1
|
Boissinot K, Peytavi R, Chapdelaine S, Geissler M, Boissinot M, Martel EA, Béliveau-Viel D, Gravel JF, Malic L, Veres T, Boudreau D, Bergeron MG. Real-time monitoring of bead-based DNA hybridization in a microfluidic system: study of amplicon hybridization behavior on solid supports. Analyst 2021; 146:4226-4234. [PMID: 34095908 DOI: 10.1039/d1an00394a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA hybridization phenomena occurring on solid supports are not understood as clearly as aqueous phase hybridizations and mathematical models cannot predict some empirically obtained results. Ongoing research has identified important parameters but remains incomplete to accurately account for all interactions. It has previously been shown that the length of the overhanging (dangling) end of the target DNA strand following hybridization to the capture probe is correlated to interactions with the complementary strand in solution which can result in unbinding of the target and its release from the surface. We have developed an instrument for real-time monitoring of DNA hybridization on spherical particles functionalized with oligonucleotide capture probes and arranged in the form of a tightly packed monolayer bead bed inside a microfluidic cartridge. The instrument is equipped with a pneumatic module to mediate displacement of fluid on the cartridge. We compared this system to both conventional (passive) and centrifugally-driven (active) microfluidic microarray hybridization on glass slides to establish performance levels for the detection of single nucleotide polymorphisms. The system was also used to study the effect of the dangling end's length in real-time when the immobilized target DNA is exposed to the complementary strand in solution. Our findings indicate that increasing the length of the dangling end leads to desorption of target amplicons from bead-bound capture probes at a rate approaching that of the initial hybridization process. Finally, bead bed hybridization was performed with Streptococcus agalactiae cfb gene amplicons obtained from randomized clinical samples, which allowed for identification of group B streptococci within 5-15 min. The methodology presented here is useful for investigating competitive hybridization mechanisms on solid supports and to rapidly validate the suitability of microarray capture probes.
Collapse
Affiliation(s)
- Karel Boissinot
- Centre de recherche en infectiologie de l'Université Laval, Axe Maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada. and Département de microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Régis Peytavi
- Centre de recherche en infectiologie de l'Université Laval, Axe Maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada. and Département de microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Sébastien Chapdelaine
- Centre d'optique, photonique et laser (COPL), Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 boulevard de Mortagne, Boucherville, QC J4B 6Y4, Canada.
| | - Maurice Boissinot
- Centre de recherche en infectiologie de l'Université Laval, Axe Maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada.
| | - Eric A Martel
- Centre de recherche en infectiologie de l'Université Laval, Axe Maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada.
| | - David Béliveau-Viel
- Centre d'optique, photonique et laser (COPL), Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Jean-François Gravel
- Centre d'optique, photonique et laser (COPL), Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 boulevard de Mortagne, Boucherville, QC J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 boulevard de Mortagne, Boucherville, QC J4B 6Y4, Canada.
| | - Denis Boudreau
- Centre d'optique, photonique et laser (COPL), Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada and Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Michel G Bergeron
- Centre de recherche en infectiologie de l'Université Laval, Axe Maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada. and Département de microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Young JM, Higgins D, Austin JJ. Hybridization Enrichment to Improve Forensic Mitochondrial DNA Analysis of Highly Degraded Human Remains. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Crisafulli C, Romeo PD, Calabrò M, Epasto LM, Alberti S. Pharmacogenetic and pharmacogenomic discovery strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:225-241. [PMID: 35582724 PMCID: PMC8992635 DOI: 10.20517/cdr.2018.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/12/2022]
Abstract
Genetic/genomic profiling at a single-patient level is expected to provide critical information for determining inter-individual drug toxicity and potential efficacy in cancer therapy. A better definition of cancer subtypes at a molecular level, may correspondingly complement such pharmacogenetic and pharmacogenomic approaches, for more effective personalized treatments. Current pharmacogenetic/pharmacogenomic strategies are largely based on the identification of known polymorphisms, thus limiting the discovery of novel or rarer genetic variants. Recent improvements in cost and throughput of next generation sequencing (NGS) are now making whole-genome profiling a plausible alternative for clinical procedures. Beyond classical pharmacogenetic/pharmacogenomic traits for drug metabolism, NGS screening programs of cancer genomes may lead to the identification of novel cancer-driving mutations. These may not only constitute novel therapeutic targets, but also effector determinants for metabolic pathways linked to drug metabolism. An additional advantage is that cancer NGS profiling is now leading to discovering targetable mutations, e.g., in glioblastomas and pancreatic cancers, which were originally discovered in other tumor types, thus allowing for effective repurposing of active drugs already on the market.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | | | - Marco Calabrò
