1
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Chai R, Guo J, Geng Y, Huang S, Wang H, Yao X, Li T, Qiu L. The Influence of Homologous Arm Length on Homologous Recombination Gene Editing Efficiency Mediated by SSB/CRISPR-Cas9 in Escherichia coli. Microorganisms 2024; 12:1102. [PMID: 38930484 PMCID: PMC11205466 DOI: 10.3390/microorganisms12061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The precise editing of genes mediated by CRISPR-Cas9 necessitates the application of donor DNA with appropriate lengths of homologous arms and fragment sizes. Our previous development, SSB/CRISPR-Cas9, has demonstrated high efficiency in homologous recombination and non-homologous end joining gene editing within bacteria. In this study, we optimized the lengths and sizes of homologous arms of the donor DNA within this system. Two sets of donor DNA constructs were generated: one set comprised donors with only 10-100 bp homologous arms, while the other set included donors with homologous arms ranging from 10-100 bp, between which was a tetracycline resistance expression cassette (1439 bp). These donor constructs were transformed into Escherichia coli MG1655 cells alongside pCas-SSB/pTargetF-lacZ. Notably, when the homologous arms ranged from 10 to 70 bp, the transformation efficiency of non-selectable donors was significantly higher than that of selectable donors. However, within the range of 10-100 bp homologous arm lengths, the homologous recombination rate of selectable donors was significantly higher than that of non-selectable donors, with the gap narrowing as the homologous arm length increased. For selectable donor DNA with homologous arm lengths of 10-60 bp, the homologous recombination rate increased linearly, reaching a plateau when the homologous arm length was between 60-100 bp. Conversely, for non-selectable donor DNA, the homologous recombination rate increased linearly with homologous arm lengths of 10-90 bp, plateauing at 90-100 bp. Editing two loci simultaneously with 100 bp homologous arms, whether selectable or non-selectable, showed no difference in transformation or homologous recombination rates. Editing three loci simultaneously with 100 bp non-selectable homologous arms resulted in a 45% homologous recombination rate. These results suggest that efficient homologous recombination gene editing mediated by SSB/CRISPR-Cas9 can be achieved using donor DNA with 90-100 bp non-selectable homologous arms or 60-100 bp selectable homologous arms.
Collapse
Affiliation(s)
- Ran Chai
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Jiaxiang Guo
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Yue Geng
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Shuai Huang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Haifeng Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Xinding Yao
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Tao Li
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China
| | - Liyou Qiu
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| |
Collapse
|
3
|
Salman A, McClements ME, MacLaren RE. CRISPR Manipulation of Age-Related Macular Degeneration Haplotypes in the Complement System: Potential Future Therapeutic Applications/Avenues. Int J Mol Sci 2024; 25:1697. [PMID: 38338978 PMCID: PMC10855085 DOI: 10.3390/ijms25031697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss among the elderly in the developed world. Whilst AMD is a multifactorial disease, the involvement of the complement system in its pathology is well documented, with single-nucleotide polymorphisms (SNPs) in different complement genes representing an increased risk factor. With several complement inhibitors explored in clinical trials showing limited success, patients with AMD are still without a reliable treatment option. This indicates that there is still a gap of knowledge in the functional implications and manipulation of the complement system in AMD, hindering the progress towards translational treatments. Since the discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool, the field of molecular biology has been revolutionised. Genetic variants in the complement system have long been associated with an increased risk of AMD, and a variety of haplotypes have been identified to be predisposing/protective, with variation in complement genes believed to be the trigger for dysregulation of the cascade leading to inflammation. AMD-haplotypes (SNPs) alter specific aspects of the activation and regulation of the complement cascade, providing valuable insights into the pathogenic mechanisms of AMD with important diagnostic and therapeutic implications. The effect of targeting these AMD-related SNPs on the regulation of the complement cascade has been poorly explored, and the CRISPR/Cas system provides an ideal tool with which to explore this avenue. Current research concentrates on the association events of specific AMD-related SNPs in complement genes without looking into the effect of targeting these SNPs and therefore influencing the complement system in AMD pathogenesis. This review will explore the current understanding of manipulating the complement system in AMD pathogenesis utilising the genomic manipulation powers of the CRISPR/Cas systems. A number of AMD-related SNPs in different complement factor genes will be explored, with a particular emphasis on factor H (CFH), factor B (CFB), and complement C3 (C3).
