1
|
Fan L, Chen Y, Zeng Y, Yu Z, Dong Y, Li D, Zhang C, Ye C. Application of visual intelligent labels in the assessment of meat freshness. Food Chem 2024; 460:140562. [PMID: 39059324 DOI: 10.1016/j.foodchem.2024.140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
With the increasing demand for meat products, the evaluation and real-time monitoring of its freshness has become one of the focuses of related industry research. Conventional freshness detection methods, including sensory evaluation, microbial experiments, and determination of physicochemical indicators, are time-consuming, low sensitivity, and destructive, so there is an urgent need to develop a convenient, intuitive, and inexpensive detection method. As a representative of smart packaging, visual intelligent labels can realize real-time perception and monitoring of meat freshness by measuring the temperature, pH value or other indicators of meat and converting them into visual signals. This paper first summarizes the common types, basic principles and research progress of visual intelligent labels, then introduces its application in livestock, poultry and seafood freshness monitoring, finally looks forward to the development prospect of visual smart labels.
Collapse
Affiliation(s)
| | - Yihan Chen
- Naval Medical University, Shanghai 200433, PR China
| | - Yiwen Zeng
- Naval Medical University, Shanghai 200433, PR China
| | - Zhumin Yu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dan Li
- Navy Special Medical Center, Naval Medical University, Shanghai 200433, PR China.
| | - Chunhong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Heo W, Lim S. A Review on Gas Indicators and Sensors for Smart Food Packaging. Foods 2024; 13:3047. [PMID: 39410082 PMCID: PMC11475838 DOI: 10.3390/foods13193047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Real-time monitoring of changes in packaged food is crucial to ensure safety and alleviate environmental issues. Accordingly, the development of indicators and sensors for smart packaging has long been anticipated, especially for gases related to food deterioration and microbial growth. However, the characteristics of indicators and sensors used in food packaging cannot be adjusted according to the specific food type, making it essential to select and apply suitable indicators and sensors for each type of food. In this review, the principles and characteristics of gas indicators and sensors for oxygen, carbon dioxide, and ammonia that are commercialized or in the development phase were summarized, and their application status and prospects were assessed. Indicators and sensors for smart packaging are applied in forms such as films, labels, sachets, and devices. Their detection methods include redox reactions, analyte binding, enzyme reactions, pH changes, electron transfer, conformational changes, and electrode reactions. In this work, 9 types of indicators and sensors for oxygen, carbon dioxide, and ammonia were evaluated based on their detection and indication methods, materials, sensitivity, detection range, limit of detection, and advantages and disadvantages in food applications. We anticipate our review will propose criteria for selecting the optimal indicators and sensors for specific foods. Furthermore, this review examines the current application status and future prospects of these indicators and sensors.
Collapse
Affiliation(s)
| | - Seokwon Lim
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
3
|
Chiu I, Ye H, Aayush K, Yang T. Intelligent food packaging for smart sensing of food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:215-259. [PMID: 39103214 DOI: 10.1016/bs.afnr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this contemporary era, with over 8 billion people worldwide, ensuring food safety has become more critical than ever. To address this concern, the introduction of intelligent packaging marks a significant breakthrough. Essentially, this innovation tackles the challenge of rapid deterioration in perishable foods, which is vital to the well-being of communities and food safety. Unlike traditional methods that primarily emphasize shelf-life extension, intelligent packaging goes further by incorporating advanced sensing technologies to detect signs of spoilage and contamination in real-time, such as changes in temperature, oxygen levels, carbon dioxide levels, humidity, and the presence of harmful microorganisms. The innovation can rely on various packaging materials like plastics, metals, papers, or biodegradable polymers, combined with sophisticated sensing techniques such as colorimetric sensors, time-temperature indicators, radio-frequency identification tags, electronic noses, or biosensors. Together, these elements form a dynamic and tailored packaging system. This system not only protects food from spoilage but also offers stakeholders immediate and adequate information about food quality. Moreover, the real-world application on seafood, meat, dairy, fruits, and vegetables demonstrates the feasibility of using intelligent packaging to significantly enhance the safety and shelf life of a wide variety of perishable goods. By adopting intelligent packaging for smart sensing solutions, both the food industry and consumers can significantly reduce health risks linked with contamination and reduce unnecessary food waste. This underscores the crucial role of intelligent packaging in modern food safety and distribution systems, showcasing an effective fusion of technology, safety, and sustainability efforts aimed at nourishing a rapidly growing global population.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Yoo K, Kim S, Kim MJ, Oh W, Lee J. Effects of association colloidal structures on the oxygen solubility in oil-in-water emulsion matrix. Food Sci Biotechnol 2024; 33:569-577. [PMID: 38274193 PMCID: PMC10805683 DOI: 10.1007/s10068-023-01338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 01/27/2024] Open
Abstract
Although association colloidal structures are believed as major oxidation places, relationship of oxygen molecules with association colloids have not been evaluated in oil-in-water (O/W) emulsion. Oxygen solubility was determined in O/W emulsion containing dispersed phases with different charges of emulsifiers, numbers of dispersed droplets, and surface areas of dispersed droplets. The rates of lipid oxidation were also examined. O/W emulsion made of positively charged emulsifier had higher oxygen solubility than negatively charged and neutral emulsifiers. As number and surface area of oil droplet in O/W emulsion increased, higher oxygen solubility was observed, implying that dispersed phases could be places for oxygen molecules. O/W emulsion made of positively charged emulsifier had higher lipid oxidation than neutral emulsifier. O/W emulsion with more interfaces had lower oxidative stability, implying interfaces of association colloids could affect rates of lipid oxidation. Dispersed phase in O/W emulsion can be places for oxygen molecules.
