1
|
Tai Z, Liu J, Wang B, Chen S, Liu C, Chen X. The Effect of Aligned and Random Electrospun Fibers Derived from Porcine Decellularized ECM on Mesenchymal Stem Cell-Based Treatments for Spinal Cord Injury. Bioengineering (Basel) 2024; 11:772. [PMID: 39199730 PMCID: PMC11351159 DOI: 10.3390/bioengineering11080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
The impact of traumatic spinal cord injury (SCI) can be extremely devastating, as it often results in the disruption of neural tissues, impeding the regenerative capacity of the central nervous system. However, recent research has demonstrated that mesenchymal stem cells (MSCs) possess the capacity for multi-differentiation and have a proven track record of safety in clinical applications, thus rendering them effective in facilitating the repair of spinal cord injuries. It is urgent to develop an aligned scaffold that can effectively load MSCs for promoting cell aligned proliferation and differentiation. In this study, we prepared an aligned nanofiber scaffold using the porcine decellularized spinal cord matrix (DSC) to induce MSCs differentiation for spinal cord injury. The decellularization method removed 87% of the immune components while retaining crucial proteins in DSC. The electrospinning technique was employed to fabricate an aligned nanofiber scaffold possessing biocompatibility and a diameter of 720 nm. In in vitro and in vivo experiments, the aligned nanofiber scaffold induces the aligned growth of MSCs and promotes their differentiation into neurons, leading to tissue regeneration and nerve repair after spinal cord injury. The approach exhibits promising potential for the future development of nerve regeneration scaffolds for spinal cord injury treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.T.); (C.L.)
| |
Collapse
|
2
|
Jeon J, Park SH, Choi J, Han SM, Kim HW, Shim SR, Hyun JK. Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: A systematic review and network meta-analysis. Acta Biomater 2024; 183:50-60. [PMID: 38871200 DOI: 10.1016/j.actbio.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Spinal cord injury (SCI) is associated with substantial healthcare challenges, frequently resulting in enduring sensory and motor deficits alongside various chronic complications. While advanced regenerative therapies have shown promise in preclinical research, their translation into clinical application has been limited. In response, this study utilized a comprehensive network meta-analysis to evaluate the effectiveness of neural stem/progenitor cell (NSPC) transplantation across animal models of SCI. We analyzed 363 outcomes from 55 distinct studies, categorizing the treatments into NSPCs alone (cell only), NSPCs with scaffolds (cell + scaffold), NSPCs with hydrogels (cell + hydrogel), standalone scaffolds (scaffold), standalone hydrogels (hydrogel), and control groups. Our analysis demonstrated significant enhancements in motor recovery, especially in gait function, within the NSPC treatment groups. Notably, the cell only group showed considerable improvements (standardized mean difference [SMD], 2.05; 95 % credible interval [CrI]: 1.08 to 3.10, p < 0.01), as did the cell + scaffold group (SMD, 3.73; 95 % CrI: 2.26 to 5.22, p < 0.001) and the cell + hydrogel group (SMD, 3.37; 95 % CrI: 1.02 to 5.78, p < 0.05) compared to controls. These therapeutic combinations not only reduced lesion cavity size but also enhanced neuronal regeneration, outperforming the cell only treatments. By integrating NSPCs with supportive biomaterials, our findings pave the way for refining these regenerative strategies to optimize their potential in clinical SCI treatment. Although there is no overall violation of consistency, the comparison of effect sizes between individual treatments should be interpreted in light of the inconsistency. STATEMENT OF SIGNIFICANCE: This study presents a comprehensive network meta-analysis exploring the efficacy of neural stem cell (NSC) transplantation, with and without biomaterials, in animal models of spinal cord injury (SCI). We demonstrate that NSCs, particularly when combined with biomaterials like scaffolds or hydrogels, significantly enhance motor and histological recovery post-SCI. These findings underscore the potential of NSC-based therapies, augmented with biomaterials, to advance SCI treatment, offering new insights into regenerative strategies that could significantly impact clinical practices.