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
4
|
Du X, McManus DP, French JD, Sivakumaran H, Johnston RL, Kondrashova O, Fogarty CE, Jones MK, You H. Lentiviral Transduction-based CRISPR/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase. Curr Genomics 2023; 24:155-170. [PMID: 38178986 PMCID: PMC10761339 DOI: 10.2174/1389202924666230823094608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 01/06/2024] Open
Abstract
Background Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Juliet D. French
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca L. Johnston
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
5
|
Hu LF, Li YX, Wang JZ, Zhao YT, Wang Y. Controlling CRISPR-Cas9 by guide RNA engineering. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1731. [PMID: 35393779 DOI: 10.1002/wrna.1731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/15/2022] [Indexed: 01/31/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a product of million years of evolution by microbes to fight against invading genetic materials. Around 10 years ago, scientists started to repurpose the CRISPR as genetic tools by molecular engineering approaches. The guide RNA provides a versatile and unique platform for the innovation to improve and expand the application of CRISPR-Cas9 system. In this review, we will first introduce the basic sequence and structure of guide RNA and its role during the function of CRISPR-Cas9. We will then summarize recent progress on the development of various guide RNA engineering strategies. These strategies have been dedicated to improve the performance of CRISPR-Cas9, to achieve precise spatiotemporal control of CRISPR-Cas9, and to broaden the application of CRISPR-Cas9. Finally, we will briefly discuss the uniqueness and advantage of guide RNA-engineering based systems versus those with engineered Cas9 proteins and speculate potential future directions in guide RNA engineering. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Lu-Feng Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yu-Xuan Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jia-Zhen Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yu-Ting Zhao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
6
|
Liang X, Boonhok R, Siddiqui FA, Xiao B, Li X, Qin J, Min H, Jiang L, Cui L, Miao J. A Leak-Free Inducible CRISPRi/a System for Gene Functional Studies in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0278221. [PMID: 35510853 PMCID: PMC9241666 DOI: 10.1128/spectrum.02782-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
By fusing catalytically dead Cas9 (dCas9) to active domains of histone deacetylase (Sir2a) or acetyltransferase (GCN5), this CRISPR interference/activation (CRISPRi/a) system allows gene regulation at the transcriptional level without causing permanent changes in the parasite genome. However, the constitutive expression of dCas9 poses a challenge for studying essential genes, which may lead to adaptive changes in the parasite, masking the true phenotypes. Here, we developed a leak-free inducible CRISPRi/a system by integrating the DiCre/loxP regulon to allow the expression of dCas9-GCN5/-Sir2a upon transient induction with rapamycin, which allows convenient transcriptional regulation of a gene of interest by introducing a guide RNA targeting its transcription start region. Using eight genes that are either silent or expressed from low to high levels during asexual erythrocytic development, we evaluated the robustness and versatility of this system in the asexual parasites. For most genes analyzed, this inducible CRISPRi/a system led to 1.5- to 3-fold up-or downregulation of the target genes at the mRNA level. Alteration in the expression of PfK13 and PfMYST resulted in altered sensitivities to artemisinin. For autophagy-related protein 18, an essential gene related to artemisinin resistance, a >2-fold up- or downregulation was obtained by inducible CRISPRi/a, leading to growth retardation. For the master regulator of gametocytogenesis, PfAP2-G, a >10-fold increase of the PfAP2-G transcripts was obtained by CRISPRa, resulting in >4-fold higher gametocytemia in the induced parasites. Additionally, inducible CRISPRi/a could also regulate gene expression in gametocytes. This inducible epigenetic regulation system offers a fast way of studying gene functions in Plasmodium falciparum. IMPORTANCE Understanding the fundamental biology of malaria parasites through functional genetic/genomic studies is critical for identifying novel targets for antimalarial development. Conditional knockout/knockdown systems are required to study essential genes in the haploid blood stages of the parasite. In this study, we developed an inducible CRISPRi/a system via the integration of DiCre/loxP. We evaluated the robustness and versatility of this system by activating or repressing eight selected genes and achieved up- and downregulation of the targeted genes located in both the euchromatin and heterochromatin regions. This system offers the malaria research community another tool for functional genetic studies.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Faiza Amber Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bo Xiao
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
7
|
Quinzo MJ, Perteguer MJ, Brindley PJ, Loukas A, Sotillo J. Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasit Vectors 2022; 15:110. [PMID: 35346328 PMCID: PMC8962113 DOI: 10.1186/s13071-022-05211-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Helminth infections impact the health of hundreds of millions of persons globally and also cause important economic losses in livestock farming. Methodological limitations as well as the low attention given to the study of helminths have impacted biological research and, thus, the procurement of accurate diagnosis and effective treatments. Understanding the biology of helminths using genomic and proteomic approaches could contribute to advances in understanding host-helminth interactions and lead to new vaccines, drugs and diagnostics. Despite the significant advances in genomics in the last decade, the lack of methodological adaptation of current transgenesis techniques has hampered the progression of post-genomic research in helminthology. However, the application of new techniques, such as CRISPR, to the study of trematodes and nematodes has opened new avenues for genome editing-powered functional genomics for these pathogens. This review summarises the historical advances in functional genomics in parasitic helminths and highlights pending limitations that will need to be overcome to deploy transgenesis tools.
Collapse
Affiliation(s)
- M J Quinzo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - M J Perteguer
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - P J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - A Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - J Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
8
|
Le AT, Yu JK, Han GD, Do TK, Chung YS. Potential Use of Colored LED Lights to Increase the Production of Bioactive Metabolites Hedyotis corymbosa (L.) Lam. PLANTS (BASEL, SWITZERLAND) 2022; 11:225. [PMID: 35050113 PMCID: PMC8779199 DOI: 10.3390/plants11020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Hedyotis corymbosa (L.) Lam is a wild herb that is used in traditional Indian, Chinese, and African medicine. Light-emitting diode (LED) technology is paving the way to enhance crop production and inducing targeted photomorphogenic, biochemical, or physiological responses in plants. This study examines the efficiency of H. corymbosa (L.) Lam production under blue 450 nm and red 660 nm LED lights for overall plant growth, photosynthetic characteristics, and the contents of metabolite compounds. Our research showed that blue LED lights provided a positive effect on enhancing plant growth and overall biomass. In addition, blue LED lights are more effective in controlling the production of sucrose, starch, total phenolic compounds, and total flavonoid compared to red LED lights. However, blue and red LED lights played essential but different roles in photosynthetic characteristics. Our results showed the potential of colored LED light applications in improving farming methods and increasing metabolite production in herbs.
Collapse
Affiliation(s)
- Anh Tuan Le
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Korea; (A.T.L.); (G.-D.H.)
- Department of Plant Physiology, Faculty of Biology—Biotechnology, University of Sciences, VNU-HCM, Ho Chi Minh 70000, Vietnam
| | - Ju-Kyung Yu
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, 9 Davis Dr, Durham, NC 27703, USA;
| | - Gyung-Deok Han
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Korea; (A.T.L.); (G.-D.H.)
| | - Thuong Kiet Do
- Department of Plant Physiology, Faculty of Biology—Biotechnology, University of Sciences, VNU-HCM, Ho Chi Minh 70000, Vietnam
| | - Yong-Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Korea; (A.T.L.); (G.-D.H.)
