1
|
Thakur R, Saini AK, Taliyan R, Chaturvedi N. Neurodegenerative diseases early detection and monitoring system for point-of-care applications. Microchem J 2025; 208:112280. [DOI: 10.1016/j.microc.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Zare H, Kasdorf MM, Bakhshian Nik A. Microfluidics in neural extracellular vesicles characterization for early Alzheimer's disease diagnosis. Mol Cell Neurosci 2024; 132:103982. [PMID: 39631514 DOI: 10.1016/j.mcn.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dementia is a general term for conditions impairing cognitive abilities including perception, reasoning, attention, judgment, memory, and daily brain function. Early diagnosis of Alzheimer's disease (AD), the most common form of dementia, using neural extracellular vesicles (nEVs) is the focus of the current study. These nEVs carry AD biomarkers including β-amyloid proteins and phosphorylated tau proteins. The novelty of this review lies in developing a microfluidic perspective by introducing the techniques using a microfluidic platform for early diagnosis of AD. A microfluidic device can detect small sample sizes with significantly low concentrations. These devices combine nEV isolation, enrichment, and detection, which makes them ideal candidates for early AD diagnosis.
Collapse
Affiliation(s)
- Hossein Zare
- Chemical and Biochemical Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
3
|
Moro V, Canals J, Moreno S, Higgins-Wood S, Alonso O, Waag A, Prades JD, Dieguez A. Fluorescence Multi-Detection Device Using a Lensless Matrix Addressable microLED Array. BIOSENSORS 2024; 14:264. [PMID: 38920568 PMCID: PMC11202237 DOI: 10.3390/bios14060264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
A Point-of-Care system for molecular diagnosis (PoC-MD) is described, combining GaN and CMOS chips. The device is a micro-system for fluorescence measurements, capable of analyzing both intensity and lifetime. It consists of a hybrid micro-structure based on a 32 × 32 matrix addressable GaN microLED array, with square LEDs of 50 µm edge length and 100 µm pitch, with an underneath wire bonded custom chip integrating their drivers and placed face-to-face to an array of 16 × 16 single-photon avalanche diodes (SPADs) CMOS. This approach replaces instrumentation based on lasers, bulky optical components, and discrete electronics with a full hybrid micro-system, enabling measurements on 32 × 32 spots. The reported system is suitable for long lifetime (>10 ns) fluorophores with a limit of detection ~1/4 µM. Proof-of-concept measurements of streptavidin conjugate Qdot™ 605 and Amino PEG Qdot™ 705 are demonstrated, along with the device ability to detect both fluorophores in the same measurement.
Collapse
Affiliation(s)
- Victor Moro
- Electronic and Biomedical Engineering Department, University of Barcelona, 08028 Barcelona, Spain; (J.C.); (S.M.); (O.A.); (J.D.P.)
| | - Joan Canals
- Electronic and Biomedical Engineering Department, University of Barcelona, 08028 Barcelona, Spain; (J.C.); (S.M.); (O.A.); (J.D.P.)
| | - Sergio Moreno
- Electronic and Biomedical Engineering Department, University of Barcelona, 08028 Barcelona, Spain; (J.C.); (S.M.); (O.A.); (J.D.P.)
| | - Steffen Higgins-Wood
- Institute of Semiconductor Technology, Technical University of Braunschweig, 38106 Braunschweig, Germany; (S.H.-W.); (A.W.)
| | - Oscar Alonso
- Electronic and Biomedical Engineering Department, University of Barcelona, 08028 Barcelona, Spain; (J.C.); (S.M.); (O.A.); (J.D.P.)
| | - Andreas Waag
- Institute of Semiconductor Technology, Technical University of Braunschweig, 38106 Braunschweig, Germany; (S.H.-W.); (A.W.)
| | - J. Daniel Prades
- Electronic and Biomedical Engineering Department, University of Barcelona, 08028 Barcelona, Spain; (J.C.); (S.M.); (O.A.); (J.D.P.)
