cross-links is limited. As part of an ongoing study, proteomics was used to characterise sites of novel covalent cross-linking in the human lens. In this process, Lys residues were found cross-linked to C-terminal aspartates that had been present in the original protein as Asn residues. Cross-links were identified in major lens proteins such as αA-crystallin, αB-crystallin and aquaporin 0. Quantification of the level of an AQP0/AQP0 cross-linked peptide showed increased cross-linking with age and in cataract lenses. Using model peptides, a mechanism of cross-link formation was elucidated that involves spontaneous peptide bond cleavage on the C-terminal side of Asn residues resulting in the formation of a C-terminal succinimide. This succinimide does not form cross-links, but can hydrolyse to a mixture of C-terminal Asn and C-terminal Asp amide peptides. The C-terminal Asp amide is unstable at neutral pH and decomposes to a succinic anhydride. If the side chain of Lys attacks the anhydride, a covalent cross-link will be formed. This multi-step mechanism represents a link between two spontaneous events: peptide bond cleavage at Asn and covalent cross-linking. Since Asn deamidation and cleavage are abundant age-related modifications in LLPs, this finding suggests that such susceptible Asn residues should also be considered as potential sites for spontaneous covalent cross-linking.
Collapse
|
41
|
Savina ED, Tsentalovich YP, Sherin PS. UV-A induced damage to lysozyme via Type I photochemical reactions sensitized by kynurenic acid. Free Radic Biol Med 2020; 152:482-493. [PMID: 31751763 DOI: 10.1016/j.freeradbiomed.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
In this work we studied the mechanisms of Type I photodamage to a model protein, hen egg white lysozyme (HEWL), sensitized by kynurenic acid (KNA) - one of the most efficient photosensitizers of the human eye lens present in trace amounts within tissue. The kynurenic acid radical, KNA•-, formed in the quenching of triplet KNA by HEWL, can be readily oxidized by molecular oxygen with the formation of superoxide anion radical O2•-. This leads to two ways of damage to proteins: either via the direct reactions between KNA•- and HEWL• radicals (Type Ia) or via the reactions between superoxide anion O2•- and HEWL• radicals (Type Ib). Our results demonstrate significant degradation of the protein during Type Ia photolysis with the formation of various oligomeric and oxygenated forms of HEWL and several deoxygenated products of KNA. Liquid chromatography-mass spectrometry analysis revealed the cross-linking of HEWL via tryptophan (Trp62) and tyrosine (Tyr23) residues and, for the first time, the covalent binding of KNA to protein via tryptophan (Trp62 and Trp123) residues. It was found that Type Ib reactions lead to substantially smaller damage to HEWL; the degradation quantum yields (Φdeg) of HEWL are 1.3 ± 0.3% and 0.12 ± 0.03% for Type Ia and Ib photolyses, respectively. Low Φdeg values for both types of photolysis indicate the Back Electron Transfer (BET) with the restoration of initial reagents as the main radical decay path with significantly higher BET efficiency in the case of Type Ib reactions. Therefore, in essentially oxygen-free tissues like the eye lens, the direct radical reactions via Type Ia mechanism could induce significantly larger damage to proteins, leading to their cross-linking and oxidation. The accumulation of these modifications can cause the development of various diseases, in particular, cataracts in the eye lens.
Collapse
Affiliation(s)
- Ekaterina D Savina
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia
| | - Yuri P Tsentalovich
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia
| | - Peter S Sherin
- International Tomography Center SB RAS, Institutskaya str. 3A, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| |
Collapse
|
42
|
Basisty N, Holtz A, Schilling B. Accumulation of "Old Proteins" and the Critical Need for MS-based Protein Turnover Measurements in Aging and Longevity. Proteomics 2020; 20:e1800403. [PMID: 31408259 PMCID: PMC7015777 DOI: 10.1002/pmic.201800403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Aging and age-related diseases are accompanied by proteome remodeling and progressive declines in cellular machinery required to maintain protein homeostasis (proteostasis), such as autophagy, ubiquitin-mediated degradation, and protein synthesis. While many studies have focused on capturing changes in proteostasis, the identification of proteins that evade these cellular processes has recently emerged as an approach to studying the aging proteome. With advances in proteomic technology, it is possible to monitor protein half-lives and protein turnover at the level of individual proteins in vivo. For large-scale studies, these technologies typically include the use of stable isotope labeling coupled with MS and comprehensive assessment of protein turnover rates. Protein turnover studies have revealed groups of highly relevant long-lived proteins (LLPs), such as the nuclear pore complexes, extracellular matrix proteins, and protein aggregates. Here, the role of LLPs during aging and age-related diseases and the methods used to identify and quantify their changes are reviewed. The methods available to conduct studies of protein turnover, used in combination with traditional proteomic methods, will enable the field to perform studies in a systems biology context, as changes in proteostasis may not be revealed in studies that solely measure differential protein abundances.