| |
Collapse
|
9
|
Matsumoto K, Yoshida M. Mammalian Chemical Genomics towards Identifying Targets and Elucidating Modes-of-Action of Bioactive Compounds. Chembiochem 2021; 23:e202100561. [PMID: 34813140 DOI: 10.1002/cbic.202100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Indexed: 11/08/2022]
Abstract
The step of identifying target molecules and elucidating the mode of action of bioactive compounds is a major bottleneck for drug discovery from phenotypic screening. Genetic screening for genes that affect drug sensitivity or phenotypes of mammalian cultured cells is a powerful tool to obtain clues to their modes of action. Chemical genomic screening systems for comprehensively identifying such genes or genetic pathways have been established using shRNA libraries for RNA interference-mediated mRNA knockdown or sgRNA libraries for CRISPR/Cas9-mediated gene knockout. The combination of chemical genomic screening in mammalian cells with other approaches such as biochemical searches for target molecules, phenotypic profiling, and yeast genetics provides a systematic way to elucidate the mode of action by converging various pieces of information regarding target molecules, target pathways, and synthetic lethal pathways.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, 113-8657, Japan
| |
Collapse
|
10
|
Tong Y, Jørgensen TS, Whitford CM, Weber T, Lee SY. A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nat Commun 2021; 12:5206. [PMID: 34471126 PMCID: PMC8410854 DOI: 10.1038/s41467-021-25541-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
CRISPR base editing is a powerful method to engineer bacterial genomes. However, it restricts editing to single-nucleotide substitutions. Here, to address this challenge, we adapt a CRISPR-Prime Editing-based, DSB-free, versatile, and single-nucleotide resolution genetic manipulation toolkit for prokaryotes. It can introduce substitutions, deletions, insertions, and the combination thereof, both in plasmids and the chromosome of E. coli with high fidelity. Notably, under optimal conditions, the efficiency of 1-bp deletions reach up to 40%. Moreover, deletions of up to 97 bp and insertions up to 33 bp were successful with the toolkit in E. coli, however, efficiencies dropped sharply with increased fragment sizes. With a second guide RNA, our toolkit can achieve multiplexed editing albeit with low efficiency. Here we report not only a useful addition to the genome engineering arsenal for E. coli, but also a potential basis for the development of similar toolkits for other bacteria.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, China.
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
- Department of Chemical and Biomolecular Engineering, BioProcess Engineering Research Center, BioInformatics Research Center, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Wang S, Zhang F, Mei M, Wang T, Yun Y, Yang S, Zhang G, Yi L. A split protease-E. coli ClpXP system quantifies protein-protein interactions in Escherichia coli cells. Commun Biol 2021; 4:841. [PMID: 34230602 PMCID: PMC8260793 DOI: 10.1038/s42003-021-02374-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
Characterizing protein–protein interactions (PPIs) is an effective method to help explore protein function. Here, through integrating a newly identified split human Rhinovirus 3 C (HRV 3 C) protease, super-folder GFP (sfGFP), and ClpXP-SsrA protein degradation machinery, we developed a fluorescence-assisted single-cell methodology (split protease-E. coli ClpXP (SPEC)) to explore protein–protein interactions for both eukaryotic and prokaryotic species in E. coli cells. We firstly identified a highly efficient split HRV 3 C protease with high re-assembly ability and then incorporated it into the SPEC method. The SPEC method could convert the cellular protein-protein interaction to quantitative fluorescence signals through a split HRV 3 C protease-mediated proteolytic reaction with high efficiency and broad temperature adaptability. Using SPEC method, we explored the interactions among effectors of representative type I-E and I-F CRISPR/Cas complexes, which combining with subsequent studies of Cas3 mutations conferred further understanding of the functions and structures of CRISPR/Cas complexes. Wang et al. developed a fluorescence-assisted single-cell methodology (split protease-E. coli ClpXP (SPEC)) to characterise protein-protein interactions for both eukaryotic and prokaryotic species in E. coli cells. Their method can quantify these interactions with high sensitivity, easy manipulation, and broad temperature adaptability
Collapse
Affiliation(s)
- Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China
| | - Faying Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China
| | - Ting Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China.
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China.
| |
Collapse
|
12
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
13
|
Mushtaq M, Ahmad Dar A, Skalicky M, Tyagi A, Bhagat N, Basu U, Bhat BA, Zaid A, Ali S, Dar TUH, Rai GK, Wani SH, Habib-Ur-Rahman M, Hejnak V, Vachova P, Brestic M, Çığ A, Çığ F, Erman M, EL Sabagh A. CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes (Basel) 2021; 12:797. [PMID: 34073848 PMCID: PMC8225059 DOI: 10.3390/genes12060797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Anshika Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Nancy Bhagat
- School of Biotechnology, University of Jammu, Jammu 180006, India;
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India;
| | | | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany Aligarh Muslim University, Aigarh 202002, India;
| | - Sajad Ali
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India;
| | | | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu 192101, India
| | - Muhammad Habib-Ur-Rahman
- Department of Crop Science, Institute of Crop Science and Resource Conservation (INRES), University Bonn, 53115 Bonn, Germany;
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
| | - Arzu Çığ
- Department of Horticulture, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey;
| | - Fatih Çığ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Murat Erman
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
14
|
Hoque ME, Mustafa G, Basu S, Balci H. Encounters between Cas9/dCas9 and G-Quadruplexes: Implications for Transcription Regulation and Cas9-Mediated DNA Cleavage. ACS Synth Biol 2021; 10:972-978. [PMID: 33970608 DOI: 10.1021/acssynbio.1c00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using the nuclease-dead Cas9 (dCas9), we targeted in cellulo a G-rich sequence, which contains multiple potentially G-quadruplex (GQ) forming sites, within the human tyrosine hydroxylase (TH) promoter. We demonstrate that transcription can be up or down regulated by targeting different parts of this G-rich sequence. Our results suggest that TH transcription levels correlate with stability of different GQs formed by this sequence and targeting them with dCas9 can modulate their stability. Unlike alternative approaches, regulating TH expression by targeting the promoter GQs with dCas9 enables a specific and potentially transient control and does not require mutations in the sequence. We also investigated whether the presence of GQs in target sequences impacts DNA cleavage activity of Cas9. We discovered significant reduction in cleavage activity when the vicinity of a high-stability GQ was targeted. Furthermore, this reduction is significantly more prominent for the G-rich strand compared to the complementary C-rich strand.