Collapse
Affiliation(s)
- KeunCheol Yoo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - SeHyeok Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - WonYoung Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| |
Collapse
|
5
|
Fratto BE, Culver EL, Davis G, Deans R, Goods JB, Hwang S, Keller NK, Lawrence JA, Petty AR, Swager TM, Walish JJ, Zhu Z, Cox JR. Leveraging a smartphone to perform time-gated luminescence measurements. PLoS One 2023; 18:e0293740. [PMID: 37903097 PMCID: PMC10615318 DOI: 10.1371/journal.pone.0293740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Empowered by advanced on-board sensors, high-performance optics packages and ever-increasing computational power, smartphones have democratized data generation, collection, and analysis. Building on this capacity, many platforms have been developed to enable its use as an optical sensing platform for colorimetric and fluorescence measurements. In this paper, we report the ability to enable a smartphone to perform laboratory quality time-resolved analysis of luminescent samples via the exploitation of the rolling shutter mechanism of the native CMOS imager. We achieve this by leveraging the smartphone's standard image capture applications, commercially available image analysis software, and housing the device within a UV-LED containing case. These low-cost modifications enable us to demonstrate the smartphone's analytical potential by performing tasks ranging from authentication and encryption to the interrogation of packaging, compounds, and physical phenomena. This approach underscores the power of repurposing existing technologies to extend the reach and inclusivity of scientific exploration, opening new avenues for data collection and analysis.
Collapse
Affiliation(s)
- Brian E. Fratto
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Emma L. Culver
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Gabriel Davis
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Robert Deans
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - John B. Goods
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Sean Hwang
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Nicole K. Keller
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - John A. Lawrence
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | | | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Joseph J. Walish
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Zhengguo Zhu
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| | - Jason R. Cox
- C2Sense, Inc., Watertown, Massachusetts, United States of America
| |
Collapse
|
6
|
Papkovsky DB, Kerry JP. Oxygen Sensor-Based Respirometry and the Landscape of Microbial Testing Methods as Applicable to Food and Beverage Matrices. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094519. [PMID: 37177723 PMCID: PMC10181535 DOI: 10.3390/s23094519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The current status of microbiological testing methods for the determination of viable bacteria in complex sample matrices, such as food samples, is the focus of this review. Established methods for the enumeration of microorganisms, particularly, the 'gold standard' agar plating method for the determination of total aerobic viable counts (TVC), bioluminescent detection of total ATP, selective molecular methods (immunoassays, DNA/RNA amplification, sequencing) and instrumental methods (flow cytometry, Raman spectroscopy, mass spectrometry, calorimetry), are analyzed and compared with emerging oxygen sensor-based respirometry techniques. The basic principles of optical O2 sensing and respirometry and the primary materials, detection modes and assay formats employed are described. The existing platforms for bacterial cell respirometry are then described, and examples of particular assays are provided, including the use of rapid TVC tests of food samples and swabs, the toxicological screening and profiling of cells and antimicrobial sterility testing. Overall, O2 sensor-based respirometry and TVC assays have high application potential in the food industry and related areas. They detect viable bacteria via their growth and respiration; the assay is fast (time to result is 2-8 h and dependent on TVC load), operates with complex samples (crude homogenates of food samples) in a simple mix-and-measure format, has low set-up and instrumentation costs and is inexpensive and portable.