Collapse
Affiliation(s)
- Jooik Jeon
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | | | - Jonghyuk Choi
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sun Mi Han
- Medical record team, Konyang University Hospital, Daejeon 35365, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Ryul Shim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Jung Keun Hyun
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Wiregene, Co. Ltd., Osong 28160, Republic of Korea; Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
3
|
Hjazi A, Alghamdi A, Aloraini GS, Alshehri MA, Alsuwat MA, Albelasi A, Mashat RM, Alissa M. Combination use of human menstrual blood stem cell- derived exosomes and hyperbaric oxygen therapy, synergistically promote recovery after spinal cord injury in rats. Tissue Cell 2024; 88:102378. [PMID: 38663114 DOI: 10.1016/j.tice.2024.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 06/17/2024]
Abstract
Traumatic spinal cord injury (TSCI) is one of the catastrophic events in the nervous system that leads to the loss of sensory and motor function of the spinal cord at the site of injury. Considering that several factors such as apoptosis, inflammation, and oxidative stress play a role in the spread of damage caused by trauma, therefore, the treatment should also be based on multifactorial approaches. Currently, we investigated the effects of human menstrual blood stem cells (MenSCs)-derived exosomes in combination with hyperbaric oxygen therapy (HBOT) in the recovery of TSCI in rats. Ninety male mature Sprague-Dawley (SD) rats were planned into five equal groups, including; control group, TSCI group, Exo group (underwent TSCI and received MenSCs -derived exosomes), HBOT group (underwent TSCI and received HBOT), and Exo+HBOT group (underwent TSCI and received MenSCs -derived exosomes plus HBOT). After the behavioral evaluation, tissue samples were obtained for stereological, immunohistochemical, biochemical, and molecular assessments. Our results showed that the numerical density of neurons, the concentrations of antioxidative biomarkers (CAT, GSH, and SOD), and neurological function scores were significantly greater in the treatments group than in the TSCI group, and these changes were more obvious in the Exo+HBOT ones (P<0.05). This is while the numerical densities of apoptotic cells and glial cells, the levels of an oxidative factor (MDA) and proinflammatory cytokines (IL-1β and TNF-α) were considerably decreased in the treatment groups, specially the Exo+HBOT group, compared to the TSCI group (P<0.05). We conclude that the co-administration of exosomes derived from MenSCs and HBOT has more neuroprotective effects in animals with TSCI.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ghfren S Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Abdullah Albelasi
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Reham M Mashat
- Nutrition and Food Sciences, College of Home Economics, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
4
|
Cheng LF, You CQ, Peng C, Ren JJ, Guo K, Liu TL. Mesenchymal stem cell-derived exosomes as a new drug carrier for the treatment of spinal cord injury: A review. Chin J Traumatol 2024; 27:134-146. [PMID: 38570272 PMCID: PMC11138942 DOI: 10.1016/j.cjtee.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.
Collapse
Affiliation(s)
- Lin-Fei Cheng
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China
| | - Chao-Qun You
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Cheng Peng
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Jia-Ji Ren
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Kai Guo
- Department of Orthopaedics, The Central Hospital of Shanghai Putuo District, Shanghai, 200333, China
| | - Tie-Long Liu
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China.
| |
Collapse
|
5
|
Singh G, Mehra A, Arora S, Gugulothu D, Vora LK, Prasad R, Khatri DK. Exosome-mediated delivery and regulation in neurological disease progression. Int J Biol Macromol 2024; 264:130728. [PMID: 38467209 DOI: 10.1016/j.ijbiomac.2024.130728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Exosomes (EXOs), membranous structures originating from diverse biological sources, have recently seized the attention of researchers due to their theranostic potential for neurological diseases. Released actively by various cells, including stem cells, adipose tissue, and immune cells, EXOs wield substantial regulatory influence over the intricate landscape of neurological complications, exhibiting both positive and negative modulatory effects. In AD, EXOs play a pivotal role in disseminating and breaking down amyloid-β protein. Moreover, EXOs derived from mesenchymal stem cells showcase a remarkable capacity to mitigate pro-inflammatory phenotypes by regulating miRNAs in neurodegenerative diseases. These vesicles possess the unique ability to traverse the blood-brain barrier, governing the aggregation of mutant huntingtin protein. Understanding the exosomal functions within the CNS holds significant promise for enhancing treatment efficacy in neurological diseases. This review intricately examines the regulatory mechanisms involving EXOs in neurological disease development, highlighting therapeutic prospects and exploring their utility in exosome-based nanomedicine for various neurological complications. Additionally, the review highlights the challenges associated with drug delivery to the brain, emphasizing the complexities inherent in this critical aspect of neurotherapeutics.
