1
|
Majeed A, Afzal H, Maqsood K, Noureen A, Gul Z, Imran M, Afzal A, Khawar MB. Using carbohydrate-based polymers to facilitate testicular regeneration. Biol Cell 2024; 116:e2400013. [PMID: 38881160 DOI: 10.1111/boc.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
Male infertility is a significant global issue affecting 60-80 million people, with 40%-50% of cases linked to male issues. Exposure to radiation, drugs, sickness, the environment, and oxidative stress may result in testicular degeneration. Carbohydrate-based polymers (CBPs) restore testis differentiation and downregulate apoptosis genes. CBP has biodegradability, low cost, and wide availability, but is at risk of contamination and variations. CBP shows promise in wound healing, but more research is required before implementation in healthcare. Herein, we discuss the recent advances in engineering applications of CBP employed as scaffolds, drug delivery systems, immunomodulation, and stem cell therapy for testicular regeneration. Moreover, we emphasize the promising challenges warranted for future perspectives.
Collapse
Affiliation(s)
- Aneeqa Majeed
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
| | - Kaleem Maqsood
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Amara Noureen
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zaman Gul
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Center of Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
- Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Piri-Gharaghie T, Ghourchian H, Rezaeizadeh G, Kabiri H, Rajaei N, Dhiaa AM, Ghajari G, Bahari R. (S)-3-(3,4-Dihydroxybenzyl) piperazine-2,5-dione (cyclo-Gly-L-DOPA or CG-Nio-CGLD) peptide loaded in Chitosan Glutamate-Coated Niosomes as anti-Colorectal cancer activity. BMC Pharmacol Toxicol 2024; 25:44. [PMID: 39090674 PMCID: PMC11295349 DOI: 10.1186/s40360-024-00766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), now the second most prevalent malignant tumor worldwide, is more prevalent in young adults. In recent decades, there has been progress in creating anti-colorectal cancer medications, including cytotoxic compounds. OBJECTIVES Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of novel formulations in preventing colorectal cancer. METHODS During this study, we assessed a new kind of niosome called cyclo-Gly-L-DOPA (CG-Nio-CGLD) made from chitosan glutamate. We evaluated the anti-colorectal cancer properties of CG-Nio-CGLD utilizing CCK-8, invasion assay, MTT assay, flow cytometry, and cell cycle analysis. The transcription of genes associated with apoptosis was analyzed using quantitative real-time PCR. At the same time, the cytotoxicity of nanomaterials on both cancer and normal cell lines was assessed using MTT assays. Novel anticancer drugs are needed to surmount existing obstacles. A recent study investigated the effectiveness of newly developed formulations in preventing colorectal cancer. RESULTS The Nio-CGLD and CG-Nio-CGLD were spherical mean diameters of 169.12 ± 1.87 and 179.26 ± 2.17 nm, respectively. Entrapment efficiency (EE%) measurements of the Nio-CGLD and CG-Nio-CGLD were 63.12 ± 0.51 and 76.43 ± 0.34%, respectively. In the CG-Nio-CGLD group, the percentages of early, late, necrotic, and viable CL40 cells were 341.93%, 23.27%, 9.32%, and 25.48%. The transcription of the genes PP53, cas3, and cas8 was noticeably higher in the treatment group compared to the control group (P > 0.001). Additionally, the treatment group had lower BCL2 and survivin gene expression levels than the control group (P < 0.01). Additionally, CG-Nio-CGLD formulations demonstrated a biocompatible nanoscale delivery mechanism and displayed little cytotoxicity toward the CCD 841 CoN reference cell line. CONCLUSION These findings indicate that chitosan-based noisome encapsulation may enhance the effectiveness of CG-Nio-CGLD formulations in fighting cancer.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biological Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hedieh Ghourchian
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamidreza Kabiri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Negin Rajaei
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | | | - Ghazal Ghajari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roghayeh Bahari
- Department of Biology, Faculty of Biological Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
3
|
Zhang H, Li N, Zhang Y, Xu Y, Lu F, Lin D, Lin S, Li M, Yang B. Ganoderma lucidum Polysaccharide Peptide Alleviates Cyclophosphamide-Induced Male Reproductive Injury by Reducing Oxidative Stress and Apoptosis. Biomedicines 2024; 12:1632. [PMID: 39200097 PMCID: PMC11351902 DOI: 10.3390/biomedicines12081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Lu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Dongmei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| |