Collapse
Affiliation(s)
- Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Golam Mustafa
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
15
|
Rahman MM, Tollefsbol TO. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Methods 2021; 187:77-91. [PMID: 32315755 PMCID: PMC7572534 DOI: 10.1016/j.ymeth.2020.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer therapeutics is an ever-evolving field due to incessant demands for effective and precise treatment options. Over the last few decades, cancer treatment strategies have shifted somewhat from surgery to targeted precision medicine. CRISPR-dCas9 is an emerging version of precision cancer therapy that has been adapted from the prokaryotic CRISPR-Cas system. Once ligated to epigenetic effectors (EE), CRISPR-dCas9 can function as an epigenetic editing tool and CRISPR-dCas9-EE complexes could be exploited to alter cancerous epigenetic features associated with different cancer hallmarks. In this article, we discuss the rationale of epigenetic editing as a therapeutic strategy against cancer. We also outline how sgRNA-dCas9 was derived from the CRISPR-Cas system. In addition, the current status of sgRNA-dCas9 use (in vivo and in vitro) in cancer is updated with a molecular illustration of CRISPR-dCas9-mediated epigenetic and transcriptional modulation. As sgRNA-dCas9 is still at the developmental phase, challenges are inherent to its use. We evaluate major challenges in targeting cancer with sgRNA-dCas9 such as off-target effects, lack of sgRNA designing rubrics, target site selection dilemmas and deficient sgRNA-dCas9 delivery systems. Finally, we appraise the sgRNA-dCas9 as a prospective cancer therapeutic by summarizing ongoing improvements of sgRNA-dCas9 methodology.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Otabe T, Nihongaki Y, Sato M. Optical Control of Genome Editing by Photoactivatable Cas9. Methods Mol Biol 2021; 2312:225-233. [PMID: 34228293 DOI: 10.1007/978-1-0716-1441-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The CRISPR-Cas9 system offers targeted genome manipulation with simplicity. Combining the CRISPR-Cas9 with optogenetics technology, we have engineered photoactivatable Cas9 to precisely control the genome sequence in a spatiotemporal manner. Here we provide a detailed protocol for optogenetic genome editing experiments using photoactivatable Cas9, including that for the generation of guide RNA vectors, light-mediated Cas9 activation, and quantification of genome editing efficiency in mammalian cells.
Collapse
Affiliation(s)
- Takahiro Otabe
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yuta Nihongaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
17
|
Nishida K, Kondo A. CRISPR-derived genome editing technologies for metabolic engineering. Metab Eng 2020; 63:141-147. [PMID: 33307189 DOI: 10.1016/j.ymben.2020.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022]
Abstract
In metabolic engineering, genome editing tools make it much easier to discover and evaluate relevant genes and pathways and construct strains. Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas) systems now have become the first choice for genome engineering in many organisms includingindustrially relevant ones. Targeted DNA cleavage by CRISPR-Cas provides variousgenome engineering modes such as indels, replacements, large deletions, knock-in and chromosomal rearrangements, while host-dependent differences in repair pathways need to be considered. The versatility of the CRISPR system has given rise to derivative technologies that complement nuclease-based editing, which causes cytotoxicity especially in microorganisms. Deaminase-mediated base editing installs targeted point mutations with much less toxicity. CRISPRi and CRISPRa can temporarily control gene expression without changing the genomic sequence. Multiplex, combinatorial and large scale editing are made possible by streamlined design and construction of gRNA libraries to further accelerates comprehensive discovery, evaluation and building of metabolic pathways. This review summarizes the technical basis and recent advances in CRISPR-related genome editing tools applied for metabolic engineering purposes, with representative examples of industrially relevant eukaryotic and prokaryotic organisms.
Collapse
Affiliation(s)
- Keiji Nishida
- Engineering Biology Research Center, Kobe University, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Japan.
| |
Collapse
|
18
|
Sabzehzari M, Zeinali M, Naghavi MR. CRISPR-based metabolic editing: Next-generation metabolic engineering in plants. Gene 2020; 759:144993. [PMID: 32717311 DOI: 10.1016/j.gene.2020.144993] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023]
Abstract
Plants generate many secondary metabolites, so called phyto-metabolites, which can be used as toxins, dyes, drugs, and insecticides in bio-warfare plus bio-terrorism, industry, medicine, and agriculture, respectively. To 2013, the first generation metabolic engineering approaches like miRNA-based manipulation were widely adopted by researchers in biosciences. However, the discovery of the clustered regularly interspaced short palindromic repeat (CRISPR) genome editing system revolutionized metabolic engineering due to its unique features so that scientists could manipulate the biosynthetic pathways of phyto-metabolites through approaches like miRNA-mediated CRISPR-Cas9. According to the increasing importance of the genome editing in plant sciences, we discussed the current findings on CRISPR-based manipulation of phyto-metabolites in plants, especially medicinal ones, and suggested the ideas to phyto-metabolic editing.
Collapse
Affiliation(s)
- Mohammad Sabzehzari
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Iran.
| | - Masoumeh Zeinali
- Division of Biotechnology, Department of Agronomy and Plant Breeding, Faculty of Agricultural, University of Mohaghegh Ardabili, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Iran.
| |
Collapse
|
19
|
Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 2020; 753:144813. [DOI: 10.1016/j.gene.2020.144813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
|
20
|
Lin X, Chemparathy A, La Russa M, Daley T, Qi LS. Computational Methods for Analysis of Large-Scale CRISPR Screens. Annu Rev Biomed Data Sci 2020. [DOI: 10.1146/annurev-biodatasci-020520-113523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large-scale CRISPR-Cas pooled screens have shown great promise to investigate functional links between genotype and phenotype at the genome-wide scale. In addition to technological advancement, there is a need to develop computational methods to analyze the large datasets obtained from high-throughput CRISPR screens. Many computational methods have been developed to identify reliable gene hits from various screens. In this review, we provide an overview of the technology development of CRISPR screening platforms, with a focus on recent advances in computational methods to identify and model gene effects using CRISPR screen datasets. We also discuss existing challenges and opportunities for future computational methods development.