Collapse
Affiliation(s)
- Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 YT20 Cork, Ireland
| | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Microbiology Building, College Road, T12 YT20 Cork, Ireland
| |
Collapse
|
7
|
Dold J, Eichin M, Langowski HC. Integration of fluorophore-based sensor spots into food packaging systems for the non-destructive real-time determination of oxygen. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Salaris N, Haigh P, Papakonstantinou I, Tiwari MK. Self-assembled porous polymer films for improved oxygen sensing. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 374:132794. [PMID: 37859642 PMCID: PMC10582206 DOI: 10.1016/j.snb.2022.132794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 10/21/2023]
Abstract
Absolute oxygen sensors based on quenching of phosphorescence have been the subject of numerous studies for the monitoring of biological environments. Here, we used simple fabrication techniques with readily available polymers to obtain high performance phosphorescent films. Specifically, evaporation-based phase separation and the breath figure technique were used to induce porosity. The pore sizes ranged from ∼ 37 nm to ∼ 141 μ m while the maximum average porosity achieved was ∼ 74%. The oxygen sensing properties were evaluated via a standarised calibration procedure with an optoelectronic setup in both transmission and reflection based configurations. When comparing non-porous and porous films, the highest improvements achieved were a factor of ∼ 7.9 in dynamic range and ∼ 7.3 in maximum sensitivity, followed by an improved linearity with a half-sensitivity point at 43% O2 V/V. Also, the recovery time was reduced by an order of magnitude in the high porosity film and all samples prepared were not affected by variations in the humidity of the surrounding environment. Despite the use of common polymers, the fabrication techniques employed led to the significant enhancement of oxygen sensing properties and elucidated the relation between porous film morphologies and sensing performance.
Collapse
Affiliation(s)
- Nikolaos Salaris
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
- Wellcome/EPSRC, Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, United Kingdom
| | - Paul Haigh
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, United Kingdom
| | - Ioannis Papakonstantinou
- Photonic Innovations Lab, Department of Electronic & Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Manish K. Tiwari
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
- Wellcome/EPSRC, Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, United Kingdom
| |
Collapse
|
9
|
Gálico DA, Mazali IO, Sigoli FA. Bifunctional Temperature and Oxygen Dual Probe Based on Anthracene and Europium Complex Luminescence. Int J Mol Sci 2022; 23:ijms232314526. [PMID: 36498852 PMCID: PMC9740382 DOI: 10.3390/ijms232314526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
In this work, we synthesized a polydimethylsiloxane membrane containing two emitter groups chemically attached to the membrane structure. For this, we attached the anthracene group and the [Eu(bzac)3] complex as blue and red emitters, respectively, in the matrix via hydrosilylation reactions. The synthesized membrane can be used as a bifunctional temperature and oxygen ratiometric optical probe by analyzing the effects that temperature changes and oxygen levels produce on the ratio of anthracene and europium(III) emission components. As a temperature probe, the system is operational in the 203-323 K range, with an observed maximum relative sensitivity of 2.06% K-1 at 290 K and temperature uncertainties below 0.1 K over all the operational range. As an oxygen probe, we evaluated the ratiometric response at 25, 30, 35, and 40 °C. These results show an interesting approach to obtaining bifunctional ratiometric optical probes and also suggest the presence of an anthracene → europium(III) energy transfer, even though there is no chemical bonding between species.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970, Sao Paulo, Brazil
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: (D.A.G.); (F.A.S.)
| | - Italo Odone Mazali
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970, Sao Paulo, Brazil
| | - Fernando Aparecido Sigoli
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970, Sao Paulo, Brazil
- Correspondence: (D.A.G.); (F.A.S.)
| |
Collapse
|
10
|
Kim S, Kim S, Oh WY, Lee Y, Lee J. Evaluation of the effects of amphiphilic compounds on oxygen solubility in bulk oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- SeHyeok Kim
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - SungHwa Kim
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - Won Young Oh
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - YoonHee Lee
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Republic of Korea
| |
Collapse
|
11
|
Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Cheng H, Xu H, Julian McClements D, Chen L, Jiao A, Tian Y, Miao M, Jin Z. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chem 2021; 375:131738. [PMID: 34922277 DOI: 10.1016/j.foodchem.2021.131738] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
Traditionally, food packaging is used for improving food quality and providing consumers with descriptions of products. A new generation of intelligent ("smart") packaging materials is being developed to continuously monitor the properties of packaged foods and provide real-time information about their maturity, quality, and safety. In this paper, recent research in the development, properties, and applications of intelligent food packaging materials is summarized. Initially, we review the different sensing methods that can be used to detect alterations in food properties, such as those based on changes in time, temperature, humidity, oxygen levels, pH, chemical composition, or microbial contamination. The different approaches that can be used to design intelligent packaging materials are then highlighted, including films, bar codes, and labels. A number of applications of these packaging materials are then discussed to demonstrate their potential in the food industry. Finally, the challenges and future directions of food packaging are discussed.
