1
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Cheng L, Mi J, Zhang J, Huang H, Mo Z. Upregulated PPP1R14B is connected to cancer progression and immune infiltration in kidney renal clear cell carcinoma. Clin Transl Oncol 2024; 26:119-135. [PMID: 37261660 DOI: 10.1007/s12094-023-03228-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is an oncogenic gene found in a variety of tumors, but its role in the prognosis and development of kidney renal clear cell carcinoma (KIRC) remains unknown. Our study aimed to determine whether PPP1R14B could be a prognostic biomarker for KIRC and its role in the development of KIRC. METHODS In this work, we used The Cancer Genome Atlas (TCGA) database to explore the expression of PPP1R14B in tumor tissues, its relationship with the prognosis of tumor patients, and its role in tumor occurrence and development. We validated our findings using the International Cancer Genome Consortium (ICGC) cohort, our clinical samples, and in vitro experiments. RESULTS PPP1R14B was upregulated in KIRC compared to adjacent normal tissue. Moreover, multivariate analysis revealed that upregulated PPP1R14B expression was an independent risk factor for KIRC progression. High-PPP1R14B groups had shorter overall survival (OS) and disease-free survival (DFS) in TCGA and ICGC cohorts. We used Cell Counting Kit-8 (CCK8) and scratch wound healing assay to explore the proliferation and migration of KIRC cells following PPP1R14B knockdown. Our results indicated that PPP1R14B knockdown significantly reduced the proliferation and migration of KIRC cells in vitro. We also explored the possible cellular mechanisms of PPP1R14B through the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO) analysis, and TISIDB analysis. The function enrich analysis revealed that PPP1R14B-related genes were mainly enriched in purine metabolism and the macromolecule catabolic process. PPP1R14B expression was associated with tumor-infiltrating immune cells (TIICs) in the TCGA cohort, and the results of single-cell RNA-seq (scRNA) further demonstrated that PPP1R14B expression was associated with the enhanced infiltration of CD8 + T lymphocytes. CONCLUSION PPP1R14B may serve as a prognostic biomarker in KIRC, affect purine metabolism, activate immune infiltration, and promote KIRC cell migration.
Collapse
Affiliation(s)
- Lang Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China
| | - Junhao Mi
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiange Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Kirkbride JA, Nilsson GY, Kim JI, Takeya K, Tanaka Y, Tokumitsu H, Suizu F, Eto M. PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis. Biomolecules 2023; 13:1741. [PMID: 38136612 PMCID: PMC10741526 DOI: 10.3390/biom13121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Raf-1, a multifunctional kinase, regulates various cellular processes, including cell proliferation, apoptosis, and migration, by phosphorylating MAPK/ERK kinase and interacting with specific kinases. Cellular Raf-1 activity is intricately regulated through pathways involving the binding of regulatory proteins, direct phosphorylation, and the ubiquitin-proteasome axis. In this study, we demonstrate that PHI-1, an endogenous inhibitor of protein phosphatase-1 (PP1), plays a pivotal role in modulating Raf-1 proteostasis within cells. Knocking down endogenous PHI-1 in HEK293 cells using siRNA resulted in increased cell proliferation and reduced apoptosis. This heightened cell proliferation was accompanied by a 15-fold increase in ERK1/2 phosphorylation. Importantly, the observed ERK1/2 hyperphosphorylation was attributable to an upregulation of Raf-1 expression, rather than an increase in Ras levels, Raf-1 Ser338 phosphorylation, or B-Raf levels. The elevated Raf-1 expression, stemming from PHI-1 knockdown, enhanced EGF-induced ERK1/2 phosphorylation through MEK. Moreover, PHI-1 knockdown significantly contributed to Raf-1 protein stability without affecting Raf-1 mRNA levels. Conversely, ectopic PHI-1 expression suppressed Raf-1 protein levels in a manner that correlated with PHI-1's inhibitory potency. Inhibiting PP1 to mimic PHI-1's function using tautomycin led to a reduction in Raf-1 expression. In summary, our findings highlight that the PHI-1-PP1 signaling axis selectively governs Raf-1 proteostasis and cell survival signals.
Collapse
Affiliation(s)
- Jason A. Kirkbride
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Garbo Young Nilsson
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Jee In Kim
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Kosuke Takeya
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan (Y.T.)
| | - Yoshinori Tanaka
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan (Y.T.)