- Institute of Semiconductor Technology, Technical University of Braunschweig, 38106 Braunschweig, Germany; (S.H.-W.); (A.W.)
| | - Angel Dieguez
- Electronic and Biomedical Engineering Department, University of Barcelona, 08028 Barcelona, Spain; (J.C.); (S.M.); (O.A.); (J.D.P.)
| |
Collapse
|
4
|
Moulahoum H, Ghorbanizamani F, Beduk T, Beduk D, Ozufuklar O, Guler Celik E, Timur S. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. J Pharm Biomed Anal 2023; 235:115623. [PMID: 37542827 DOI: 10.1016/j.jpba.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Nanomaterials and nanotechnology offer promising opportunities in point-of-care (POC) diagnostics and therapeutics due to their unique physical and chemical properties. POC platforms aim to provide rapid and portable diagnostic and therapeutic capabilities at the site of patient care, offering cost-effective solutions. Incorporating nanomaterials with distinct optical, electrical, and magnetic properties can revolutionize the POC industry, significantly enhancing the effectiveness and efficiency of diagnostic and theragnostic devices. By leveraging nanoparticles and nanofibers in POC devices, nanomaterials have the potential to improve the accuracy and speed of diagnostic tests, making them more practical for POC settings. Technological advancements, such as smartphone integration, imagery instruments, and attachments, complement and expand the application scope of POCs, reducing invasiveness by enabling analysis of various matrices like saliva and breath. These integrated testing platforms facilitate procedures without compromising diagnosis quality. This review provides a summary of recent trends in POC technologies utilizing nanomaterials and nanotechnologies for analyzing disease biomarkers. It highlights advances in device development, nanomaterial design, and their applications in POC. Additionally, complementary tools used in POC and nanomaterials are discussed, followed by critical analysis of challenges and future directions for these technologies.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, Villach 9524, Austria
| | - Duygu Beduk
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
5
|
Sharma A, Angnes L, Sattarahmady N, Negahdary M, Heli H. Electrochemical Immunosensors Developed for Amyloid-Beta and Tau Proteins, Leading Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:742. [PMID: 37504140 PMCID: PMC10377038 DOI: 10.3390/bios13070742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Alzheimer's disease (AD) is the most common neurological disease and a serious cause of dementia, which constitutes a threat to human health. The clinical evidence has found that extracellular amyloid-beta peptides (Aβ), phosphorylated tau (p-tau), and intracellular tau proteins, which are derived from the amyloid precursor protein (APP), are the leading biomarkers for accurate and early diagnosis of AD due to their central role in disease pathology, their correlation with disease progression, their diagnostic value, and their implications for therapeutic interventions. Their detection and monitoring contribute significantly to understanding AD and advancing clinical care. Available diagnostic techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are mainly used to validate AD diagnosis. However, these methods are expensive, yield results that are difficult to interpret, and have common side effects such as headaches, nausea, and vomiting. Therefore, researchers have focused on developing cost-effective, portable, and point-of-care alternative diagnostic devices to detect specific biomarkers in cerebrospinal fluid (CSF) and other biofluids. In this review, we summarized the recent progress in developing electrochemical immunosensors for detecting AD biomarkers (Aβ and p-tau protein) and their subtypes (AβO, Aβ(1-40), Aβ(1-42), t-tau, cleaved-tau (c-tau), p-tau181, p-tau231, p-tau381, and p-tau441). We also evaluated the key characteristics and electrochemical performance of developed immunosensing platforms, including signal interfaces, nanomaterials or other signal amplifiers, biofunctionalization methods, and even primary electrochemical sensing performances (i.e., sensitivity, linear detection range, the limit of detection (LOD), and clinical application).