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Ludovica Martina Epasto
- Unit of Medical Genetics, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Saverio Alberti
- Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy.,Unit of Medical Genetics, University of Messina, via Consolare Valeria, 98125 Messina, Italy.,Correspondence Address: Prof. Saverio Alberti, Unit of Medical Genetics, BIOMORF Department of Biomedical Sciences, University of Messina, via Consolare Valeria, 98125 Messina, Italy. E-mail:
| |
Collapse
|
4
|
Relli V, Trerotola M, Guerra E, Alberti S. Distinct lung cancer subtypes associate to distinct drivers of tumor progression. Oncotarget 2018; 9:35528-35540. [PMID: 30473748 PMCID: PMC6238974 DOI: 10.18632/oncotarget.26217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
The main non–small-cell lung cancer (NSCLC) histopathological subtypes are lung adenocarcinomas (LUAD) and lung squamous cell carcinomas (LUSC). To identify candidate progression determinants of NSCLC subtypes, we explored the transcriptomic signatures of LUAD versus LUSC. We then investigated the prognostic impact of the identified tumor-associated determinants. This was done utilizing DNA microarray data from 2,437 NSCLC patients. An independent analysis of a case series of 994 NSCLC was conducted by next-generation sequencing, together with gene expression profiling from GEO (https://www.ncbi.nlm.nih.gov/geo/). This work led us to identify 69 distinct tumor prognostic determinants, which impact on LUAD or LUSC clinical outcome. These included key drivers of tumor growth and cell cycle, transcription factors and metabolic determinants. Such disease determinants appeared vastly different in LUAD versus LUSC, and often had opposite impact on clinical outcome. These findings indicate that distinct tumor progression pathways are at work in the two NSCLC subtypes. Notably, most prognostic determinants would go inappropriately assessed or even undetected when globally investigating unselected NSCLC. Hence, differential consideration for NSCLC subtypes should be taken into account in current clinical evaluation procedures for lung cancer.
Collapse
Affiliation(s)
- Valeria Relli
- Unit of Cancer Pathology, CeSI-MeT, University "G. d'Annunzio", Chieti, Italy
| | - Marco Trerotola
- Unit of Cancer Pathology, CeSI-MeT, University "G. d'Annunzio", Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Emanuela Guerra
- Unit of Cancer Pathology, CeSI-MeT, University "G. d'Annunzio", Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI-MeT, University "G. d'Annunzio", Chieti, Italy.,Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Girard LD, Boissinot K, Peytavi R, Boissinot M, Bergeron MG. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization. Analyst 2015; 140:912-21. [PMID: 25489607 DOI: 10.1039/c4an01352b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets.
Collapse
Affiliation(s)
- Laurie D Girard
- Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec, Québec City, Québec, Canada.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Genome‐wide SNP analyses have identified genomic variants associated with adult human height. However, these only explain a fraction of human height variation, suggesting that significant information might have been systematically missed by SNP sequencing analysis. A candidate for such non‐SNP‐linked information is DNA methylation. Regulation by DNA methylation requires the presence of CpG islands in the promoter region of candidate genes. Seventy two of 87 (82.8%), height‐associated genes were indeed found to contain CpG islands upstream of the transcription start site (USC CpG island searcher; validation: UCSC Genome Browser), which were shown to correlate with gene regulation. Consistent with this, DNA hypermethylation modules were detected in 42 height‐associated genes, versus 1.5% of control genes (P = 8.0199e−17), as were dynamic methylation changes and gene imprinting. Epigenetic heredity thus appears to be a determinant of adult human height. Major findings in mouse models and in human genetic diseases support this model. Modulation of DNA methylation are candidate to mediate environmental influence on epigenetic traits. This may help to explain progressive height changes over multiple generations, through trans‐generational heredity of progressive DNA methylation patterns. Epigenetic heredity appears to be a determinant of adult human height. Major findings in mouse models and in human genetic diseases support this model. Modulation of DNA methylation is candidate to mediate environmental influence on epigenetic traits.
Collapse
Affiliation(s)
- Pasquale Simeone
- Unit of Cancer Pathology, Department of Neuroscience and Imaging and CeSI, University "G. d'Annunzio" Foundation, Chieti Scalo, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, Department of Neuroscience and Imaging and CeSI, University "G. d'Annunzio" Foundation, Chieti Scalo, Italy
| |
Collapse
|
7
|
Rao AN, Grainger DW. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE. Biomater Sci 2014; 2:436-471. [PMID: 24765522 PMCID: PMC3992954 DOI: 10.1039/c3bm60181a] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.