Collapse
Affiliation(s)
- Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
13
|
Robinson KJ, Armstrong HC, Moss SEW, Oller L, Hall AJ, Bennett KA. Signs of life: Oxygen sensors confirm viability, measure oxygen consumption and provide rapid, effective contamination monitoring for field‐based tissue culture. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kelly J. Robinson
- Centre for Biological Diversity University of St Andrews St Andrews UK
| | - Holly C. Armstrong
- School of Psychology and Neuroscience University of St Andrews St Andrews UK
| | - Simon E. W. Moss
- Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews St Andrews UK
| | - Laura Oller
- School of Applied Sciences Abertay University Dundee UK
| | - Ailsa J. Hall
- Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews St Andrews UK
| | | |
Collapse
|
14
|
A Simple Sensor System for Onsite Monitoring of O 2 in Vacuum-Packed Meats during the Shelf Life. SENSORS 2021; 21:s21134256. [PMID: 34206251 PMCID: PMC8272221 DOI: 10.3390/s21134256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022]
Abstract
Vacuum packaging (VP) is used to reduce exposure of retail meat samples to ambient oxygen (O2) and preserve their quality. A simple sensor system produced from commercial components is described, which allows for non-destructive monitoring of the O2 concentration in VP raw meat samples. Disposable O2 sensor inserts were produced by spotting small aliquots of the cocktail of the Pt–benzoporphyrin dye and polystyrene in ethyl acetate onto pieces of a PVDF membrane and allowing them to air-dry. These sensor dots were placed on top of the beef cuts and vacuum-packed. A handheld reader, FirestinGO2, was used to read nondestructively the sensor phase shift signals (dphi°) and relate them to the O2 levels in packs (kPa or %). The system was validated under industrial settings at a meat processing plant to monitor O2 in VP meat over nine weeks of shelf life storage. The dphi° readings from individual batch-calibrated sensors were converted into the O2 concentration by applying the following calibration equation: O2 (%) = 0.034 * dphi°2 − 3.413 * dphi° + 85.02. In the VP meat samples, the O2 levels were seen to range between 0.12% and 0.27%, with the sensor dphi signals ranging from 44.03° to 56.02°. The DIY sensor system demonstrated ease of use on-site, fast measurement time, high sample throughput, low cost and flexibility.
Collapse
|
15
|
Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Food packaging has a crucial function in the modern food industry. New food packaging technologies seek to meet consumers and industrial's demands. Changes related to food production, sale practices and consumers' lifestyles, along with environmental awareness and the advance in new areas of knowledge (such as nanotechnology or biotechnology), act as driving forces to develop smart packages that can extend food shelf-life, keeping and supervising their innocuousness and quality and also taking care of the environment. This review describes the main concepts and types of active and intelligent food packaging, focusing on recent progress and new trends using biodegradable and biobased polymers. Numerous studies show the great possibilities of these materials. Future research needs to focus on some important aspects such as possibilities to scale-up, costs, regulatory aspects, and consumers' acceptance, to make these systems commercially viable.
Collapse
|
16
|
Bio-Based Sensors for Smart Food Packaging-Current Applications and Future Trends. SENSORS 2021; 21:s21062148. [PMID: 33803914 PMCID: PMC8003241 DOI: 10.3390/s21062148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Intelligent food packaging is emerging as a novel technology, capable of monitoring the quality and safety of food during its shelf-life time. This technology makes use of indicators and sensors that are applied in the packaging and that detect changes in physiological variations of the foodstuffs (due to microbial and chemical degradation). These indicators usually provide information, e.g., on the degree of freshness of the product packed, through a color change, which is easily identified, either by the food distributor and the consumer. However, most of the indicators that are currently used are non-renewable and non-biodegradable synthetic materials. Because there is an imperative need to improve food packaging sustainability, choice of sensors should also reflect this requirement. Therefore, this work aims to revise the latest information on bio-based sensors, based on compounds obtained from natural extracts, that can, in association with biopolymers, act as intelligent or smart food packaging. Its application into several perishable foods is summarized. It is clear that bioactive extracts, e.g., anthocyanins, obtained from a variety of sources, including by-products of the food industry, present a substantial potential to act as bio-sensors. Yet, there are still some limitations that need to be surpassed before this technology reaches a mature commercial stage.
Collapse
|
17
|
Abstract
Smart packaging is an emerging technology that has a great potential in solving conventional food packaging problems and in meeting the evolving packaged vegetables market needs. The advantages of using such a system lies in extending the shelf life of products, ensuring the safety and the compliance of these packages while reducing the food waste; hence, lessening the negative environmental impacts. Many new concepts were developed to serve this purpose, especially in the meat and fish industry with less focus on fruits and vegetables. However, making use of these evolving technologies in packaging of vegetables will yield in many positive outcomes. In this review, we discuss the new technologies and approaches used, or have the potential to be used, in smart packaging of vegetables. We describe the technical aspects and the commercial applications of the techniques used to monitor the quality and the freshness of vegetables. Factors affecting the freshness and the spoilage of vegetables are summarized. Then, some of the technologies used in smart packaging such as sensors, indicators, and data carriers that are integrated with sensors, to monitor and provide a dynamic output about the quality and safety of the packaged produce are discussed. Comparison between various intelligent systems is provided followed by a brief review of active packaging systems. Finally, challenges, legal aspects, and limitations facing this smart packaging industry are discussed together with outlook and future improvements.