Collapse
Affiliation(s)
- Abhinav Sharma
- Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S. User-friendly and ultra-stable all-inclusive gold tablets for cysteamine detection. RSC Adv 2023; 13:19638-19650. [PMID: 37397283 PMCID: PMC10308203 DOI: 10.1039/d3ra03073c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
To date, a range of nanozymes has been reported for their enzyme-mimicking catalytic activity such as solution-based sensors. However, in remote areas, the need for portable, cost-effective, and one-pot prepared sensors is obvious. In this study, we report the development of a highly stable and sensitive gold tablet-based sensor for cysteamine quantification in human serum samples. The sensor is produced in two steps: synthesis of a pullulan-stabilized gold nanoparticle solution (pAuNP-Solution) using a pullulan polymer as a reducing, stabilizing, and encapsulating agent and then, casting the pAuNP-Solution into a pullulan gold nanoparticle tablet (pAuNP-Tablet) by a pipetting method. The tablet was characterized by UV-vis, DLS, FTIR, TEM, and AFM analyses. The pAuNP-tablet exhibited a high peroxidase-mimetic activity via a TMB-H2O2 system. The presence of cysteamine in the system introduced two types of inhibition which were dependent on the cysteamine concentration. By determining Michaelis-Menten's kinetic parameters, we gained mechanistic insights into the catalytic inhibition process. Based on the catalytic inhibition capability of cysteamine, the limit of detection (LoD) was calculated to be 69.04 and 82.9 μM in buffer and human serum samples, respectively. Finally, real human serum samples were tested, demonstrating the applicability of the pAuNP-Tablet for real-world applications. The % R values in human serum samples were in the range of 91-105% with % RSD less than 2% for all replicas. The stability tests over 16 months revealed the ultra-stable properties of the pAuNP-Tablet. Overall, with a simple fabrication method and a novel employed technique, this study contributes to the advancement of tablet-based sensors and helps in cysteamine detection in clinical settings.
Collapse
Affiliation(s)
- Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| |
Collapse
|
7
|
Pinheiro KMP, Guinati BGS, Moreira NS, Coltro WKT. Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:117-138. [PMID: 37068747 DOI: 10.1146/annurev-anchem-091522-024759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.
Collapse
Affiliation(s)
| | | | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
8
|
Aslan Y, Atabay M, Chowdhury HK, Göktürk I, Saylan Y, Inci F. Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods. BIOSENSORS 2023; 13:bios13050569. [PMID: 37232930 DOI: 10.3390/bios13050569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Recent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited due to obstacles associated with cost and production, impeding its widespread adoption. One promising alternative, on the other hand, is aptamer integration, i.e., short sequences of single-stranded DNA and RNA structures. The advantageous properties of these molecules are as follows: small molecular size, amenability to chemical modification, low- or nonimmunogenic characteristics, and their reproducibility within a short generation time. The utilization of these aforementioned features is critical in developing sensitive and portable POC systems. Furthermore, the deficiencies related to past experimental efforts to improve biosensor schematics, including the design of biorecognition elements, can be tackled with the integration of computational tools. These complementary tools enable the prediction of the reliability and functionality of the molecular structure of aptamers. In this review, we have overviewed the usage of aptamers in the development of novel and portable POC devices, in addition to highlighting the insights that simulations and other computational methods can provide into the use of aptamer modeling for POC integration.
Collapse
Affiliation(s)
- Yusuf Aslan
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Hussain Kawsar Chowdhury
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ilgım Göktürk
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
9
|
Carneiro P, Loureiro JA, Delerue-Matos C, Morais S, Pereira MDC. Nanostructured label–free electrochemical immunosensor for detection of a Parkinson's disease biomarker. Talanta 2023; 252:123838. [DOI: 10.1016/j.talanta.2022.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
10
|
Leirs K, Dal Dosso F, Perez-Ruiz E, Decrop D, Cops R, Huff J, Hayden M, Collier N, Yu KXZ, Brown S, Lammertyn J. Bridging the Gap between Digital Assays and Point-of-Care Testing: Automated, Low Cost, and Ultrasensitive Detection of Thyroid Stimulating Hormone. Anal Chem 2022; 94:8919-8927. [PMID: 35687534 DOI: 10.1021/acs.analchem.2c00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Medical diagnostics is moving toward disease-related target detection at very low concentrations because of the (1) quest for early-stage diagnosis, at a point where only limited target amounts are present, (2) trend toward minimally invasive sample extraction, yielding samples containing low concentrations of target, and (3) need for straightforward sample collection, usually resulting in limited volume collected. Hence, diagnostic tools allowing ultrasensitive target detection at the point-of-care (POC) are crucial for simplified and timely diagnosis of many illnesses. Therefore, we developed an innovative, fully integrated, semi-automated, and economically viable platform based on (1) digital microfluidics (DMF), enabling automated manipulation and analysis of very low sample volumes and (2) low-cost disposable DMF chips with microwell arrays, fabricated via roll-to-roll processes and allowing digital target counting. Thyroid stimulating hormone detection was chosen as a relevant application to show the potential of the system. The assay buffer was selected using design of experiments, and the assay was optimized in terms of reagent concentration and incubation time toward maximum sensitivity. The hydrophobic-in-hydrophobic microwells showed an unparalleled seeding efficiency of 97.6% ± 0.6%. A calculated LOD of 0.0013 μIU/mL was obtained, showing the great potential of the platform, especially taking into account the very low sample volume analyzed (1.1 μL). Although validation (in biological matrix) and industrialization (full automation) steps still need to be taken, it is clear that the combination of DMF, low-cost DMF chips, and digital analyte counting in microwell arrays enables the implementation of ultrasensitive and reliable target detection at the POC.