Collapse
Affiliation(s)
- Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Timothy Daley
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology and ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
21
|
Wang Y, Liu Y, Zheng P, Sun J, Wang M. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends Biotechnol 2020; 39:165-180. [PMID: 32680590 DOI: 10.1016/j.tibtech.2020.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Genome engineering is crucial for answering fundamental questions about, and exploring practical applications of, microorganisms. Various microbial genome-engineering tools, including CRISPR/Cas-enhanced homologous recombination (HR), have been developed, with ever-improving simplicity, efficiency, and applicability. Recently, a powerful emerging technology based on CRISPR/Cas-nucleobase deaminase fusions, known as base editing, opened new avenues for microbial genome engineering. Base editing enables nucleotide transition without inducing lethal double-stranded (ds)DNA cleavage, adding foreign donor DNA, or depending on inefficient HR. Here, we review ongoing efforts to develop and apply base editing to engineer industrially and clinically relevant microorganisms. We also summarize bioinformatics tools that would greatly facilitate guide (g)RNA design and sequencing data analysis and discuss the future challenges and prospects associated with this technology.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
22
|
Mianné J, Bourguignon C, Nguyen Van C, Fieldès M, Nasri A, Assou S, De Vos J. Pipeline for the Generation and Characterization of Transgenic Human Pluripotent Stem Cells Using the CRISPR/Cas9 Technology. Cells 2020; 9:cells9051312. [PMID: 32466123 PMCID: PMC7290981 DOI: 10.3390/cells9051312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in genome engineering based on the CRISPR/Cas9 technology have revolutionized our ability to manipulate genomic DNA. Its use in human pluripotent stem cells (hPSCs) has allowed a wide range of mutant cell lines to be obtained at an unprecedented rate. The combination of these two groundbreaking technologies has tremendous potential, from disease modeling to stem cell-based therapies. However, the generation, screening and molecular characterization of these cell lines remain a cumbersome and multi-step endeavor. Here, we propose a pipeline of strategies to efficiently generate, sub-clone, and characterize CRISPR/Cas9-edited hPSC lines in the function of the introduced mutation (indels, point mutations, insertion of large constructs, deletions).
Collapse
Affiliation(s)
- Joffrey Mianné
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Chloé Bourguignon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Chloé Nguyen Van
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Amel Nasri
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
- Correspondence: (S.A.); (J.D.V.)
| | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
- Department of Cell and Tissue Engineering, Univ Montpellier, CHU Montpellier, 34000 Montpellier, France
- Correspondence: (S.A.); (J.D.V.)
| |
Collapse
|
23
|
Srivastava A, Swarup V, Kumar V, Faruq M, Singh H, Singh I. CRISPR/Cas9 technology in neurological disorders: An update for clinicians. ANNALS OF MOVEMENT DISORDERS 2020. [DOI: 10.4103/aomd.aomd_39_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Yang G, Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. CELL REGENERATION (LONDON, ENGLAND) 2019; 8:33-41. [PMID: 31666940 PMCID: PMC6806369 DOI: 10.1016/j.cr.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022]
Abstract
Genome editing technology holds great promise for genome manipulation and gene therapy. While widespread utilization, genome editing has been used to unravel the roles of specific genes in differentiation and pluripotency of stem cells, and reinforce the stem cell-based applications. In this review, we summarize the advances of genome editing technology, as well as the derivative technologies from CRISPR/Cas system, which show tremendous potential in various fields. We also highlight the key findings in the studies of stem cells and regeneration by genome editing technology.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
25
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
26
|
Katayama K, Mitsunobu H, Nishida K. Mammalian synthetic biology by CRISPRs engineering and applications. Curr Opin Chem Biol 2019; 52:79-84. [DOI: 10.1016/j.cbpa.2019.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
27
|
Swinnen G, Goossens A, Colinas M. Metabolic editing: small measures, great impact. Curr Opin Biotechnol 2019; 59:16-23. [DOI: 10.1016/j.copbio.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
|
28
|
Moon SB, Kim DY, Ko JH, Kim JS, Kim YS. Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends Biotechnol 2019; 37:870-881. [PMID: 30846198 DOI: 10.1016/j.tibtech.2019.01.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
CRISPR technology is a two-component gene editing system in which the effector protein induces genetic alterations with the aid of a gene targeting guide RNA. Guide RNA can be produced through chemical synthesis, in vitro transcription, or intracellular transcription. Guide RNAs can be engineered to have chemical modifications, alterations in the spacer length, sequence modifications, fusion of RNA or DNA components, and incorporation of deoxynucleotides. Engineered guide RNA can improve genome editing efficiency and target specificity, regulation of biological toxicity, sensitive and specific molecular imaging, multiplexing, and editing flexibility. Therefore, engineered guide RNA will enable more specific, efficient, and safe gene editing, ultimately improving the clinical benefits of gene therapy.
Collapse
Affiliation(s)
- Su Bin Moon
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; These authors contributed equally to this work
| | - Do Yon Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; These authors contributed equally to this work
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea; IBS School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Yamato T, Handa A, Arazoe T, Kuroki M, Nozaka A, Kamakura T, Ohsato S, Arie T, Kuwata S. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus. Sci Rep 2019; 9:7427. [PMID: 31092866 PMCID: PMC6520371 DOI: 10.1038/s41598-019-43913-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing has become a promising approach for efficient and versatile genetic engineering in various organisms; however, simple and precise nucleotide modification methods in filamentous fungi have been restricted to double crossover type homologous recombination (HR). In this study, we developed a novel genome editing strategy via single crossover-mediated HR in the model filamentous fungus Pyricularia (Magnaporthe) oryzae. This method includes the CRISPR/Cas9 system and a donor vector harboring a single homology arm with point mutations at the CRISPR/Cas9 cleavage site. Using this strategy, we demonstrated highly efficient and freely programmable base substitutions within the desired genomic locus, and target gene disrupted mutants were also obtained via a shortened (100-1000 bp) single homology arm. We further demonstrated that this method allowed a one-step GFP gene knock-in at the C-terminus of the targeted gene. Since the genomic recombination does not require an intact protospacer-adjacent motif within the donor construct and any additional modifications of host components, this method can be used in various filamentous fungi for CRISPR/Cas9-based basic and applied biological analyses.