Collapse
|
4
|
Ghourchian H, Pecho RDC, Karimi-Dehkordi M, Mazandarani A, Ghajari G, Piri-Gharaghie T. Novel Niosome-Encapsulated 2,5-Diketopiperazine (BHPPD): Synthesis, Formulation, and Anti-breast Cancer Activity. Appl Biochem Biotechnol 2024; 196:3126-3147. [PMID: 37624507 DOI: 10.1007/s12010-023-04687-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
In the course of this investigation, a brand-new noisome-encapsulated 2,5-diketopiperazine (BHPPD) was developed, synthesized, and assessed. Utilizing CCK-8, invasion screens, MTT test, flow cytometry, and cell cycle analysis, we evaluated the anti-breast cancer properties of niosome-encapsulated BHPPD. Apoptosis-related gene expression and cytotoxicity was measured using quantitative real-time PCR and MTT assays. This meta-analysis showed a significant drug-binding affinity for intestinal protease. The spherical mean diameters of the free BHPPD, the F1 niosomal-BHPPD, and the F2 niosomal-BHPPD were all determined to be108.91 ± 4.2, 129.13 ± 7.2 nm, and 149.43 ± 3.2 nm, respectively. Also, it was found that the entrapment efficiency (EE%) of the F1 formulations of BHPPD that was niosome-encapsulated was 81.01 0.09% and that it was 70.22 0.13%, respectively. Early, late, necrotic, and viable MCF-7 cells were present in the cells with F1 formulation in proportions of 38.24%, 34.34%, 4.02%, and 23.40%, respectively. Compared to the control group, the treatment group's expression of the genes P57, Prkca, MDM4, Map2k6, and FADD was considerably greater (P < 0.001). Furthermore, compared to control cells, cells in the treatment group expressed less BCL2 and survival genes (P < 0.001). Moreover, formulations of BHPPD encapsulated in niosomes showed a biocompatible nanoscale delivery method and exhibited little cytotoxicity against the HEK-293 standard cell line. According to the findings, formulations of BHPPD with niosome-encapsulation might be viable for boosting anticancer activity.
Collapse
Affiliation(s)
- Hedieh Ghourchian
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Aynaz Mazandarani
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
5
|
Hakimian M, Doosti A, Sharifzadeh A. A novel chimeric vaccine containing multiple epitopes for simulating robust immune activation against Klebsiella pneumoniae. BMC Immunol 2024; 25:27. [PMID: 38706005 PMCID: PMC11070107 DOI: 10.1186/s12865-024-00617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.
Collapse
Affiliation(s)
- Morteza Hakimian
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Ali Sharifzadeh
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Microbiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
6
|
Kazemi-Roudsari M, Doosti A, Jami MS. Design of an oral vaccine using Lactococcus lactis against brucellosis: an in vitro and in vivo study. AMB Express 2024; 14:2. [PMID: 38170414 PMCID: PMC10764709 DOI: 10.1186/s13568-023-01638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024] Open
Abstract
Brucellosis is regarded as one of the world's most severe zoonotic diseases. This study aimed to investigate the possibility of using recombinant Lactococcus lactis (L. lactis) as a live vector to produce recombinant Brucella abortus (B. abortus) Omp10. The gene sequences were obtained from GenBank. The proteins' immunogenicity was assessed using Vaxijen. After confirming the cloning of the Omp10 gene in the pNZ8148 vector by enzymatic digestion and PCR, transformation into L. lactis was done. SDS-PAGE and western blot methods evaluated omp10 protein expression. Mice received oral recombinant L. lactis vaccines. IgG antibodies against Omp10 were tested using ELISA. Real-time PCR and ELISA were used to analyze cytokine responses. Survival rate and histopathological changes were evaluated after the challenge. Omp10 was chosen for its 1.5524 antigenicity score. Enzymatic digestion and PCR identified a 381-bp gene fragment. A 10 kDa band indicated the success of L. lactis transformation. Mice administered the L. lactis-pNZ8148-Omp10-Usp45 vaccination 14 days after priming showed significantly higher Omp10-specific total IgG and IgG1 (P < 0.001) than the PBS control group. The mice who received the L. lactis-pNZ8148-Omp10-Usp45 and IRBA vaccines had significantly elevated levels of IFN-γ, TNFα, IL-4, and IL-10 in samples collected on days 14 and 28 (P < 0.001). Inflammatory response, morphological damage, alveolar edema, and lymphocyte infiltration were reduced in the target group. A recombinant L. lactis expressing the Omp10 protein was constructed as an oral Lactococcus-based vaccine and compared to live attenuated vaccines for future brucellosis investigations.