Collapse
Affiliation(s)
- Karen Leirs
- Department of Biosystems - Biosensors group, KU Leuven, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium
| | - Francesco Dal Dosso
- Department of Biosystems - Biosensors group, KU Leuven, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium
| | - Elena Perez-Ruiz
- Department of Biosystems - Biosensors group, KU Leuven, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium
| | - Deborah Decrop
- Department of Biosystems - Biosensors group, KU Leuven, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium
| | - Ruben Cops
- Department of Biosystems - Biosensors group, KU Leuven, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium
| | - Jeffrey Huff
- Diagnostics Division Dept. 0NTA, Bldg. CP-1, Abbott Laboratories, 100 Abbott Park Rd., Abbott Park, Illinois 60064-6093, United States
| | - Mark Hayden
- Diagnostics Division Dept. 0NTA, Bldg. CP-1, Abbott Laboratories, 100 Abbott Park Rd., Abbott Park, Illinois 60064-6093, United States
| | | | - Karen X Z Yu
- Sagentia, Harston Mill, Harston, Cambridge CB227GG, UK
| | - Stephen Brown
- Sagentia, Harston Mill, Harston, Cambridge CB227GG, UK
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors group, KU Leuven, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Goldoni R, Dolci C, Boccalari E, Inchingolo F, Paghi A, Strambini L, Galimberti D, Tartaglia GM. Salivary biomarkers of neurodegenerative and demyelinating diseases and biosensors for their detection. Ageing Res Rev 2022; 76:101587. [PMID: 35151849 DOI: 10.1016/j.arr.2022.101587] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
Salivary analysis is gaining increasing interest as a novel and promising field of research for the diagnosis of neurodegenerative and demyelinating diseases related to aging. The collection of saliva offers several advantages, being noninvasive, stress-free, and repeatable. Moreover, the detection of biomarkers directly in saliva could allow an early diagnosis of the disease, leading to timely treatments. The aim of this manuscript is to highlight the most relevant researchers' findings relatively to salivary biomarkers of neurodegenerative and demyelinating diseases, and to describe innovative and advanced biosensing strategies for the detection of salivary biomarkers. This review is focused on five relevant aging-related neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Multiple Sclerosis) and the salivary biomarkers most commonly associated with them. Advanced biosensors enabling molecular diagnostics for the detection of salivary biomarkers are presented, in order to stimulate future research in this direction and pave the way for their clinical application.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Carolina Dolci
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Elisa Boccalari
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy
| | - Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via G. Caruso 16, Pisa, Italy
| | - Lucanos Strambini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, Via G. Caruso 16, Pisa, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy; Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy; UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| |
Collapse
|
12
|
Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. J Pharm Biomed Anal 2022; 209:114479. [PMID: 34861607 DOI: 10.1016/j.jpba.2021.114479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Early diagnosis of neurodegeneration-oriented diseases that develop with the aging world is essential for improving the patient's living conditions as well as the treatment of the disease. Alzheimer's and Parkinson's diseases are prominent examples of neurodegeneration characterized by dementia leading to the death of nerve cells. The clinical diagnosis of these diseases only after the symptoms appear, delays the treatment process. Detection of biomarkers, which are distinctive molecules in biological fluids, involved in neurodegeneration processes, has the potential to allow early diagnosis of neurodegenerative diseases. Studies on biosensors, whose main responsibility is to detect the target analyte with high specificity, has gained momentum in recent years with the aim of high detection of potential biomarkers of neurodegeneration process. This study aims to provide an overview of neuro-biosensors developed on the basis of biomarkers identified in biological fluids for the diagnosis of neurodegenerative diseases such as Alzheimer's disease (AD), and Parkinson's disease (PD), and to provide an overview of the urgent needs in this field, emphasizing the importance of early diagnosis in the general lines of the neurodegeneration pathway. In this review, biosensor systems developed for the detection of biomarkers of neurodegenerative diseases, especially in the last 5 years, are discussed.