Collapse
Affiliation(s)
| | - Anja Holtz
- The Buck Institute for Research on AgingNovatoCAUSA
| | | |
Collapse
|
43
|
Truscott RJW, Friedrich MG. Molecular Processes Implicated in Human Age-Related Nuclear Cataract. Invest Ophthalmol Vis Sci 2020; 60:5007-5021. [PMID: 31791064 PMCID: PMC7043214 DOI: 10.1167/iovs.19-27535] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human age-related nuclear cataract is commonly characterized by four biochemical features that involve modifications to the structural proteins that constitute the bulk of the lens: coloration, oxidation, insolubility, and covalent cross-linking. Each of these is progressive and increases as the cataract worsens. Significant progress has been made in understanding the origin of the factors that underpin the loss of lens transparency. Of these four hallmarks of cataract, it is protein-protein cross-linking that has been the most intransigent, and it is only recently, with the advent of proteomic methodology, that mechanisms are being elucidated. A diverse range of cross-linking processes involving several amino acids have been uncovered. Although other hypotheses for the etiology of cataract have been advanced, it is likely that spontaneous decomposition of the structural proteins of the lens, which do not turn over, is responsible for the age-related changes to the properties of the lens and, ultimately, for cataract. Cataract may represent the first and best characterized of a number of human age-related diseases where spontaneous protein modification leads to ongoing deterioration and, ultimately, a loss of tissue function.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
44
|
Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR, Wang K, Williams D, DeTure M, Dickson DW, Cook CN, Seyfried NT, Petrucelli L, Fitzpatrick AWP. Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell 2020; 180:633-644.e12. [PMID: 32032505 PMCID: PMC7491959 DOI: 10.1016/j.cell.2020.01.027] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 01/21/2023]
Abstract
Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease.
Collapse
Affiliation(s)
- Tamta Arakhamia
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christina E Lee
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sean R Kundinger
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kevin Wang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, AZ 85287, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Anthony W P Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
45
|
Off-pathway 3D-structure provides protection against spontaneous Asn/Asp isomerization: shielding proteins Achilles heel. Q Rev Biophys 2020; 53:e2. [PMID: 32000865 DOI: 10.1017/s003358351900009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spontaneous deamidation prompted backbone isomerization of Asn/Asp residues resulting in - most cases - the insertion of an extra methylene group into the backbone poses a threat to the structural integrity of proteins. Here we present a systematical analysis of how temperature, pH, presence of charged residues, but most importantly backbone conformation and dynamics affect isomerization rates as determined by nuclear magnetic resonance in the case of designed peptide-models. We demonstrate that restricted mobility (such as being part of a secondary structural element) may safeguard against isomerization, but this protective factor is most effective in the case of off-pathway folds which can slow the reaction by several magnitudes compared to their on-pathway counterparts. We show that the geometric descriptors of the initial nucleophilic attack of the isomerization can be used to classify local conformation and contribute to the design of stable protein drugs, antibodies or the assessment of the severity of mutations. At any –Asn/AspGly– sites in proteins a spontaneous backbone isomerization occurs within days under physiological conditions leading to various forms of proteopathy. This unwanted transformation especially harmful to long-lived proteins (e.g. hemoglobin and crystallins), can be slowed down, though never stopped, by a rigid three-dimensional protein fold, if it can delay in the conformational maze, on-pathway intermediates from occurring.