Collapse
Affiliation(s)
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad-Saeid Jami
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Research Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Afkhamipour M, Kaviani F, Dalali S, Piri-Gharaghie T, Doosti A. Potential Gastric Cancer Immunotherapy: Stimulating the Immune System with Helicobacter pylori pIRES2-DsRed-Express- ureF DNA Vaccines. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0004. [PMID: 38346161 DOI: 10.2478/aite-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/20/2023] [Indexed: 02/15/2024]
Abstract
Most gastric cancers (GC) are thought to be caused by Helicobacter pylori (H. pylori) infections. However, there is mounting evidence that GC patients with positive H. pylori status have improved prognoses. The H. pylori-induced cellular immune reaction may inhibit cancer. In this study, BALB/c mice were immunized using recombinant plasmids that encode the ureF gene of H. pylori. Purified functional splenic CD3+ T lymphocytes are used to study the anticancer effects in vitro and in vivo. The immunological state of GC patients with ongoing H. pylori infection is mimicked by the H. pylori DNA vaccines, which cause a change in the reaction from Th1 to Th2. Human GC cells grow more slowly when stimulated CD3+ T lymphocytes are used as adoptive infusions because they reduce GC xenograft development in vivo. The more excellent ratios of infiltrating CD8+/CD4+ T cells, the decreased invasion of regulatory FOXP3+ Treg lymphocytes, and the increased apoptosis brought on by Caspase9/Caspase-3 overexpression and Survivin downregulation may all contribute to the consequences. Our findings suggest that in people with advanced GC, H. pylori pIRES2-DsRed-Express-ureF DNA vaccines may have immunotherapeutic utility.
Collapse
Affiliation(s)
- Mahsa Afkhamipour
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Kaviani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Dalali
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Biotechnology Research Center, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
8
|
Kazemi D, Doosti A, Shakhsi-Niaei M. Immunization of BALB/c mice with BAB1-0278: An initial investigation of a novel potential vaccine for brucellosis based on Lactococcus Lactis vector. Microb Pathog 2023; 185:106417. [PMID: 37866552 DOI: 10.1016/j.micpath.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.