Collapse
Affiliation(s)
- Tohru Yamato
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Ai Handa
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takayuki Arazoe
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Misa Kuroki
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akihito Nozaka
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takashi Kamakura
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shuichi Ohsato
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Tsutomu Arie
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-0509, Japan
| | - Shigeru Kuwata
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
30
|
Mao Y, Botella JR, Liu Y, Zhu JK. Gene editing in plants: progress and challenges. Natl Sci Rev 2019; 6:421-437. [PMID: 34691892 PMCID: PMC8291443 DOI: 10.1093/nsr/nwz005] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) genome editing system is a powerful tool for targeted gene modifications in a wide range of species, including plants. Over the last few years, this system has revolutionized the way scientists perform genetic studies and crop breeding, due to its simplicity, flexibility, consistency and high efficiency. Considerable progress has been made in optimizing CRISPR/Cas9 systems in plants, particularly for targeted gene mutagenesis. However, there are still a number of important challenges ahead, including methods for the efficient delivery of CRISPR and other editing tools to most plants, and more effective strategies for sequence knock-ins and replacements. We provide our viewpoint on the goals, potential concerns and future challenges for the development and application of plant genome editing tools.
Collapse
Affiliation(s)
- Yanfei Mao
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Guo M, Ren K, Zhu Y, Tang Z, Wang Y, Zhang B, Huang Z. Structural insights into a high fidelity variant of SpCas9. Cell Res 2019; 29:183-192. [PMID: 30664728 PMCID: PMC6460432 DOI: 10.1038/s41422-018-0131-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 01/24/2023] Open
Abstract
The RNA-guided endonucleases of the CRISPR-Cas9 system, including the most widely used Cas9 from Streptococcus pyogenes (SpCas9), are becoming a robust genome editing tool in model organisms and hold immense promise for therapeutic applications. Many strategies have been employed to overcome the limitations caused by SpCas9's off-target effects and its stringent requirement for the protospacer adjacent motif (PAM) sequence. However, the structural mechanisms underlying these strategies remain undefined. Here, we present crystal structure of a SpCas9 variant, xCas9 3.7 that has broad PAM compatibility and high DNA targeting specificity, in complex with a single-guide RNA and its double-stranded DNA targets. Structural comparison revealed that salt bridge-stabilized R1335 is critical for the stringent selection of PAM sequence by SpCas9. Unrestricted rotamerization of this residue by the E1219V mutation in xCas9 3.7 lessens the stringency for PAM recognition and allows SpCas9 to recognize multiple PAM sequences as further supported by biochemical data. Compared to those in wild-type (WT) SpCas9, REC2 and REC3 domains in xCas9 3.7 undergo striking conformational changes, leading to reduced contact with DNA substrate. SpCas9 mutants engineered to display less interaction with DNA and have conformationally more flexible REC2 and REC3 domains display enhanced specificity for DNA substrates in both biochemical and cellular assays. Taken together, our findings reveal the structural mechanisms underlying the broadened PAM compatibility and high DNA fidelity of xCas9 3.7, which can assist rational engineering of more efficient SpCas9 variants and probably other Cas9 orthologs.
Collapse
Affiliation(s)
- Minghui Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Kuan Ren
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Ziyun Tang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Yuhang Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Bailing Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China.
| |
Collapse
|
32
|
The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a. Genes (Basel) 2019; 10:genes10020169. [PMID: 30813348 PMCID: PMC6409811 DOI: 10.3390/genes10020169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by Lachnospiraceae bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with Streptococcus thermophilus DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be >50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event >15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies.
Collapse
|
33
|
Shimatani Z, Ariizumi T, Fujikura U, Kondo A, Ezura H, Nishida K. Targeted Base Editing with CRISPR-Deaminase in Tomato. Methods Mol Biol 2019; 1917:297-307. [PMID: 30610645 DOI: 10.1007/978-1-4939-8991-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Target-AID system, consisting of a complex of cytidine deaminase and deficient CRISPR/Cas9, enables highly specific genomic nucleotide substitutions without the need for template DNA. The Cas9-fused cytidine deaminase is guided by sgRNAs and catalyzes the conversion of cytosine to uracil. The resulting U-G DNA mismatches trigger nucleotide substitutions (C to T or G to A) through DNA replication and repair pathways. Target-AID also retains the benefits of conventional CRISPR/Cas9 including robustness in various organisms, high targeting efficiency, and multiplex simultaneous gene editing. Our research group recently developed plant-optimized Target-AID system and demonstrated targeted base editing in tomato and rice. In this chapter, we introduce methods for Target-AID application in tomato.
Collapse
Affiliation(s)
- Zenpei Shimatani
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ushio Fujikura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
34
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
35
|
Shimatani Z, Fujikura U, Ishii H, Matsui Y, Suzuki M, Ueke Y, Taoka KI, Terada R, Nishida K, Kondo A. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:78-83. [PMID: 29778643 DOI: 10.1016/j.plaphy.2018.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 05/26/2023]
Abstract
The CRISPR/Cas9 system is a revolutionary genome-editing tool for directed gene editing in various organisms. Cas9 variants can be applied as molecular homing devices when combined with various functional effectors such as transcriptional activators or DNA modification enzymes. Target-AID is a synthetic complex of nuclease deficient Cas9 fused to an activation-induced cytidine deaminase (AID) that enables targeted nucleotide substitution (C to T or G to A). We previously demonstrated that the introduction of desired point mutations into target genes by Target-AID confers herbicide tolerance to rice callus. Inheritance of the introduced mutations, as well as the removal of transgenes, are key issues that must be addressed in order to fully develop Target-AID as a plant breeding technique. Here we report the transmission of such mutations from the callus to regenerants and their progenies, leading to a generation of selectable marker-free (SMF) herbicide tolerant rice plants with simultaneous multiplex nucleotide substitutions. These findings demonstrate that Target-AID can be developed into novel plant breeding technology which enables improvement of multiplex traits at one time in combination with sophisticated targeted base editing with the simplicity and versatility of CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Zenpei Shimatani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Ushio Fujikura
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hisaki Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Yusuke Matsui
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Minoru Suzuki
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yuki Ueke
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Ken-Ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, 642-12 Maioka, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Rie Terada
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
36
|
Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Nat Commun 2018; 9:3651. [PMID: 30194297 PMCID: PMC6128929 DOI: 10.1038/s41467-018-06129-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Genome editing has been harnessed through the development of CRISPR system, and the CRISPR from Prevotella and Francisella 1 (Cpf1) system has emerged as a promising alternative to CRISPR-Cas9 for use in various circumstances. Despite the inherent multiple advantages of Cpf1 over Cas9, the adoption of Cpf1 has been unsatisfactory because of target-dependent insufficient indel efficiencies. Here, we report an engineered CRISPR RNA (crRNA) for highly efficient genome editing by Cpf1, which includes a 20-base target-complementary sequence and a uridinylate-rich 3'-overhang. When the crRNA is transcriptionally produced, crRNA with a 20-base target-complementary sequence plus a U4AU4 3'-overhang is the optimal configuration. U-rich crRNA also maximizes the utility of the AsCpf1 mutants and multiplexing genome editing using mRNA as the source of multiple crRNAs. Furthermore, U-rich crRNA enables a highly safe and specific genome editing using Cpf1 in human cells, contributing to the enhancement of a genome-editing toolbox.