Collapse
|
46
|
Stan RC, Bhatt DK, Camargo MM. Cellular Adaptation Relies on Regulatory Proteins Having Episodic Memory. Bioessays 2019; 42:e1900115. [DOI: 10.1002/bies.201900115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Razvan C. Stan
- Cantacuzino National Military‐Medical Institute for Research‐Development Bucharest 050096 Romania
- Department of ImmunologyUniversity of São Paulo São Paulo 05508‐900 Brazil
| | - Darshak K. Bhatt
- Faculty of Medical SciencesGroningen University Groningen 9700 AB The Netherlands
| | | |
Collapse
|
47
|
Masania J, Faustmann G, Anwar A, Hafner-Giessauf H, Rajpoot N, Grabher J, Rajpoot K, Tiran B, Obermayer-Pietsch B, Winklhofer-Roob BM, Roob JM, Rabbani N, Thornalley PJ. Urinary Metabolomic Markers of Protein Glycation, Oxidation, and Nitration in Early-Stage Decline in Metabolic, Vascular, and Renal Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4851323. [PMID: 31827677 PMCID: PMC6885816 DOI: 10.1155/2019/4851323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022]
Abstract
Glycation, oxidation, nitration, and crosslinking of proteins are implicated in the pathogenic mechanisms of type 2 diabetes, cardiovascular disease, and chronic kidney disease. Related modified amino acids formed by proteolysis are excreted in urine. We quantified urinary levels of these metabolites and branched-chain amino acids (BCAAs) in healthy subjects and assessed changes in early-stage decline in metabolic, vascular, and renal health and explored their diagnostic utility for a noninvasive health screen. We recruited 200 human subjects with early-stage health decline and healthy controls. Urinary amino acid metabolites were determined by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. Machine learning was applied to optimise and validate algorithms to discriminate between study groups for potential diagnostic utility. Urinary analyte changes were as follows: impaired metabolic health-increased N ε -carboxymethyl-lysine, glucosepane, glutamic semialdehyde, and pyrraline; impaired vascular health-increased glucosepane; and impaired renal health-increased BCAAs and decreased N ε -(γ-glutamyl)lysine. Algorithms combining subject age, BMI, and BCAAs discriminated between healthy controls and impaired metabolic, vascular, and renal health study groups with accuracy of 84%, 72%, and 90%, respectively. In 2-step analysis, algorithms combining subject age, BMI, and urinary N ε -fructosyl-lysine and valine discriminated between healthy controls and impaired health (any type), accuracy of 78%, and then between types of health impairment with accuracy of 69%-78% (cf. random selection 33%). From likelihood ratios, this provided small, moderate, and conclusive evidence of early-stage cardiovascular, metabolic, and renal disease with diagnostic odds ratios of 6 - 7, 26 - 28, and 34 - 79, respectively. We conclude that measurement of urinary glycated, oxidized, crosslinked, and branched-chain amino acids provides the basis for a noninvasive health screen for early-stage health decline in metabolic, vascular, and renal health.