Collapse
Affiliation(s)
- Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India
| | - Ankit Mehra
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India
| | - Sanchit Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), M.B. Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), M.B. Road, Pushp Vihar, Sector-3, New Delhi 110017, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India; Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India.
| |
Collapse
|
6
|
Shang Z, Wanyan P, Wang M, Zhang B, Cui X, Wang X. Stem cell-derived exosomes for traumatic spinal cord injury: a systematic review and network meta-analysis based on a rat model. Cytotherapy 2024; 26:1-10. [PMID: 37804282 DOI: 10.1016/j.jcyt.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND AIMS Exosome therapy for traumatic spinal cord injury (TSCI) is a current research hotspot, but its therapeutic effect and the best source of stem cells for exosomes are unclear. METHODS The Web of Science, PubMed, Embase, Cochrane, and Scopus databases were searched from inception to March 28, 2023. Literature screening, data extraction and risk of bias assessment were performed independently by two investigators. RESULTS A total of 40 studies were included for data analysis. The findings of our traditional meta-analysis indicate that exosomes derived from stem cells significantly improve the motor function of TSCI at various time points (1 week: weighted mean difference [WMD] = 1.58, 95% confidence interval [CI] 0.87-2.30] 2 weeks: WMD = 3.12, 95% CI 2.64-3.61; 3 weeks: WMD = 4.44, 95% CI 3.27-5.60; 4 weeks: WMD = 4.54, 95% CI 3.42-5.66). Four kinds of stem cell-derived exosomes have been studied: bone marrow mesenchymal stem cells, adipose mesenchymal stem cells, umbilical cord mesenchymal stem cells and neural stem cells. The results of the network meta-analysis showed that there was no significant statistical difference in the therapeutic effect among the exosomes derived from four kinds of stem cells at different treatment time points. Although exosomes derived from bone marrow mesenchymal stem cells are the current research focus, exosomes derived from neural stem cells have the most therapeutic potential and should become the focus of future attention. CONCLUSIONS The exosomes derived from stem cells can significantly improve the motor function of TSCI rats, and the exosomes derived from neural stem cells have the most therapeutic potential. However, the lower evidence quality of animal studies limits the reliability of experimental results, emphasizing the need for more high-quality, direct comparative studies to explore the therapeutic efficacy of exosomes and the best source of stem cells.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pingping Wanyan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China; The Second Hospital of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqian Cui
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Chengren Institute of Traditional Chinese Medicine, Gansu Province, China; Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
7
|
Cui TW, Lu LF, Cao XD, Zhang QP, He YB, Wang YR, Ren R, Ben XY, Ni PL, Ma ZJ, Li YQ, Yi XN, Feng RJ. Exosomes combined with biosynthesized cellulose conduits improve peripheral nerve regeneration. IBRO Neurosci Rep 2023; 15:262-269. [PMID: 37841087 PMCID: PMC10570595 DOI: 10.1016/j.ibneur.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Peripheral nerve injury is one of the more common forms of peripheral nerve disorders, and the most severe type of peripheral nerve injury is a defect with a gap. Biosynthetic cellulose membrane (BCM) is a commonly used material for repair and ligation of nerve defects with gaps. Meanwhile, exosomes from mesenchymal stem cells can promote cell growth and proliferation. We envision combining exosomes with BCMs to leverage the advantages of both to promote repair of peripheral nerve injury. Prepared exosomes were added to BCMs to form exosome-loaded BCMs (EXO-BCM) that were used for nerve repair in a rat model of sciatic nerve defects with gaps. We evaluated the repair activity using a pawprint experiment, measurement and statistical analyses of sciatica function index and thermal latency of paw withdrawal, and quantitation of the number and diameter of regenerated nerve fibers. Results indicated that EXO-BCM produced comprehensive and durable repair of peripheral nerve defects that were similar to those for autologous nerve transplantation, the gold standard for nerve defect repair. EXO-BCM is not predicted to cause donor site morbidity to the patient, in contrast to autologous nerve transplantation. Together these results indicate that an approach using EXO-BCM represents a promising alternative to autologous nerve transplantation, and could have broad applications for repair of nerve defects.