Collapse
|
13
|
Mohan B, Kumar S, Xi H, Ma S, Tao Z, Xing T, You H, Zhang Y, Ren P. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022; 197:113738. [PMID: 34740120 DOI: 10.1016/j.bios.2021.113738] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.
Collapse
Affiliation(s)
- Brij Mohan
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sandeep Kumar
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hui Xi
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Shixuan Ma
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhiyu Tao
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Tiantian Xing
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| |
Collapse
|
14
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
15
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
16
|
Hajian R, DeCastro J, Parkinson J, Kane A, Camelo AFR, Chou PP, Yang J, Wong N, Hernandez EDO, Goldsmith B, Conboy I, Aran K. Rapid and Electronic Identification and Quantification of Age-Specific Circulating Exosomes via Biologically Activated Graphene Transistors. Adv Biol (Weinh) 2021; 5:e2000594. [PMID: 33929095 DOI: 10.1002/adbi.202000594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Increasing access to modern clinical practices concomitantly extends lifespan, ironically revealing new classes of degenerative and inflammatory diseases of later years. Here, an electronic graphene field-effect transistor (gFET) is reported, termed EV-chip, for label-free, rapid identification and quantification of exosomes (EV) associated with aging through specific surface markers, CD63 and CD151. Studies suggest that blood-derived exosomes carry specific biomolecules that can be used toward diagnostic applications of age and health. However, to observe improvements in patient outcomes, earlier detection at the point-of-care (POC) is required. Unfortunately, conventional techniques and other electronic-based platforms for exosome sensing are burdensome and inept for the POC distinction of aged blood factors. It is shown that EV-chip can quantitatively detect purified exosomes from plasma, with a limit of detection (LOD) of 2 × 104 particles mL-1 and a limit of quantification (LOQ) of 6 × 104 particles mL-1 . The sensitivity and compact electronics of the EV-chip improves upon previously published electronic biosensors, making it ideal for a physician's office or a simple biological laboratory. The sensitivity, selectivity, and portability of the EV-chip demonstrate the potential of the biosensor as a powerful point-of-care diagnostic and prognostic tool for age-related diseases.