Collapse
Affiliation(s)
- Donya Kazemi
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mostafa Shakhsi-Niaei
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
9
|
Mazandarani A, Taravati A, Mohammadnejad J, Yazdian F. Targeted Anticancer Drug Delivery Using Chitosan, Carbon Quantum Dots, and Aptamers to Deliver Ganoderic Acid and 5-Fluorouracil. Chem Biodivers 2023; 20:e202300659. [PMID: 37548485 DOI: 10.1002/cbdv.202300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Breast cancer is a malignancy that affects mostly females and is among the most lethal types of cancer. The ligand-functionalized nanoparticles used in the nano-drug delivery system offer enormous potential for cancer treatments. This work devised a promising approach to increase drug loading efficacy and produce sustained release of 5-fluorouracil (5-FU) and Ganoderic acid (GA) as model drugs for breast cancer. Chitosan, aptamer, and carbon quantum dot (CS/Apt/COQ) hydrogels were initially synthesized as a pH-sensitive and biocompatible delivery system. Then, CS/Apt/COQ NPs loaded with 5-FU-GA were made using the W/O/W emulsification method. FT-IR, XRD, DLS, zeta potentiometer, and SEM were used to analyze NP's chemical structure, particle size, and shape. Cell viability was measured using MTT assays in vitro using the MCF-7 cell lines. Real-time PCR measured cell apoptotic gene expression. XRD and FT-IR investigations validated nanocarrier production and revealed their crystalline structure and molecular interactions. DLS showed that nanocarriers include NPs with an average size of 250.6 nm and PDI of 0.057. SEM showed their spherical form, and zeta potential studies showed an average surface charge of +37.8 mV. pH 5.4 had a highly effective and prolonged drug release profile, releasing virtually all 5-FU and GA in 48 h. Entrapment efficiency percentages for 5-FU and GA were 84.7±5.2 and 80.2 %±2.3, respectively. The 5-FU-GA-CS-CQD-Apt group induced the highest cell death, with just 57.9 % of the MCF-7 cells surviving following treatment. 5-FU and GA in CS-CQD-Apt enhanced apoptotic induction by flow cytometry. 5-FU-GA-CS-CQD-Apt also elevated Caspase 9 and downregulated Bcl2. Accordingly, the produced NPs may serve as pH-sensitive nano vehicles for the controlled release of 5-FU and GA in treating breast cancer.
Collapse
Affiliation(s)
- Aynaz Mazandarani
- Department of Molecular and cell Biology, Faculty of Basic Sciences, University of Mazandaran, 47416-95447, Babolsar, Iran
| | - Ali Taravati
- Department of Molecular and cell Biology, Faculty of Basic Sciences, University of Mazandaran, 47416-95447, Babolsar, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Ghajari G, Naser RH, Pecho RDC, Alhili F, Piri-Gharaghie T. RETRACTED ARTICLE: Chitosan/Pectin Nanoparticles Encapsulated with Echinacea pallida: a Focus on Antibacterial and Antibiofilm Activity Against Multidrug-Resistant Staphylococcus aureus. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04709-1. [PMID: 37656354 DOI: 10.1007/s12010-023-04709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rana Hussein Naser
- Department of Science, College of Basic Education-Science, University of Diyala, Baqubah, Diyala, Iraq
| | | | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
11
|
Nabati S, Aminzare M, Roohinejad S, Hassanzad Azar H, Mohseni M, Greiner R, Tahegorabi R. Electrospun polycaprolactone nanofiber containing Ganoderma lucidum extract to improve chemical and microbial stability of rainbow trout fillets during storage at 4°C. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Li Y, Liang W, Han Y, Zhao W, Wang S, Qin C. Triterpenoids and Polysaccharides from Ganoderma lucidum Improve the Histomorphology and Function of Testes in Middle-Aged Male Mice by Alleviating Oxidative Stress and Cellular Apoptosis. Nutrients 2022; 14:nu14224733. [PMID: 36432421 PMCID: PMC9696538 DOI: 10.3390/nu14224733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is an inevitable physiological process accompanied by a decline in body physiology, including male fertility. A preparation from Ganoderma lucidum (GL) containing triterpenes and polysaccharides has been shown to have anti-aging properties. In the current study, the effects of GL on mating ability, testosterone secretion, and testicular structure and function were observed in middle-aged male mice. The GL preparation was administered orally to mice for 2 to 5 months, and then behavioral, serological, and histopathological examinations were performed. Results showed that in the GL group of mice, the mating latency was shortened, the number of pursuits within 20 min was increased, and the mating success rate was higher compared to control mice. Additionally, the levels of serum testosterone, cell proliferation (Ki67), and sperm-specific lactate dehydrogenase (LDH)-C4 were increased, while the levels of senescence-related protein p16 and cellular apoptosis were decreased in GL mice. Testicular spermatogenic cells and sperm and stromal cells were reduced and exhibited structural disorder in 11- and 14-month-old control mice, while these changes were improved compared to age-matched mice receiving the GL preparation. Furthermore, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and the pro-apoptotic protein Bax were decreased, while the anti-apoptotic protein Bcl-2 was increased in GL mice. Finally, the mitochondrial structure was relatively complete in GL mice compared to controls. Therefore, GL has the potential to improve testicular structure and function in middle-aged male mice by alleviating oxidative stress, maintaining mitochondrial homeostasis, and reducing cellular apoptosis.