Collapse
|
37
|
Arazoe T, Kondo A, Nishida K. Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J 2018; 13:e1700596. [PMID: 29862665 DOI: 10.1002/biot.201700596] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Since the emergence of programmable RNA-guided nucleases based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems, genome editing technologies have become a simplified and versatile tool for genome editing in various organisms and cell types. Although genome editing enables efficient genome manipulations, such as gene disruptions, gene knockins, and chromosomal translocations via DNA double-strand break (DSB) repair in eukaryotes, DSBs induced by the CRISPR/Cas system are lethal or severely toxic to many microorganisms. Therefore, in many prokaryotes, including industrially useful microbes, the CRISPR/Cas system is often used as a negative selection component in combination with recombineering or other related strategies. Novel and revolutionary technologies have been recently developed to re-write targeted nucleotides (C:G to T:A and A:T to G:C) without DSBs and donor DNA templates. These technologies rely on the recruitment of deaminases at specific target loci using the nuclease-deficient CRISPR/Cas system. Here, the authors review and compare CRISPR-based genome editing, current base editing platforms and their spectra. The authors discuss how these technologies can be applied in various aspects of microbial metabolic engineering to overcome barriers to cellular regulation in prokaryotes.
Collapse
Affiliation(s)
- Takayuki Arazoe
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
38
|
Chen X, Gonçalves MAFV. DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells. iScience 2018; 6:247-263. [PMID: 30240615 PMCID: PMC6137403 DOI: 10.1016/j.isci.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022] Open
Abstract
Solving the structure of DNA in 1953 has unleashed a tour de force in molecular biology that has illuminated how the genetic information stored in DNA is copied and flows downstream into RNA and proteins. Currently, increasingly powerful technologies permit not only reading and writing DNA in vitro but also editing the genetic instructions in cells from virtually any organism. Editing specific genomic sequences in living cells has been particularly accelerated with the introduction of programmable RNA-guided nucleases (RGNs) based on prokaryotic CRISPR adaptive immune systems. The repair of chromosomal breaks made by RGNs with donor DNA patches results in targeted genome editing involving the introduction of specific genetic changes at predefined genomic positions. Hence, donor DNAs, guide RNAs, and nuclease proteins, each representing the molecular entities underlying the storage, transmission, and expression of genetic information, are, once delivered into cells, put to work as agents of change of that very same genetic text. Here, after providing an outline of the programmable nuclease-assisted genome editing field, we review the increasingly diverse range of DNA, RNA, and protein components (e.g., nucleases and "nickases") that, when brought together, underlie RGN-based genome editing in eukaryotic cells.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| |
Collapse
|
39
|
Schuster A, Erasimus H, Fritah S, Nazarov PV, van Dyck E, Niclou SP, Golebiewska A. RNAi/CRISPR Screens: from a Pool to a Valid Hit. Trends Biotechnol 2018; 37:38-55. [PMID: 30177380 DOI: 10.1016/j.tibtech.2018.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
High-throughput genetic screens interfering with gene expression are invaluable tools to identify gene function and phenotype-to-genotype interactions. Implementing such screens in the laboratory is challenging, and the choice between currently available technologies based on RNAi and CRISPR/Cas9 (CRISPR-associated protein 9) is not trivial. Identifying reliable candidate hits requires a streamlined experimental setup adjusted to the specific biological question. Here, we provide a critical assessment of the various RNAi/CRISPR approaches to pooled screens and discuss their advantages and pitfalls. We specify a set of best practices for key parameters enabling a reproducible screen and provide a detailed overview of analysis methods and repositories for identifying the best candidate gene hits.
Collapse
Affiliation(s)
- Anne Schuster
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Hélène Erasimus
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Petr V Nazarov
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Eric van Dyck
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway; Co-senior authors.
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg; Co-senior authors.
| |
Collapse
|
40
|
Langner T, Kamoun S, Belhaj K. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:479-512. [PMID: 29975607 DOI: 10.1146/annurev-phyto-080417-050158] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.
Collapse
Affiliation(s)
- Thorsten Langner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
41
|
Korthout T, Poramba-Liyanage DW, van Kruijsbergen I, Verzijlbergen KF, van Gemert FPA, van Welsem T, van Leeuwen F. Decoding the chromatin proteome of a single genomic locus by DNA sequencing. PLoS Biol 2018; 16:e2005542. [PMID: 30005073 PMCID: PMC6059479 DOI: 10.1371/journal.pbio.2005542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/25/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription, replication, and repair involve interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location and under changing cellular conditions is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed Epi-Decoder, a Tag-chromatin immunoprecipitation-Barcode-Sequencing (TAG-ChIP-Barcode-Seq) technology in budding yeast. Epi-Decoder is orthogonal to proteomics approaches because it does not rely on mass spectrometry (MS) but instead takes advantage of DNA sequencing. Analysis of the proteome of a transcribed locus proximal to an origin of replication revealed more than 400 interacting proteins. Moreover, replication stress induced changes in local chromatin proteome composition prior to local origin firing, affecting replication proteins as well as transcription proteins. Finally, we show that native genomic loci can be decoded by efficient construction of barcode libraries assisted by clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Thus, Epi-Decoder is an effective strategy to identify and quantify in an unbiased and systematic manner the proteome of an individual genomic locus by DNA sequencing.