Collapse
|
18
|
Abstract
A polymer filament, containing an O2-sensitive lumophore pigment, platinum(ii) (pentafluorophenyl) porphyrin coated onto nanoparticulate silica particles, i.e. PtTFPP/SiO2, is produced and used in a filament which is then 3D printed as O2-sensitive indicator dots (1 cm diameter, 30 μm thick) on a polyethylene terephthalate (PET) supporting film substrate. Two different filaments, prepared using the polymers, low density polyethylene (LDPE) and polylactic acid (PLA), respectively, are used to produce 3D printed PtTFPP/SiO2/LDPE and PtTFPP/SiO2/PLA O2-sensitive indicator dots, with dynamic ranges of 0-30% and 0-400% O2, respectively. The O2 response characteristics of these two, very different, indicator dots, such as sensitivity, response time and temperature sensitivity, are measured and compared with those of a commercial O2 indicator, FOSPOR (OceanInsight) and other commercial O2 indicators. The potential of this method for mass manufacture of O2 indicator dots and the likelihood that it can be extended to produce other optical indicators, such as those for ammonia or CO2, are discussed briefly.
Collapse
Affiliation(s)
- Dilidaer Yusufu
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT95AG, UK.
| | - Ri Han
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT95AG, UK.
| | - Andrew Mills
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT95AG, UK.
| |
Collapse
|
19
|
Kalpana S, Priyadarshini S, Maria Leena M, Moses J, Anandharamakrishnan C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC. Metal-Organic Frameworks for Food Safety. Chem Rev 2019; 119:10638-10690. [PMID: 31361477 DOI: 10.1021/acs.chemrev.9b00257] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety is a prevalent concern around the world. As such, detection, removal, and control of risks and hazardous substances present from harvest to consumption will always be necessary. Metal-organic frameworks (MOFs), a class of functional materials, possess unique physical and chemical properties, demonstrating promise in food safety applications. In this review, the synthesis and porosity of MOFs are first introduced by some representative examples that pertain to the field of food safety. Following that, the application of MOFs and MOF-based materials in food safety monitoring, food processing, covering preservation, sanitation, and packaging is overviewed. Future perspectives, as well as potential opportunities and challenges faced by MOFs in this field will also be discussed. This review aims to promote the development and progress of MOF chemistry and application research in the field of food safety, potentially leading to novel solutions.
Collapse
Affiliation(s)
- Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China.,Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Elizabeth A Joseph
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| |
Collapse
|
21
|
Yousefi H, Su HM, Imani SM, Alkhaldi K, M. Filipe CD, Didar TF. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens 2019; 4:808-821. [PMID: 30864438 DOI: 10.1021/acssensors.9b00440] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Food safety is a major factor affecting public health and the well-being of society. A possible solution to control food-borne illnesses is through real-time monitoring of the food quality throughout the food supply chain. The development of emerging technologies, such as active and intelligent packaging, has been greatly accelerated in recent years, with a focus on informing consumers about food quality. Advances in the fields of sensors and biosensors has enabled the development of new materials, devices, and multifunctional sensing systems to monitor the quality of food. In this Review, we place the focus on an in-depth summary of the recent technological advances that hold the potential for being incorporated into food packaging to ensure food quality, safety, or monitoring of spoilage. These advanced sensing systems usually target monitoring gas production, humidity, temperature, and microorganisms' growth within packaged food. The implementation of portable and simple-to-use hand-held devices is also discussed in this Review. We highlight the mechanical and optical properties of current materials and systems, along with various limitations associated with each device. The technologies discussed here hold great potential for applications in food packaging and bring us one step closer to enable real-time monitoring of food throughout the supply chain.