Collapse
Affiliation(s)
- Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, 91711, USA.,Cardea Bio Inc., 8969 Kenamar Dr. Suite 104, San Diego, CA, 92121, USA
| | - Jonalyn DeCastro
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, 91711, USA
| | | | - Alex Kane
- Cardea Bio Inc., 8969 Kenamar Dr. Suite 104, San Diego, CA, 92121, USA
| | | | - Peichi Peggy Chou
- Keck Science Department, Pitzer College, The Claremont Colleges, Claremont, CA, 91711, USA
| | - Jielin Yang
- Keck Science Department, Claremont McKenna College, The Claremont Colleges, Claremont, CA, 91711, USA
| | - Nathan Wong
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Brett Goldsmith
- Cardea Bio Inc., 8969 Kenamar Dr. Suite 104, San Diego, CA, 92121, USA
| | - Irina Conboy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, 91711, USA.,Cardea Bio Inc., 8969 Kenamar Dr. Suite 104, San Diego, CA, 92121, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
17
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
18
|
Nangare S, Patil P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit Rev Anal Chem 2021; 52:1139-1169. [DOI: 10.1080/10408347.2020.1864716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
19
|
Mahshid SS, Dabdoub A. Development of a novel electrochemical immuno-biosensor for circulating biomarkers of the inner ear. Biosens Bioelectron 2020; 165:112369. [PMID: 32729501 DOI: 10.1016/j.bios.2020.112369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Current approaches for diagnosis of hearing or vestibular disorders are mostly based on physical examinations that cannot provide information about the exact location of cellular damage inside the inner ear. Therefore, there is a need for new diagnostic methods capable of identifying the sites of damage through the detection of inner ear blood-circulating biomarkers. Here, we developed the first biosensor platform for rapid detection of otolin-1 and prestin, blood-circulating proteins specifically expressed in the vestibule and cochlea, respectively. The platform was designed on a DNA-based immunoassay that employed conjugated antibodies for target protein recognition, which when bound, altered the DNA-DNA hybridization on the surface, resulting in generation of a concentration-dependent signal. The signal was recorded when the redox moiety brought to the surface by the target enabled a selective electrochemical output directly in whole blood. Signal amplification was acquired by employing high-curvature nanostructured electrodes for sensitive sample analysis at picomolar concentrations with a three-fold quantitative range. The combination of nanostructuring and optimum density of the probes on the surface provided low-picomolar detection limits while utilizing small 10 μL sample volume with a 10-min response time. The proposed immuno-biosensor is highly selective and quantitative and can easily be adapted for rapid detection of any blood-circulating protein using their specific antibodies as recognition elements.
Collapse
Affiliation(s)
- Sahar S Mahshid
- Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
| | - Alain Dabdoub
- Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, M5S 3H2, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
20
|
Jamerlan A, An SSA, Hulme J. Advances in amyloid beta oligomer detection applications in Alzheimer's disease. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Carneiro P, Morais S, Pereira MC. Nanomaterials towards Biosensing of Alzheimer's Disease Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1663. [PMID: 31766693 PMCID: PMC6956238 DOI: 10.3390/nano9121663] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is an incurable and highly debilitating condition characterized by the progressive degeneration and/or death of nerve cells, which leads to manifestation of disabilities in cognitive functioning. In recent years, the development of biosensors for determination of AD's main biomarkers has made remarkable progress, particularly based on the tremendous advances in nanoscience and nanotechnology. The unique and outstanding properties of nanomaterials (such as graphene, carbon nanotubes, gold, silver and magnetic nanoparticles, polymers and quantum dots) have been contributing to enhance the electrochemical and optical behavior of transducers while offering a suitable matrix for the immobilization of biological recognition elements. Therefore, optical and electrochemical immuno- and DNA-biosensors with higher sensitivity, selectivity and longer stability have been reported. Nevertheless, strategies based on the detection of multiple analytes still need to be improved, as they will play a crucial role in minimizing misdiagnosis. This review aims to provide insights into the conjugation of nanomaterials with different transducers highlighting their crucial role in the construction of biosensors for detection of AD main biomarkers.
Collapse
Affiliation(s)
- Pedro Carneiro
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.C.); (M.C.P.)
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Simone Morais
- REQUIMTE–LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.C.); (M.C.P.)
| |
Collapse
|
23
|
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater 2019; 8:e1900368. [PMID: 31183972 DOI: 10.1002/adhm.201900368] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Contact lenses are ocular prosthetic devices used by over 150 million people worldwide. Primary applications of contact lenses include vision correction, therapeutics, and cosmetics. Contact lens materials have significantly evolved over time to minimize adverse effects associated with contact lens wearing, to maintain a regular corneal metabolism, and to preserve tear film stability. This article encompasses contact lens technology, including materials, chemical and physical properties, manufacturing processes, microbial contamination, and ocular complications. The function and the composition of the tear fluid are discussed to assess its potential as a diagnostic media. The regulatory standards of contact lens devices with regard to biocompatibility and contact lens market are presented. Future prospects in contact lens technology are evaluated, with particular interest given to theranostic applications for in situ continuous monitoring the ocular physiology.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Daniele Vigolo
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
| |
Collapse
|
24
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|