1
|
Meng FZ, Wei WK, Cai MZ, Wang ZQ, Yin LF, Yin WX, Schnabel G, Luo CX. The Mediator complex subunit MoMed15 plays an important role in conferring sensitivity to isoprothiolane by modulating xenobiotic metabolism in M. oryzae. mBio 2024; 15:e0177824. [PMID: 39530687 PMCID: PMC11633134 DOI: 10.1128/mbio.01778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most economically important rice diseases. Fungicides such as isoprothiolane (IPT) have been used extensively for rice blast control, but resistance to IPT in M. oryzae is an emerging threat. In this study, molecular mechanisms of resistance in IPT-resistant mutants were identified. Through whole-genome sequencing and genetic transformation, we identified the gene MoMed15, encoding a transcriptional glutamine-rich co-activator Mediator complex subunit, in which mutations or deletion resulted in moderate IPT resistance. Further research found that MoMed15 physically interacted with the IPT resistance regulatory factor MoIRR to simultaneously regulate both MoIRR expression and the expression of multiple xenobiotic-metabolizing enzymes in response to IPT stress. We hypothesize that some xenobiotic-metabolizing enzymes enhance IPT toxicity by modifying the IPT structure. Variation of MoMed15 affected the recruitment of the transcriptional Mediator complex and decreased the expression of these xenobiotic-metabolizing enzymes, resulting in moderate IPT resistance. We also found that MoPGR1, encoding a protein that activates cytochrome P450 enzymes, was essential to confer IPT sensitivity, and its expression was directly regulated by MoIRR.IMPORTANCEIsoprothiolane (IPT) has been used extensively for the management of rice blast disease and IPT-resistant subpopulations have emerged in Chinese rice fields. The emergence of resistant pathogen populations has led to a steep increase in fungicide use, increasing pesticide risk for the applicator and the environment. The molecular mechanisms of IPT resistance in M. oryzae remain elusive. In this study, we demonstrated that transcriptional co-activator MoMed15 interacts with IPT resistance regulator MoIRR to recruit the Mediator complex, which promotes the expression of xenobiotic-metabolizing enzymes, leading to exacerbated IPT toxicity. The MoMed15 could be used for IPT resistance detection in rice fields.
Collapse
Affiliation(s)
- Fan-Zhu Meng
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Kai Wei
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Zheng Cai
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liang-Fen Yin
- Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chao-Xi Luo
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Garai S, Raizada A, Kumar V, Sopory SK, Pareek A, Singla-Pareek SL, Kaur C. In silico analysis of fungal prion-like proteins for elucidating their role in plant-fungi interactions. Arch Microbiol 2024; 206:308. [PMID: 38896139 DOI: 10.1007/s00203-024-04040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Avi Raizada
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
3
|
Mediator Subunit Med15 Regulates Cell Morphology and Mating in Candida lusitaniae. J Fungi (Basel) 2023; 9:jof9030333. [PMID: 36983501 PMCID: PMC10053558 DOI: 10.3390/jof9030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Candida lusitaniae is an emerging opportunistic pathogenic yeast capable of shifting from yeast to pseudohyphae form, and it is one of the few Candida species with the ability to reproduce sexually. In this study, we showed that a dpp3Δ mutant, inactivated for a putative pyrophosphatase, is impaired in cell separation, pseudohyphal growth and mating. The defective phenotypes were not restored after the reconstruction of a wild-type DPP3 locus, reinforcing the hypothesis of the presence of an additional mutation that we suspected in our previous study. Genetic crosses and genome sequencing identified an additional mutation in MED15, encoding a subunit of the mediator complex that functions as a general transcriptional co-activator in Eukaryotes. We confirmed that inactivation of MED15 was responsible for the defective phenotypes by rescuing the dpp3Δ mutant with a wild-type copy of MED15 and constructing a med15Δ knockout mutant that mimics the phenotypes of dpp3Δ in vitro. Proteomic analyses revealed the biological processes under the control of Med15 and involved in hyphal growth, cell separation and mating. This is the first description of the functions of MED15 in the regulation of hyphal growth, cell separation and mating, and the pathways involved in C. lusitaniae.