Collapse
Affiliation(s)
- Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Modelling the effect of oxygen concentration on bacterial growth rates. Food Microbiol 2019; 77:21-25. [DOI: 10.1016/j.fm.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022]
|
23
|
Zeng F, Fan Z, Wu S, Cheng X, Tian Y. Photo-patterned oxygen sensing films based on Pt porphyrin for controlling cell growth and studying metabolism. RSC Adv 2019; 9:924-930. [PMID: 35517627 PMCID: PMC9059522 DOI: 10.1039/c8ra09234f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/23/2018] [Indexed: 11/21/2022] Open
Abstract
A new type of biocompatible and photo-polymerizable hydrogel with oxygen sensors for microengineering was developed. Herein, a red emitter as an oxygen probe which was chemically immobilized in a poly(2-hydroxyethyl methacrylate)-co-polyacrylamide-based matrix was expected to monitor cell metabolism. A few micropatterned films with gratings (5, 7, 10, 20, and 50 μm in width, respectively and with 1.2 μm in height) were designed and fabricated by photo-lithography using these hydrogels. SEM and AFM were used to validate these films to attain their lateral width and vertical depth. The oxygen responses of these films were characterized. Results showed that patterned films exhibited higher sensitivity than the non-patterned films. The films' construction can also have some influence on cell alignment and elongation. This phenomenon was evaluated by culturing human cervical cancer cells (HeLa cells) and mouse embryo fibroblasts (3T3-L1), on the film surfaces with different construction. Linear correlation between cell elongation and the logarithm of grating width was observed. Real-time monitoring of oxygen consumption of HeLa cells in cell culture medium was achieved. This study is expected to have potential to be applied in micro-structured design and to help understanding metabolism.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Materials Science and Engineering, Southern University of Science and Technology No. 1088 Xueyuan Blvd, Xili, Nanshan District Shenzhen Guangdong 518055 China
| | - Zengju Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology No. 1088 Xueyuan Blvd, Xili, Nanshan District Shenzhen Guangdong 518055 China
| | - Shanshan Wu
- Guangdong Industry Polytechnic No. 152 Xingang West Road, Haizhu District Guangzhou 510300 China
| | - Xing Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology No. 1088 Xueyuan Blvd, Xili, Nanshan District Shenzhen Guangdong 518055 China
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology No. 1088 Xueyuan Blvd, Xili, Nanshan District Shenzhen Guangdong 518055 China
| |
Collapse
|
24
|
Abstract
A CO2-based vacuum air pressure indicator is described and demonstrated for vacuum-packaged rice.
Collapse
Affiliation(s)
- Dilidaer Yusufu
- Department of Chemistry and Chemical Engineering
- Queens University Belfast
- Belfast
- UK
| | - Andrew Mills
- Department of Chemistry and Chemical Engineering
- Queens University Belfast
- Belfast
- UK
| |
Collapse
|
25
|
Maddipatla D, Narakathu BB, Ochoa M, Rahimi R, Zhou J, Yoon CK, Jiang H, Al-Zubaidi H, Obare SO, Zieger MA, Ziaie B, Atashbar MZ. Rapid prototyping of a novel and flexible paper based oxygen sensing patch via additive inkjet printing process. RSC Adv 2019; 9:22695-22704. [PMID: 35519443 PMCID: PMC9067098 DOI: 10.1039/c9ra02883h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
A novel and flexible oxygen sensing patch was successfully developed for wearable, industrial, food packaging, pharmaceutical and biomedical applications using a cost-efficient and rapid prototypable additive inkjet print manufacturing process. An oxygen sensitive ink was formulated by dissolving ruthenium dye and ethyl cellulose polymer in ethanol in a 1 : 1 : 98 (w/w/w) ratio. The patch was fabricated by depositing the oxygen sensitive ink on a flexible parchment paper substrate using an inkjet printing process. A maximum absorbance from 430 nm to 480 nm and a fluorescence of 600 nm was observed for the oxygen sensitive ink. The capability of the oxygen sensitive patch was investigated by measuring the fluorescence quenching lifetime of the printed dye for varying oxygen concentration levels. A fluorescence lifetime decay (τ) from ≈4 μs to ≈1.9 μs was calculated for the printed oxygen sensor patch, for oxygen concentrations varying from ≈5 mg L−1 to ≈25 mg L−1. A sensitivity of 0.11 μs mg L−1 and a correlation coefficient of 0.9315 was measured for the printed patches. The results demonstrated the feasibility of employing an inkjet printing process for the rapid prototyping of flexible and moisture resistant oxygen sensitive patches which facilitates a non-invasive method for monitoring oxygen and its concentration levels. A paper-based low cost and rapid prototypable flexible oxygen sensing patch was developed for the first time using a cost-efficient additive inkjet print manufacturing process for wearable, food packaging, pharmaceutical and biomedical applications.![]()
Collapse
Affiliation(s)
- Dinesh Maddipatla
- Department of Electrical and Computer Engineering
- Western Michigan University
- USA
| | - Binu B. Narakathu
- Department of Electrical and Computer Engineering
- Western Michigan University
- USA
| | - Manuel Ochoa
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Rahim Rahimi
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Jiawei Zhou
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Chang K. Yoon
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Hongjie Jiang
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | | | | | | | - Babak Ziaie
- School of Electrical and Computer Engineering
- Purdue University
- USA
| | - Massood Z. Atashbar
- Department of Electrical and Computer Engineering
- Western Michigan University
- USA
| |
Collapse
|
26
|
Stability and Safety Assessment of Phosphorescent Oxygen Sensors for Use in Food Packaging Applications. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6030038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Five types of new solid-state oxygen sensors, four based on microporous polypropylene fabric materials and one on polyphenylene sulphide films impregnated with phosphorescent platinum(II)-benzoporphyrin dye, were tested for their stability and safety in food packaging applications. All these sensors exhibit useful optical signals (phosphorescence lifetime readout) and working characteristics and are simpler and cheaper to produce and integrate into standard packaging materials than existing commercial sensors. When exposed to a panel of standard food simulants and upon direct contact with raw beef and chicken meat and cheddar cheese samples packaged under modified atmosphere, the sensors based on ungrafted polypropylene fabric, impregnated with PtBP dye by the swelling method, outperformed the other sensors. The sensors are also stable upon storage under normal atmospheric conditions for at least 12 months, without any significant changes in calibration.