Collapse
Affiliation(s)
- Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Tarasava K, Oh EJ, Eckert CA, Gill RT. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnol J 2018; 13:e1700586. [DOI: 10.1002/biot.201700586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Katia Tarasava
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Eun Joong Oh
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
- Biosciences Center, National Renewable Energy Laboratory; Golden CO USA
| | - Ryan T. Gill
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| |
Collapse
|
43
|
Visualization of Immune Cell Reconstitution by Bioluminescent Imaging. Methods Mol Biol 2018. [PMID: 29858788 DOI: 10.1007/978-1-4939-7860-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Reporter gene-based molecular imaging is a powerful means to detect the movement and function of diverse cell populations in vivo. Reconstitution of an immune system marked with molecular imaging reporter genes permits tracking of primary immune responses to pathogens and cancer in experimental systems. This chapter describes the methods to isolate bone marrow stem/progenitors, transduce them with imaging reporter genes, and track the reconstitution of the peripheral immune system by bioluminescent imaging.
Collapse
|
44
|
Jensen MK. Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res 2018; 18:4966988. [PMID: 29726937 PMCID: PMC5932555 DOI: 10.1093/femsyr/foy039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.
Collapse
Affiliation(s)
- Michael K Jensen
- Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
45
|
Fraczek MG, Naseeb S, Delneri D. History of genome editing in yeast. Yeast 2018; 35:361-368. [PMID: 29345746 PMCID: PMC5969250 DOI: 10.1002/yea.3308] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022] Open
Abstract
For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas.
Collapse
Affiliation(s)
- Marcin G. Fraczek
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Samina Naseeb
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Daniela Delneri
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| |
Collapse
|
46
|
Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects. Curr Opin Biotechnol 2018; 50:146-157. [DOI: 10.1016/j.copbio.2018.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
|
47
|
Banno S, Nishida K, Arazoe T, Mitsunobu H, Kondo A. Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 2018; 3:423-429. [PMID: 29403014 DOI: 10.1038/s41564-017-0102-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022]
Abstract
In eukaryotes, the CRISPR-Cas9 system has now been widely used as a revolutionary genome engineering tool1, 2. However, in prokaryotes, the use of nuclease-mediated genome editing tools has been limited to negative selection for the already modified cells because of its lethality3, 4. Here, we report on deaminase-mediated targeted nucleotide editing (Target-AID) 5 adopted in Escherichia coli. Cytidine deaminase PmCDA1 fused to the nuclease-deficient CRISPR-Cas9 system achieved specific point mutagenesis at the target sites in E. coli by introducing cytosine mutations without compromising cell growth. The cytosine-to-thymine substitutions were induced mainly within an approximately five-base window of target sequences on the protospacer adjacent motif-distal side, which can be shifted depending on the length of the single guide RNA sequence. Use of a uracil DNA glycosylase inhibitor 6 in combination with a degradation tag (LVA tag) 7 resulted in a robustly high mutation efficiency, which allowed simultaneous multiplex editing of six different genes. The major multi-copy transposase genes that consist of at least 41 loci were also simultaneously edited by using four target sequences. As this system does not rely on any additional or host-dependent factors, it may be readily applicable to a wide range of bacteria.
Collapse
Affiliation(s)
- Satomi Banno
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
| | - Takayuki Arazoe
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Hitoshi Mitsunobu
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
48
|
Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018; 556:57-63. [PMID: 29512652 PMCID: PMC5951633 DOI: 10.1038/nature26155] [Citation(s) in RCA: 1061] [Impact Index Per Article: 151.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 12/18/2022]
Abstract
A key limitation to the use of CRISPR-Cas9 proteins for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), this PAM requirement is NGG. No natural or engineered Cas9 variants shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we used phage-assisted continuous evolution (PACE) to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA, and GAT. The PAM compatibility of xCas9 is the broadest reported to date among Cas9s active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and both cytidine and adenine base editing. Remarkably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility, and DNA specificity.
Collapse
Affiliation(s)
- Johnny H Hu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shannon M Miller
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Maarten H Geurts
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Weixin Tang
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Liwei Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ning Sun
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Christina M Zeina
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xue Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Holly A Rees
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zhi Lin
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
49
|
Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 2018; 9:412. [PMID: 29379011 PMCID: PMC5788975 DOI: 10.1038/s41467-017-02706-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023] Open
Abstract
Recent advances using CRISPR-Cas9 approaches have dramatically enhanced the ease for genetic manipulation in rodents. Notwithstanding, the methods to deliver nucleic acids into pre-implantation embryos have hardly changed since the original description of mouse transgenesis more than 30 years ago. Here we report a novel strategy to generate genetically modified mice by transduction of CRISPR-Cas9 components into pre-implantation mouse embryos via recombinant adeno-associated viruses (rAAVs). Using this approach, we efficiently generated a variety of targeted mutations in explanted embryos, including indel events produced by non-homologous end joining and tailored mutations using homology-directed repair. We also achieved gene modification in vivo by direct delivery of rAAV particles into the oviduct of pregnant females. Our approach greatly simplifies the generation of genetically modified mice and, more importantly, opens the door for streamlined gene editing in other mammalian species. CRISPR-Cas9 has been widely adopted for genetically manipulating rodents for scientific research. Here the authors transduce mouse embryos with CRISPR-Cas9 components using rAAVs in explant culture or in vivo to produce gene-edited animals.
Collapse
|
50
|
Lei L, Chen H, Xue W, Yang B, Hu B, Wei J, Wang L, Cui Y, Li W, Wang J, Yan L, Shang W, Gao J, Sha J, Zhuang M, Huang X, Shen B, Yang L, Chen J. APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks. Nat Struct Mol Biol 2018; 25:45-52. [PMID: 29323274 DOI: 10.1038/s41594-017-0004-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 01/17/2023]
Abstract
The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR-Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR-Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA.
Collapse
Affiliation(s)
- Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongquan Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Wei Xue
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Bian Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Jia Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Lei Yan
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Wanjing Shang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jimin Gao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|