Collapse
Affiliation(s)
- Archana N. Rao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| | - David W. Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
8
|
Long-range transcriptome sequencing reveals cancer cell growth regulatory chimeric mRNA. Neoplasia 2013; 14:1087-96. [PMID: 23226102 DOI: 10.1593/neo.121342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 08/16/2012] [Accepted: 09/30/2012] [Indexed: 12/15/2022] Open
Abstract
mRNA chimeras from chromosomal translocations often play a role as transforming oncogenes. However, cancer transcriptomes also contain mRNA chimeras that may play a role in tumor development, which arise as transcriptional or post-transcriptional events. To identify such chimeras, we developed a deterministic screening strategy for long-range sequence analysis. High-throughput, long-read sequencing was then performed on cDNA libraries from major tumor histotypes and corresponding normal tissues. These analyses led to the identification of 378 chimeras, with an unexpectedly high frequency of expression (≈2 x 10(-5) of all mRNA). Functional assays in breast and ovarian cancer cell lines showed that a large fraction of mRNA chimeras regulates cell replication. Strikingly, chimeras were shown to include both positive and negative regulators of cell growth, which functioned as such in a cell-type-specific manner. Replication-controlling chimeras were found to be expressed by most cancers from breast, ovary, colon, uterus, kidney, lung, and stomach, suggesting a widespread role in tumor development.
Collapse
|
9
|
Rao AN, Rodesch CK, Grainger DW. Real-time fluorescent image analysis of DNA spot hybridization kinetics to assess microarray spot heterogeneity. Anal Chem 2012; 84:9379-87. [PMID: 23043216 DOI: 10.1021/ac302165h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current microarray assay technology predominately uses fluorescence as a detectable signal end point. This study assessed real-time in situ surface hybridization capture kinetics for single printed DNA microspots on solid array surfaces using fluorescence. The influence of the DNA target and probe cyanine dye position on oligo-DNA duplex formation behavior was compared in solution versus surface-hybridized single DNA printed spots using fluorescence resonance energy transfer (FRET) analysis. Fluorophore Cy3/Cy5 fluorescence intensities were analyzed both through the printed hybridized DNA spot thickness and radially across single-spot surfaces. Confocal single-spot imaging shows that real-time in situ hybridization kinetics with constant target concentrations changes as a function of the printed probe density. Target-specific imaging in single spots exhibits a heterogeneous printed probe radial density that influences hybridization spatially and temporally via radial hemispherical diffusion of dye-labeled target from the outside edge of the spot to the interior. FRET of the surface-captured target occurs irrespective of the probe/target fluorophore position, resulting from excess printed probe density and spot thickness. Both heterogeneous probe density distributions in printed spots and the fluorophore position on short DNA oligomers influence duplex formation kinetics, hybridization efficiencies, and overall fluorescence intensity end points in surface-capture formats. This analysis is important to understanding, controlling, and quantifying the array assay signal essential to reliable application of the surface-capture format.
Collapse
Affiliation(s)
- Archana N Rao
- Department of Pharmaceutics and Pharmaceutical Chemistry, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | |
Collapse
|
10
|
Trerotola M, Cantanelli P, Guerra E, Tripaldi R, Aloisi AL, Bonasera V, Lattanzio R, Lange RD, Weidle UH, Piantelli M, Alberti S. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 2012; 32:222-33. [DOI: 10.1038/onc.2012.36] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Amstutz U, Andrey-Zürcher G, Suciu D, Jaggi R, Häberle J, Largiadèr CR. Sequence capture and next-generation resequencing of multiple tagged nucleic acid samples for mutation screening of urea cycle disorders. Clin Chem 2010; 57:102-11. [PMID: 21068339 DOI: 10.1373/clinchem.2010.150706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Molecular genetic testing is commonly used to confirm clinical diagnoses of inherited urea cycle disorders (UCDs); however, conventional mutation screenings encompassing only the coding regions of genes may not detect disease-causing mutations occurring in regulatory elements and introns. Microarray-based target enrichment and next-generation sequencing now allow more-comprehensive genetic screening. We applied this approach to UCDs and combined it with the use of DNA bar codes for more cost-effective, parallel analyses of multiple samples. METHODS We used sectored 2240-feature medium-density oligonucleotide arrays to capture and enrich a 199-kb genomic target encompassing the complete genomic regions of 3 urea cycle genes, OTC (ornithine carbamoyltransferase), CPS1 (carbamoyl-phosphate synthetase 1, mitochondrial), and NAGS (N-acetylglutamate synthase). We used the Genome Sequencer FLX System (454 Life Sciences) to jointly analyze 4 samples individually tagged with a 6-bp DNA bar code and compared the results with those for an individually sequenced sample. RESULTS Using a low tiling density of only 1 probe per 91 bp, we obtained strong enrichment of the targeted loci to achieve ≥90% coverage with up to 64% of the sequences covered at a sequencing depth ≥10-fold. We observed a very homogeneous sequence representation of the bar-coded samples, which yielded a >30% increase in the sequence data generated per sample, compared with an individually processed sample. Heterozygous and homozygous disease-associated mutations were correctly detected in all samples. CONCLUSIONS The use of DNA bar codes and the use of sectored oligonucleotide arrays for target enrichment enable parallel, large-scale analysis of complete genomic regions for multiple genes of a disease pathway and for multiple samples simultaneously. This approach thus may provide an efficient tool for comprehensive diagnostic screening of mutations.