Collapse
|
4
|
Zhang J, Fan F, Zhang L, Shen B. Nuclear Factor AP2X-4 Governs the Expression of Cell Cycle- and Life Stage-Regulated Genes and is Critical for Toxoplasma Growth. Microbiol Spectr 2022; 10:e0012022. [PMID: 35735977 PMCID: PMC9430314 DOI: 10.1128/spectrum.00120-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous pathogen infecting one third of the world's population and diverse animals. It has a complex life cycle alternating among different developmental stages, which contributes to its transmission and pathogenesis. The parasite has a sophisticated gene regulation network that enables timely expression of genes at designated stages. However, little is known about the underlying regulatory mechanisms. Here, we identified an AP2 family transcription factor named TgAP2X-4, which was crucial for parasite growth during the acute infection stage. TgAP2X-4 deletion leads to reduced expression of many genes that are normally upregulated during the M phase of the cell cycle. These include genes that encode rhoptry neck proteins that are key for parasite invasion. As a result, the Δap2X-4 mutant displayed significantly decreased efficiency of host cell invasion. Transcriptomic analyses suggested that TgAP2X-4 also regulates a large group of genes that are typically induced during chronic infection, such as BAG1 and LDH2. Given the diverse impacts on gene expression, TgAP2X-4 inactivation results in severely impaired parasite growth, as well as drastic attenuation of parasite virulence and complete inability to form chronic infection. Therefore, TgAP2X-4 represents a candidate for antitoxoplasmic drug and vaccine designs. IMPORTANCE Toxoplasma gondii has a complicated gene regulation network that allows "just in time" expression of genes to cope with the physiological needs at each stage during the complex life cycle. However, how such regulation is achieved is largely unknown. Here, we identified a transcription factor named TgAP2X-4 that is critical for the growth and life cycle progression of the parasite. Detailed analyses found that TgAP2X-4 regulated the expression of many cell cycle-regulated genes, including a subset of rhoptry genes that were essential for the parasites to enter host cells. It also regulated the expression of many genes involved in the development of chronic infection. Because of the diverse impacts on gene expression, TgAP2X-4 inactivation caused reduced parasite growth in vitro and attenuated virulence in vivo. Therefore, it is a potential target for drug or vaccine designs against Toxoplasma infections.
Collapse
Affiliation(s)
- Jingwen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Fuqiang Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Lihong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
5
|
Vicioso-Mantis M, Aguirre S, Martínez-Balbás MA. JmjC Family of Histone Demethylases Form Nuclear Condensates. Int J Mol Sci 2022; 23:ijms23147664. [PMID: 35887017 PMCID: PMC9319511 DOI: 10.3390/ijms23147664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022] Open
Abstract
The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from histone demethylation. This raises the possibility that they might share domains that contribute to their functional outcome. Here, we show that the JMJC-KDMs contain low-complexity domains and intrinsically disordered regions (IDR), which in some cases reached 70% of the protein. Our data revealed that plant homeodomain finger protein (PHF2), KDM2A, and KDM4B cluster by phase separation. Moreover, our molecular analysis implies that PHF2 IDR contributes to transcription regulation. These data suggest that clustering via phase separation is a common feature that JMJC-KDMs utilize to facilitate their functional responses. Our study uncovers a novel potential function for the JMJC-KDM family that sheds light on the mechanisms to achieve the competent concentration of molecules in time and space within the cell nucleus.
Collapse
|
6
|
Shi Y, Chen J, Zeng WJ, Li M, Zhao W, Zhang XD, Yao J. Formation of nuclear condensates by the Mediator complex subunit Med15 in mammalian cells. BMC Biol 2021; 19:245. [PMID: 34789250 PMCID: PMC8597291 DOI: 10.1186/s12915-021-01178-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background The Mediator complex is an evolutionarily conserved multi-subunit protein complex that plays major roles in transcriptional activation and is essential for cell growth, proliferation, and differentiation. Recent studies revealed that some Mediator subunits formed nuclear condensates that may facilitate enhancer-promoter interactions and gene activation. The assembly, regulation, and functions of these nuclear condensates remain to be further understood. Results We found that Med15, a subunit in the tail module of the Mediator complex, formed nuclear condensates through a novel mechanism. Nuclear foci of Med15 were detected by both immunostaining of endogenous proteins and live cell imaging. Like Med1 foci and many other biomolecular condensates, Med15 foci were sensitive to 1, 6-Hexanediol and showed rapid recovery during fluorescence recovery after photobleaching. Interestingly, overexpressing DYRK3, a dual-specificity kinase that controls the phase transition of membraneless organelles, appeared to disrupt Med1 foci and Med15 foci. We identified two regions that are required to form Med15 nuclear condensates: the glutamine-rich intrinsically disordered region (IDR) and a short downstream hydrophobic motif. The optodroplet assay revealed that both the IDR and the C-terminal region of Med15 contributed to intracellular phase separation. Conclusions We identified that the Mediator complex subunit Med15 formed nuclear condensates and characterized their features in living cells. Our work suggests that Med15 plays a role in the assembly of transcription coactivator condensates in the nucleus and identifies Med15 regions that contribute to phase separation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01178-y.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jian Chen
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei-Jie Zeng
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Miao Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wenxue Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xing-Ding Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| | - Jie Yao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China. .,Present Address: Allen Institute for Cell Science, Seattle, WA, 98109, USA.
| |
Collapse
|
7
|
Cooper DG, Jiang Y, Skuodas S, Wang L, Fassler JS. Possible Role for Allelic Variation in Yeast MED15 in Ecological Adaptation. Front Microbiol 2021; 12:741572. [PMID: 34733258 PMCID: PMC8558680 DOI: 10.3389/fmicb.2021.741572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.