Collapse
|
27
|
Kelly CA, Cruz-Romero M, Kerry JP, Papkovsky DP. Assessment of Performance of the Industrial Process of Bulk Vacuum Packaging of Raw Meat with Nondestructive Optical Oxygen Sensing Systems. SENSORS 2018; 18:s18051395. [PMID: 29724024 PMCID: PMC5981195 DOI: 10.3390/s18051395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 11/30/2022]
Abstract
The commercially-available optical oxygen-sensing system Optech-O2 Platinum was applied to nondestructively assess the in situ performance of bulk, vacuum-packaged raw beef in three ~300 kg containers. Twenty sensors were attached to the inner surface of the standard bin-contained laminate bag (10 on the front and back sides), such that after filling with meat and sealing under vacuum, the sensors were accessible for optical interrogation with the external reader device. After filling and sealing each bag, the sensors were measured repetitively and nondestructively over a 15-day storage period at 1 °C, thus tracking residual oxygen distribution in the bag and changes during storage. The sensors revealed a number of unidentified meat quality and processing issues, and helped to improve the packaging process by pouring flakes of dry ice into the bag. Sensor utility in mapping the distribution of residual O2 in sealed bulk containers and optimising and improving the packaging process, including handling and storage of bulk vacuum-packaged meat bins, was evident.
Collapse
Affiliation(s)
- Caroline A Kelly
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork T12 K8AF, Ireland.
| | - Malco Cruz-Romero
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, Food Science Building, College Road, Cork T12 K8AF, Ireland.
| | - Joseph P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, Food Science Building, College Road, Cork T12 K8AF, Ireland.
| | - Dmitri P Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork T12 K8AF, Ireland.
| |
Collapse
|
28
|
Sun Z, Cai C, Guo F, Ye C, Luo Y, Ye S, Luo J, Zhu F, Jiang C. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors. NANOTECHNOLOGY 2018; 29:145704. [PMID: 29219851 DOI: 10.1088/1361-6528/aaa058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor's work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.
Collapse
Affiliation(s)
- Zhijuan Sun
- Ocean College, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang J, Qin Z, Zeng D, Xie C. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys Chem Chem Phys 2018; 19:6313-6329. [PMID: 28198897 DOI: 10.1039/c6cp07799d] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal-oxide-semiconductor (MOS) based gas sensors have been considered a promising candidate for gas detection over the past few years. However, the sensing properties of MOS-based gas sensors also need to be further enhanced to satisfy the higher requirements for specific applications, such as medical diagnosis based on human breath, gas detection in harsh environments, etc. In these fields, excellent selectivity, low power consumption, a fast response/recovery rate, low humidity dependence and a low limit of detection concentration should be fulfilled simultaneously, which pose great challenges to the MOS-based gas sensors. Recently, in order to improve the sensing performances of MOS-based gas sensors, more and more researchers have carried out extensive research from theory to practice. For a similar purpose, on the basis of the whole fabrication process of gas sensors, this review gives a presentation of the important role of screening and the recent developments in high throughput screening. Subsequently, together with the sensing mechanism, the factors influencing the sensing properties of MOSs involved in material preparation processes were also discussed in detail. It was concluded that the sensing properties of MOSs not only depend on the morphological structure (particle size, morphology, pore size, etc.), but also rely on the defect structure and heterointerface structure (grain boundaries, heterointerfaces, defect concentrations, etc.). Therefore, the material-sensor integration was also introduced to maintain the structural stability in the sensor fabrication process, ensuring the sensing stability of MOS-based gas sensors. Finally, the perspectives of the MOS-based gas sensors in the aspects of fundamental research and the improvements in the sensing properties are pointed out.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China. and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Wuhan 430062, China
| | - Ziyu Qin
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China.