Collapse
Affiliation(s)
- Tian-Wei Cui
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Li-Fang Lu
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Xu-Dong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Yue-Bin He
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ya-Ru Wang
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Rui Ren
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Xin-Yu Ben
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Pan-Li Ni
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhi-Jian Ma
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xi-Nan Yi
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Ren-Jun Feng
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Cheshmi H, Mohammadi H, Akbari M, Nasiry D, Rezapour-Nasrabad R, Bagheri M, Abouhamzeh B, Poorhassan M, Mirhoseini M, Mokhtari H, Akbari E, Raoofi A. Human Placental Mesenchymal Stem Cell-derived Exosomes in Combination with Hyperbaric Oxygen Synergistically Promote Recovery after Spinal Cord Injury in Rats. Neurotox Res 2023; 41:431-445. [PMID: 37155125 DOI: 10.1007/s12640-023-00649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Spinal cord injury (SCI) is a critical medical condition during which sensorimotor function is lost. Current treatments are still unable to effectively improve these conditions, so it is important to pay attention to other effective approaches. Currently, we investigated the combined effects of human placenta mesenchymal stem cells (hPMSCs)-derived exosomes along with hyperbaric oxygen (HBO) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley (SD) rats were allocated into five equal groups, including; sham group, SCI group, Exo group (underwent SCI and received hPMSCs-derived exosomes), HBO group (underwent SCI and received HBO), and Exo+HBO group (underwent SCI and received hPMSCs-derived exosomes plus HBO). Tissue samples at the lesion site were obtained for the evaluation of stereological, immunohistochemical, biochemical, molecular, and behavioral characteristics. Findings showed a significant increase in stereological parameters, biochemical factors (GSH, SOD, and CAT), IL-10 gene expression and behavioral functions (BBB and EMG Latency) in treatment groups, especially Exo+HBO group, compared to SCI group. In addition, MDA levels, the density of apoptotic cells and gliosis, as well as expression of inflammatory genes (TNF-α and IL-1β) were considerably reduced in treatment groups, especially Exo+HBO group, compared to SCI group. We conclude that co-administration of hPMSCs-derived exosomes and HBO has synergistic neuroprotective effects in animals undergoing SCI.
Collapse
Affiliation(s)
- Hosna Cheshmi
- Department of Treatment, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Akbari
- Department of Eye, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, 4615861468, Iran.
| | - Rafat Rezapour-Nasrabad
- Department of Psychiatric Nursing and Management, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, 5865272565, Iran.