Collapse
Affiliation(s)
- David G Cooper
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Yishuo Jiang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Sydney Skuodas
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Luying Wang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Jan S Fassler
- Biology Department, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
He H, Denecker J, Van Der Kelen K, Willems P, Pottie R, Phua SY, Hannah MA, Vertommen D, Van Breusegem F, Mhamdi A. The Arabidopsis mediator complex subunit 8 regulates oxidative stress responses. THE PLANT CELL 2021; 33:2032-2057. [PMID: 33713138 PMCID: PMC8290281 DOI: 10.1093/plcell/koab079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 05/13/2023]
Abstract
Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Jordi Denecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, 9052 Gent, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Author for correspondence: (A.M.)
| |
Collapse
|
9
|
Mediator subunit Med15 dictates the conserved "fuzzy" binding mechanism of yeast transcription activators Gal4 and Gcn4. Nat Commun 2021; 12:2220. [PMID: 33850123 PMCID: PMC8044209 DOI: 10.1038/s41467-021-22441-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a “fuzzy” protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein–protein interaction. The intrinsically disordered acidic activation domain (AD) of the yeast transcription factor Gal4 acts through binding to the Med15 subunit of the Mediator complex. Here, the authors show that Gal4 interacts with Med15 through an identical fuzzy binding mechanism as Gcn4 AD, which has a different sequence, revealing a common sequence-independent mechanism for AD-Mediator binding. In contrast, Gal4 AD binds to the Gal80 repressor as a structured polypeptide, which strongly suggests that the structured binding partner dictates the type of protein–protein interaction for an intrinsically disordered protein.
Collapse
|
10
|
MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation. Commun Biol 2021; 4:414. [PMID: 33772081 PMCID: PMC7997880 DOI: 10.1038/s42003-021-01930-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
A disordered to β-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a β-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.
Collapse
|
11
|
Zhang H, Chen DH, Mattoo RUH, Bushnell DA, Wang Y, Yuan C, Wang L, Wang C, Davis RE, Nie Y, Kornberg RD. Mediator structure and conformation change. Mol Cell 2021; 81:1781-1788.e4. [PMID: 33571424 DOI: 10.1016/j.molcel.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023]
Abstract
Mediator is a universal adaptor for transcription control. It serves as an interface between gene-specific activator or repressor proteins and the general RNA polymerase II (pol II) transcription machinery. Previous structural studies revealed a relatively small part of Mediator and none of the gene activator-binding regions. We have determined the cryo-EM structure of the Mediator at near-atomic resolution. The structure reveals almost all amino acid residues in ordered regions, including the major targets of activator proteins, the Tail module, and the Med1 subunit of the Middle module. Comparison of Mediator structures with and without pol II reveals conformational changes that propagate across the entire Mediator, from Head to Tail, coupling activator- and pol II-interacting regions.
Collapse
Affiliation(s)
- Heqiao Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rayees U H Mattoo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yannan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chunnian Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Ralph E Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China.
| | - Roger D Kornberg
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Peng L, Li EM, Xu LY. From start to end: Phase separation and transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194641. [PMID: 33017669 DOI: 10.1016/j.bbagrm.2020.194641] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/05/2023]
Abstract
Phase separation is the basis for the formation of membrane-less organelles in cells and is involved in many biological processes. Many biological macromolecules, such as proteins and nucleic acids, exert their biological functions by forming phase-separated condensates, and phase separation is closely related to various human diseases. Gene transcriptional regulation is an indispensable part of gene expression and normal function in cells. Its abnormal regulation often causes the occurrence of different diseases. In recent years, the occurrence of phase separation during transcriptional regulation has become an area of intense research. This review summarizes the process of phase separation involved in heterochromatin formation and chromatin remodeling, transcriptional regulation and post-transcriptional regulation. It provides a reference for understanding gene regulation during cell identity and disease development.
Collapse
Affiliation(s)
- Liu Peng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
13
|
Gallagher JE, Ser SL, Ayers MC, Nassif C, Pupo A. The Polymorphic PolyQ Tail Protein of the Mediator Complex, Med15, Regulates the Variable Response to Diverse Stresses. Int J Mol Sci 2020; 21:ijms21051894. [PMID: 32164312 PMCID: PMC7094212 DOI: 10.3390/ijms21051894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
The Mediator is composed of multiple subunits conserved from yeast to humans and plays a central role in transcription. The tail components are not required for basal transcription but are required for responses to different stresses. While some stresses are familiar, such as heat, desiccation, and starvation, others are exotic, yet yeast can elicit a successful stress response. 4-Methylcyclohexane methanol (MCHM) is a hydrotrope that induces growth arrest in yeast. We found that a naturally occurring variation in the Med15 allele, a component of the Mediator tail, altered the stress response to many chemicals in addition to MCHM. Med15 contains two polyglutamine repeats (polyQ) of variable lengths that change the gene expression of diverse pathways. The Med15 protein existed in multiple isoforms and its stability was dependent on Ydj1, a protein chaperone. The protein level of Med15 with longer polyQ tracts was lower and turned over faster than the allele with shorter polyQ repeats. MCHM sensitivity via variation of Med15 was regulated by Snf1 in a Myc-tag-dependent manner. Tagging Med15 with Myc altered its function in response to stress. Genetic variation in transcriptional regulators magnified genetic differences in response to environmental changes. These polymorphic control genes were master variators.
Collapse
|