Collapse
Affiliation(s)
- Jinit Masania
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Gernot Faustmann
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Human Nutrition & Metabolism Research and Training Center (HNMRC), Institute of Molecular Biosciences, Karl Franzens University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Attia Anwar
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Hildegard Hafner-Giessauf
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Nasir Rajpoot
- Department of Computer Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Johanna Grabher
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Beate Tiran
- Clinical Institute of Medical and Clinical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Obermayer-Pietsch
- Clinical Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Brigitte M. Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center (HNMRC), Institute of Molecular Biosciences, Karl Franzens University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Johannes M. Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Naila Rabbani
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Paul J. Thornalley
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
48
|
Schey KL, Wang Z, Friedrich MG, Garland DL, Truscott RJW. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog Retin Eye Res 2019; 76:100802. [PMID: 31704338 DOI: 10.1016/j.preteyeres.2019.100802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
The ocular lens is a unique tissue that contains an age gradient of cells and proteins ranging from newly differentiated cells containing newly synthesized proteins to cells and proteins that are as old as the organism. Thus, the ocular lens is an excellent model for studying long-lived proteins (LLPs) and the effects of aging and post-translational modifications on protein structure and function. Given the architecture of the lens, with young fiber cells in the outer cortex and the oldest cells in the lens nucleus, spatially-resolved studies provide information on age-specific protein changes. In this review, experimental strategies and proteomic methods that have been used to examine age-related and cataract-specific changes to the human lens proteome are described. Measured spatio-temporal changes in the human lens proteome are summarized and reveal a highly consistent, time-dependent set of modifications observed in transparent human lenses. Such measurements have led to the discovery of cataract-specific modifications and the realization that many animal systems are unsuitable to study many of these modifications. Mechanisms of protein modifications such as deamidation, racemization, truncation, and protein-protein crosslinking are presented and the implications of such mechanisms for other long-lived proteins in other tissues are discussed in the context of age-related neurological diseases. A comprehensive understanding of LLP modifications will enhance our ability to develop new therapies for the delay, prevention or reversal of age-related diseases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, USA
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | | | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
49
|
Riggs DL, Silzel JW, Lyon YA, Kang AS, Julian RR. Analysis of Glutamine Deamidation: Products, Pathways, and Kinetics. Anal Chem 2019; 91:13032-13038. [PMID: 31498611 PMCID: PMC8805438 DOI: 10.1021/acs.analchem.9b03127] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spontaneous chemical modifications play an important role in human disease and aging at the molecular level. Deamidation and isomerization are known to be among the most prevalent chemical modifications in long-lived human proteins and are implicated in a growing list of human pathologies, but the relatively minor chemical change associated with these processes has presented a long standing analytical challenge. Although the adoption of high-resolution mass spectrometry has greatly aided the identification of deamidation sites in proteomic studies, isomerization (and the isomeric products of deamidation) remain exceptionally challenging to characterize. Herein, we present a liquid chromatography/mass spectrometry-based approach for rapidly characterizing the isomeric products of Gln deamidation using diagnostic fragments that are abundantly produced and capable of unambiguously identifying both Glu and isoGlu. Importantly, the informative fragment ions are produced through orthogonal fragmentation pathways, thereby enabling the simultaneous detection of both isomeric forms while retaining compatibility with shotgun proteomics. Furthermore, the diagnostic fragments associated with isoGlu pinpoint the location of the modified residue. The utility of this technique is demonstrated by characterizing the isomeric products generated during in vitro aging of a series of glutamine-containing peptides. Sequence-dependent product profiles are obtained, and the abundance of deamidation-linked racemization is examined. Finally, comparisons are made between Gln deamidation, which is relatively poorly understood, and asparagine deamidation, which has been more thoroughly studied.
Collapse
Affiliation(s)
- Dylan L. Riggs
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jacob W. Silzel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yana A. Lyon
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Amrik S. Kang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
50
|
El-Baba TJ, Clemmer DE. Solution thermochemistry of concanavalin A tetramer conformers measured by variable-temperature ESI-IMS-MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 443:93-100. [PMID: 32226278 PMCID: PMC7100878 DOI: 10.1016/j.ijms.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Variable-temperature nano-electrospray ionization coupled with ion mobility spectrometry-mass spectrometry is used to investigate the thermal denaturation of the tetrameric protein concanavalin A. As the solution temperature is increased, changes in mass spectra and collision cross section distributions provide evidence for discrete structural changes that occur at temperatures that are ~40 to 50 degrees below the temperature required for tetramer dissociation. The subtle structural changes are associated with four distinct tetramer conformations with unique melting temperatures. Gibbs-Helmholtz analysis of the free energies determined with respect to the most abundant "native" state yields heat capacities of ΔCp = 1.6 ± 0.3, -2.2 ± 0.4, and -2.9 ± 1.6 kJ·K-1·mol-1, and temperature dependent enthalpies and entropies for the three non-native conformations. Analysis of the thermochemistry indicates that the high-temperature products are entropically stable until the threshold for tetramer dissociation, and changes in heat capacity are consistent with increases in solvation of polar residues. Our findings suggest these high-temperature non-native states result from an increase in disorder at surface exposed regions. Such studies provide valuable insight towards the structural details of non-native states.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington IN, 47401 USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington IN, 47401 USA
| |
Collapse
|