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Okayama, Japan
| | - Futoshi Suizu
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Kagawa, Japan;
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan (Y.T.)
| |
Collapse
|
4
|
He K, Wang T, Huang X, Yang Z, Wang Z, Zhang S, Sui X, Jiang J, Zhao L. PPP1R14B is a diagnostic prognostic marker in patients with uterine corpus endometrial carcinoma. J Cell Mol Med 2023; 27:846-863. [PMID: 36824011 PMCID: PMC10002989 DOI: 10.1111/jcmm.17697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common malignancies of the female genital tract. A recently discovered protein-coding gene, PPP1R14B, can inhibit protein phosphatase 1 (PP1) as well as different PP1 holoenzymes, which are important proteins regulating cell growth, the cell cycle, and apoptosis. However, the association between PPP1R14B expression and UCEC remains undefined. The expression profiles of PPP1R14B in multiple cancers were analysed based on TCGA and GTE databases. Then, PPP1R14B expression in UCEC was investigated by gene differential analysis and single gene correlation analysis. In addition, we performed gene ontology term analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, gene set enrichment analysis, and Kaplan-Meier survival analysis to predict the potential function of PPP1R14B and its role in the prognosis of UCEC patients. Then, a tool for predicting the prognosis of UCEC, namely, a nomogram model, was constructed. PPP1R14B expression was higher in UCEC tumour tissues than in normal tissues. The results revealed that PPP1R14B expression was indeed closely associated with tumour development. The results of Kaplan-Meier plotter data indicated that patients with high PPP1R14b expression had poorer overall survival, disease-specific survival, and progression-free interval than those with low expression. A nomogram based on the results of multifactor Cox regression was generated. PPP1R14B is a key player in UCEC progression, is associated with a range of adverse outcomes, and can serve as a prognostic marker in the clinic.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Shuang Zhang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xin Sui
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Junjie Jiang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
5
|
Liao L, Zhang YL, Deng L, Chen C, Ma XY, Andriani L, Yang SY, Hu SY, Zhang FL, Shao ZM, Li DQ. Protein Phosphatase 1 Subunit PPP1R14B Stabilizes STMN1 to Promote Progression and Paclitaxel Resistance in Triple-Negative Breast Cancer. Cancer Res 2023; 83:471-484. [PMID: 36484700 PMCID: PMC9896024 DOI: 10.1158/0008-5472.can-22-2709] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) represents the most lethal subtype of breast cancer due to its aggressive clinical features and the lack of effective therapeutic targets. To identify novel approaches for targeting TNBC, we examined the role of protein phosphatases in TNBC progression and chemoresistance. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B), a poorly defined member of the protein phosphatase 1 regulatory subunits, was aberrantly upregulated in TNBC tissues and predicted poor prognosis. PPP1R14B was degraded mainly through the ubiquitin-proteasome pathway. RPS27A recruited deubiquitinase USP9X to deubiquitinate and stabilize PPP1R14B, resulting in overexpression of PPP1R14B in TNBC tissues. Gain- and loss-of-function assays demonstrated that PPP1R14B promoted TNBC cell proliferation, colony formation, migration, invasion, and resistance to paclitaxel in vitro. PPP1R14B also induced xenograft tumor growth, lung metastasis, and paclitaxel resistance in vivo. Mechanistic investigations revealed that PPP1R14B maintained phosphorylation and stability of oncoprotein stathmin 1 (STMN1), a microtubule-destabilizing phosphoprotein critically involved in cancer progression and paclitaxel resistance, which was dependent on PP1 catalytic subunits α and γ. Importantly, the tumor-suppressive effects of PPP1R14B deficiency could be partially rescued by ectopic expression of wild-type but not phosphorylation-deficient STMN1. Moreover, PPP1R14B decreased STMN1-mediated α-tubulin acetylation, microtubule stability, and promoted cell-cycle progression, leading to resistance of TNBC cells to paclitaxel. Collectively, these findings uncover a functional and mechanistic role of PPP1R14B in TNBC progression and paclitaxel resistance, indicating PPP1R14B is a potential therapeutic target for TNBC. SIGNIFICANCE PPP1R14B upregulation induced by RPS27A/USP9X in TNBC increases STMN1 activity, leading to cancer progression and paclitaxel resistance.
Collapse
Affiliation(s)
- Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin-Ling Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lisa Andriani
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fang-Lin Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Corresponding Authors: Da-Qiang Li, Fudan University Shanghai and Institute of Biomedical Sciences, Fudan University, 270 Dong-An Road, Shanghai, 200032, China. E-mail: ; Fang-Lin Zhang, E-mail: ; and Zhi-Min Shao, E-mail:
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Corresponding Authors: Da-Qiang Li, Fudan University Shanghai and Institute of Biomedical Sciences, Fudan University, 270 Dong-An Road, Shanghai, 200032, China. E-mail: ; Fang-Lin Zhang, E-mail: ; and Zhi-Min Shao, E-mail:
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Corresponding Authors: Da-Qiang Li, Fudan University Shanghai and Institute of Biomedical Sciences, Fudan University, 270 Dong-An Road, Shanghai, 200032, China. E-mail: ; Fang-Lin Zhang, E-mail: ; and Zhi-Min Shao, E-mail:
| |
Collapse
|