Collapse
Affiliation(s)
- Ursula Amstutz
- Institute of Clinical Chemistry, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Bashiardes S, Kousoulidou L, van Bokhoven H, Ropers HH, Chelly J, Moraine C, de Brouwer APM, Van Esch H, Froyen G, Patsalis PC. A new chromosome x exon-specific microarray platform for screening of patients with X-linked disorders. J Mol Diagn 2009; 11:562-8. [PMID: 19779134 DOI: 10.2353/jmoldx.2009.090086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent studies and advances in high-density oligonucleotide arrays have shown that microdeletions and microduplications occur at a high frequency in the human genome, causing various genetic conditions including mental retardation. Thus far little is known about the pathways leading to this disease, and implementation of microarrays is hampered by their increasing cost and complexity, underlining the need for new diagnostic tools. The aim of this study was to introduce a new targeted platform called "chromosome X exon-specific array" and to apply this new platform to screening of 20 families (including one blind positive control) with suspected X-linked mental retardation, to identify new causative X-linked mental retardation genes. The new microarray contains of 21,939 oligonucleotides covering 92.9% of all exons of all genes on chromosome X. Patient screening resulted in successful identification of the blind positive control included in the sample of 20 families, and one of the remaining 19 families was found to carry a 1.78-kilobase deletion involving all exons of pseudogene BRAF2. The BRAF2 deletion segregated in the family and was not found in 200 normal male samples, and no copy number variations are reported in this region. Further studies and focused investigation of X-linked disorders have the potential to reveal the molecular basis of human genetic pathological conditions that are caused by copy-number changes in chromosome X genes.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Cyprus Institute of Neurology and Genetics, PO Box 23462, 1683 Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Batchelor-McAuley C, Wildgoose GG, Compton RG. The physicochemical aspects of DNA sensing using electrochemical methods. Biosens Bioelectron 2009; 24:3183-90. [DOI: 10.1016/j.bios.2009.01.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|
14
|
Poulsen L, Søe MJ, Snakenborg D, Møller LB, Dufva M. Multi-stringency wash of partially hybridized 60-mer probes reveals that the stringency along the probe decreases with distance from the microarray surface. Nucleic Acids Res 2008; 36:e132. [PMID: 18805905 PMCID: PMC2582620 DOI: 10.1093/nar/gkn600] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Here, we describe a multi-parametric study of DNA hybridization to probes with 20–70% G + C content. Probes were designed towards 71 different sites/mutations in the phenylalanine hydroxylase gene. Seven probe lengths, three spacer lengths and six stringencies were systematically varied. The three spacer lengths were obtained by placing the gene-specific sequence in discrete steps along the 60-mer probes. The study was performed using Agilent 8 × 15 000 probes custom-made arrays and a home-built array washer providing different stringencies to each of the eight sub-arrays on the slides. Investigation of hybridization signals, specificity and dissociation curves indicated that probes close to the surface were influenced by an additional stringency provided by the microarray surface. Consistent with this, probes close to the surface required 4 × SSC, while probes placed away from the surface required 0.35 × SSC wash buffers in order to give accurate genotyping results. Multiple step dissociation was frequently observed for probes placed furthest away from surface, but not for probes placed proximal to the surface, which is consistent with the hypothesis that there is different stringency along the 60-mer. The results have impact on design of probes for genotyping, gene expression and comparative genome hybridization analysis.
Collapse
Affiliation(s)
- Lena Poulsen
- DTU Nanotech, Department of Micro and Nanotechnology, Technical University of Denmark, Oersteds Plads, Bld. 345 East, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
15
|
Array-MAPH: a methodology for the detection of locus copy-number changes in complex genomes. Nat Protoc 2008; 3:849-65. [DOI: 10.1038/nprot.2008.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Kousoulidou L, Männik K, Zilina O, Parkel S, Palta P, Remm M, Kurg A, Patsalis PC. Application of two different microarray-based copy-number detection methodologies – array-comparative genomic hybridization and array-multiplex amplifiable probe hybridization – with identical amplifiable target sequences. Clin Chem Lab Med 2008; 46:722-4. [DOI: 10.1515/cclm.2008.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|