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China. and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Wuhan 430062, China
| | - Changsheng Xie
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
30
|
Okkelman IA, Dolgova AA, Banerjee S, Kerry JP, Volynskii A, Arzhakova OV, Papkovsky DB. Phosphorescent Oxygen and Mechanosensitive Nanostructured Materials Based on Hard Elastic Polypropylene Films. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13587-13592. [PMID: 28367617 DOI: 10.1021/acsami.7b00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is well known that sensitivity of quenched-phosphorescence O2 sensors can be tuned by changing the nature of indicator dye and host polymer acting as encapsulation and quenching mediums. Here, we describe a new type of sensor materials based on nanostructured hard elastic polymeric substrates. With the example of hard elastic polypropylene films impregnated with Pt-benzoporphyrin dye, we show that such substrates enable simple one-step fabrication of O2 sensors by standard and scalable polymer processing technologies. In addition, the resulting sensor materials show prominent response to tensile drawing via changes in phosphorescence intensity and lifetime and O2 quenching constant, Kq. The mechanosensitive response shows reversibility and hysteresis, which are related to macroscopic changes in the nanoporous structure of the polymer. Such multifunctional materials can find use as mechanically tunable O2 sensors, as well as strain/deformation sensors operating in a phosphorescence-lifetime-based detection mode.
Collapse
Affiliation(s)
- Irina A Okkelman
- School of Biochemistry and Cell Biology, University College Cork , Western Road, Cork T12 YN60, Ireland
| | - Alla A Dolgova
- Faculty of Chemistry, Lomonosov Moscow State University , Leninskiye Gory, Moscow 119991, Russia
| | - Swagata Banerjee
- School of Biochemistry and Cell Biology, University College Cork , Western Road, Cork T12 YN60, Ireland
| | - Joseph P Kerry
- School of Biochemistry and Cell Biology, University College Cork , Western Road, Cork T12 YN60, Ireland
| | - Aleksandr Volynskii
- Faculty of Chemistry, Lomonosov Moscow State University , Leninskiye Gory, Moscow 119991, Russia
| | - Olga V Arzhakova
- Faculty of Chemistry, Lomonosov Moscow State University , Leninskiye Gory, Moscow 119991, Russia
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork , Western Road, Cork T12 YN60, Ireland
| |
Collapse
|
31
|
Cuvelier ME, Soto P, Courtois F, Broyart B, Bonazzi C. Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Papkovsky DB, Zhdanov AV. Phosphorescence based O 2 sensors - Essential tools for monitoring cell and tissue oxygenation and its impact on metabolism. Free Radic Biol Med 2016; 101:202-210. [PMID: 27789291 DOI: 10.1016/j.freeradbiomed.2016.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022]
Abstract
Oxygenation condition at the cellular level is a critical factor in tissue physiology and common pathophysiological states including cancer, metabolic disorders, ischemia-reperfusion injury and inflammation. O2 and ROS signalling and hypoxia research are rapidly growing areas spanning life and biomedical sciences, but still many current cell and tissue models and experimental set ups lack physiological relevance, particularly precise control of cellular O2. Quenched-phosphorescence O2 sensing enables implementation of such in situ control of cellular O2 and the creation of physiological conditions in respiring samples analysed in vitro. The advantages of optical O2 sensing are the non-invasive, contactless, real-time, quantitative monitoring of O2 concentration, which can be performed in the gas or liquid phase, macroscopically or microscopically, by point measurement or in imaging mode, with sub-cellular spatial resolution, in a flexible manner and with various cell and tissue models. Significantly, this same technology can also be used to probe the metabolism of cells and tissue under specific oxygenation conditions and their responses to changing conditions. Here we describe the range of available O2 sensing systems and tools, their analytical capabilities, uses in cell/tissue physiology and hypoxia research, and strategies for integration in routine experimental procedures.
Collapse
Affiliation(s)
- Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| |
Collapse
|
33
|
O' Callaghan KAM, Papkovsky DB, Kerry JP. An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology. SENSORS 2016; 16:s16060916. [PMID: 27331815 PMCID: PMC4934342 DOI: 10.3390/s16060916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/01/2016] [Accepted: 06/16/2016] [Indexed: 12/02/2022]
Abstract
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.
Collapse
Affiliation(s)
- Karen A M O' Callaghan
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, Cork T12 YN60, Ireland.
| | - Dmitri B Papkovsky
- Biophysics and Bioanalysis Group, School of Biochemistry and Cell Biology, University College Cork, Cork T12 YN60, Ireland.
| | - Joseph P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|