Collapse
Affiliation(s)
- Yanhong Li
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Wei Liang
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Yunlin Han
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Wenjie Zhao
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Siyuan Wang
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Chuan Qin
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Correspondence: ; Tel.: +86-010-87778141
| |
Collapse
|
13
|
Ahmadi-Balootaki S, Doosti A, Jafarinia M, Goodarzi HR. Targeting the MALAT1 gene with the CRISPR/Cas9 technique in prostate cancer. Genes Environ 2022; 44:22. [PMID: 36163080 PMCID: PMC9511773 DOI: 10.1186/s41021-022-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The MALAT1 lncRNA acts as an oncogene in Prostate cancer (PC); thus, it can be severe as a cancer biomarker. METHODS Using bioinformatics datasets including (HTSeq-Counts, GDC, and TCGA) 5501 gene expression profiling specimens were gathered. Then, expression profiles and sample survival of lncRNA were investigated using COX regression analyses, ROC curve analysis. The Database for Annotation, Visualization, and Integrated Discovery was used to conduct GO and KEGG studies on the lncRNA-related PCGs. After MALAT1 Knockout via CRISPR/Cas9 technique, the MALAT1 expression was assessed in DU-145 cells. The deletion of the target fragment was examined by polymerase chain reaction (PCR). Also, the expression of apoptosis genes was investigated by qRT-PCR. The viability and cell proliferation were measured using the MTT assay. Cell migration capability was determined using the cell scratch assay. The results of qRT-PCR were assessed by the ΔΔCt method, and finally, statistical analysis was performed in SPSS software. RESULTS A maximum of 451 lncRNAs were discovered to reflect different expressions between PC and non-carcinoma tissue samples, with 307 being upregulated and 144 being down-regulated. Thirty-six lncRNAs related to OS were carefully selected, which were then subjected to stepwise multivariate Cox regression analysis, with 2 lncRNAs (MALAT1, HOXB-AS3). MALAT1 is highly expressed in PC cells. MALAT1 Knockout in DU-145 cells increases apoptosis and prevents proliferation and migration, and DU-145 transfected cells were unable to migrate based on the scratch recovery test. Overall, data suggest that MALAT1 overexpression in PC helps metastasis and tumorigenesis. Also, MALAT1 knockout can be considered a therapeutic and diagnostic target in PC. CONCLUSION Targeting MALAT1 by CRISPR/Cas9 technique inhibit the cell proliferation and migration, and in addition induce apoptosis. Thus, MALAT1 can act as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Hamed Reza Goodarzi
- Department of Genetic, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
14
|
Mansour FR, Nabiuni M, Amini E. Ovarian Toxicity Induced by Aluminum Chloride: Alteration of Cyp19a1, Pcna, Puma, and Map1lc3b genes Expression. Toxicology 2021; 466:153084. [PMID: 34958889 DOI: 10.1016/j.tox.2021.153084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Aluminum (Al) is an abundant metal with wide application in our daily lives including medicine, industry, cosmetics, and packaging. After entrance to the body, aluminum binds to transferrin and reaches different tissues. Al is a metalloestrogen that can lead to oxidative stress (OxS) and endocrine disruption. No detailed study can be found addressing the effect of Al on the ovary and granulosa cells (GCs). In this study, the focus is on the treated ovaries and GCs of NMRI mice exposed to low, middle, and high doses of aluminum chloride (AlCl3) via in vitro and in vivo assays. The steroidogenic, proliferative, apoptotic, and autophagic-related genes were examined. Up-regulated expression of steroidogenic and proliferative genes was detected. The observed apoptotic and autophagic genes had variable expression. Interrupted ovarian structure, disrupted folliculogenesis, presence of Call-Exner bodies, overexpression of steroidogenic gene, and unbalanced apoptosis/autophagy and proliferation resembled features of granulosa cell tumor (GCT).
Collapse
Affiliation(s)
- Farima Rahimi Mansour
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|