| | - Mahdi Bagheri
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran
| | | | - Mahnaz Poorhassan
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Mehri Mirhoseini
- Department of Paramedicine, Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, 4615861468, Iran
| | - Hossein Mokhtari
- Department of Paramedicine, Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, 4615861468, Iran
| | - Esmaeil Akbari
- School of Medicine, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Raoofi
- Cellular and Molecular research center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
9
|
Zhang X, Jiang W, Lu Y, Mao T, Gu Y, Ju D, Dong C. Exosomes combined with biomaterials in the treatment of spinal cord injury. Front Bioeng Biotechnol 2023; 11:1077825. [PMID: 36994357 PMCID: PMC10040754 DOI: 10.3389/fbioe.2023.1077825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling disease with a high mortality rate. It often leads to complete or partial sensory and motor dysfunction and is accompanied by a series of secondary outcomes, such as pressure sores, pulmonary infections, deep vein thrombosis in the lower extremities, urinary tract infections, and autonomic dysfunction. Currently, the main treatments for SCI include surgical decompression, drug therapy, and postoperative rehabilitation. Studies have shown that cell therapy plays a beneficial role in the treatment of SCI. Nonetheless, there is controversy regarding the therapeutic effect of cell transplantation in SCI models. Meanwhile exosomes, as a new therapeutic medium for regenerative medicine, possess the advantages of small size, low immunogenicity, and the ability to cross the blood-spinal cord barrier. Certain studies have shown that stem cell-derived exosomes have anti-inflammatory effects and can play an irreplaceable role in the treatment of SCI. In this case, it is difficult for a single treatment method to play an effective role in the repair of neural tissue after SCI. The combination of biomaterial scaffolds and exosomes can better transfer and fix exosomes to the injury site and improve their survival rate. This paper first reviews the current research status of stem cell-derived exosomes and biomaterial scaffolds in the treatment of SCI respectively, and then describes the application of exosomes combined with biomaterial scaffolds in the treatment of SCI, as well as the challenges and prospects.
Collapse
|
10
|
Peng H, Liu Y, Xiao F, Zhang L, Li W, Wang B, Weng Z, Liu Y, Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol 2023; 11:1111882. [PMID: 36741755 PMCID: PMC9889880 DOI: 10.3389/fbioe.2023.1111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.
Collapse
Affiliation(s)
- Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yongkang Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Binghan Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhijian Weng
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yu Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| | - Gang Chen
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| |
Collapse
|
11
|
Asadi K, Amini A, Gholami A. Mesenchymal stem cell-derived exosomes as a bioinspired nanoscale tool toward next-generation cell-free treatment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Novel Strategies for Spinal Cord Regeneration. Int J Mol Sci 2022; 23:ijms23094552. [PMID: 35562941 PMCID: PMC9102050 DOI: 10.3390/ijms23094552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
A spinal cord injury (SCI) is one of the most devastating lesions, as it can damage the continuity and conductivity of the central nervous system, resulting in complex pathophysiology. Encouraged by the advances in nanotechnology, stem cell biology, and materials science, researchers have proposed various interdisciplinary approaches for spinal cord regeneration. In this respect, the present review aims to explore the most recent developments in SCI treatment and spinal cord repair. Specifically, it briefly describes the characteristics of SCIs, followed by an extensive discussion on newly developed nanocarriers (e.g., metal-based, polymer-based, liposomes) for spinal cord delivery, relevant biomolecules (e.g., growth factors, exosomes) for SCI treatment, innovative cell therapies, and novel natural and synthetic biomaterial scaffolds for spinal cord regeneration.
Collapse
|
13
|
Huang W, Lin M, Yang C, Wang F, Zhang M, Gao J, Yu X. Rat Bone Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-494 Promoting Neurofilament Regeneration and Behavioral Function Recovery after Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1634917. [PMID: 34635862 PMCID: PMC8501401 DOI: 10.1155/2021/1634917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
Exosomes (Exo) exhibit numerous advantages (e.g., good encapsulation, high targeting efficiency, and easy to penetrate the blood-brain barrier to the central nervous system). Exosomes are recognized as prominent carriers of mRNAs, siRNAs, miRNAs, proteins, and other bioactive molecules. As confirmed by existing studies, miR-494 is important to regulate the occurrence, progression, and repair of spinal cord injury (SCI). We constructed miR-494-modified exosomes (Exo-miR-494). As indicated from related research in vitro and vivo, Exo-miR-494 is capable of effectively inhibiting the inflammatory response and neuronal apoptosis in the injured area, as well as upregulating various anti-inflammatory factors and miR-494 to protect neurons. Moreover, it can promote the regeneration of the neurofilament and improve the recovery of behavioral function of SCI rats.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan 523000, China
| | - Miaoman Lin
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Cunheng Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Fumin Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Meng Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Junxiao Gao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiaobing Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|