1
|
Mao Y, Liu Q, Shao J, Yang L, Zhang X. Flavoromics Analysis of Passion Fruit-Roasted Chicken. Foods 2024; 13:2221. [PMID: 39063305 PMCID: PMC11276248 DOI: 10.3390/foods13142221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, research on the flavor components and their dynamic changes in roasted chicken with a special flavor is rare. In this study, a passion fruit-roasted chicken was prepared, its characteristic flavor components were profiled by flavoromics, and their evolution patterns and precursors were determined. The results showed that the characteristic flavor component with the highest contribution rate was ethyl butyrate (50.44%). In particular, some unique flavor compounds were identified compared with other roasted chicken products available. The main volatile flavor components in all stages of processing were alcohols, esters, and hydrocarbons, 15 to 30 min of roasting is an important stage for establishing the aroma system, and at the end, hydrocarbons were the main volatile compounds. During the 30-day storage period, the characteristic flavor components included ethyl butyrate, ethyl maltol, β-caryophyllene, and guaiacene. In conclusion, passion fruit-roasted chicken contained many characteristic flavor components, which were mainly formed within 15 to 30 min of roasting and were basically stable during the 30-day storage period. In a word, this work prepared a novel roasted chicken and revealed its mechanism of flavor formation at different baking stages and storage periods, which provided references for industrial production.
Collapse
Affiliation(s)
| | | | | | | | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.M.); (Q.L.); (J.S.); (L.Y.)
| |
Collapse
|
2
|
Chañi-Paucar LO, Chagua-Rodríguez P, Cuadrado-Campó WJ, Lobato Calderón GR, Maceda Santivañez JC, Figueiredo Angolini CF, Meireles MAA. Tumbo, an Andean fruit: Uses, nutrition, processing, and biomolecules. Heliyon 2024; 10:e30327. [PMID: 38707414 PMCID: PMC11066424 DOI: 10.1016/j.heliyon.2024.e30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Tumbo fruit has potential for industrialization due to its nutritional and functional properties, but scientific knowledge of this species is still limited compared to other species of the same genus, Passiflora. This review compiles the latest scientific advances on Tumbo, which cover the food technological aspects of Tumbo fruit, its uses and its potential as a source of bioactives for different industries, especially food, pharmaceutical, and cosmetics. The products (nectar, jellies, jams, wines, others) and by-products of the processing of the Tumbo fruit have various nutritional, sensory, and composition attributes for developing new food and non-food products. The potential applications of the fruit and its derivatives are broad, such as cosmetics, drugs, functional foods, and additives; these applications are due to its technological properties and its content of bioactive molecules. The Tumbo biorefinery presents an important perspective, especially for its bioactivity of high biological value for different industries.
Collapse
Affiliation(s)
- Larry Oscar Chañi-Paucar
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Perfecto Chagua-Rodríguez
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Walter Javier Cuadrado-Campó
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | | | - Julio Cesar Maceda Santivañez
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Maria Angela A Meireles
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
- School of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato 80, Campinas, 13083-862, SP, Brazil
| |
Collapse
|
3
|
Liu H, Agar OT, Imran A, Barrow CJ, Dunshea FR, Suleria HAR. LC-ESI-QTOF-MS/MS characterization of phenolic compounds in Australian native passion fruits and their potential antioxidant activities. Food Sci Nutr 2024; 12:2455-2472. [PMID: 38628172 PMCID: PMC11016391 DOI: 10.1002/fsn3.3928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Passion fruits, renowned globally for their polyphenolic content and associated health benefits, have enjoyed growing attention from consumers and producers alike. While global cultivar development progresses, Australia has pioneered several native cultivars tailored for its distinct planting conditions. Despite their cultivation, comprehensive studies on the phenolic profiles and antioxidant capacities of these Australian-native passion fruits are notably lacking. This study aims to investigate and compare the polyphenolic content present in the by-products, which are peel (L), and consumable portions, which are the pulp and seeds (P), of four indigenous cultivars: 'Misty Gem' (MG), 'Flamengo' (FG), 'Sweetheart' (SW), and 'Panama' (SH). Employing LC-ESI-QTOF-MS/MS for profiling, a comprehensive list of polyphenols was curated. Additionally, various antioxidant assays-DPPH, FRAP, ABTS, RPA, FICA, and •OH-RSA-were performed to evaluate their antioxidant potential. A total of 61 polyphenols were identified, categorized into phenolic acid (19), flavonoids (33), and other phenolic substances (9). In the antioxidant assays, the SHP sample exhibited the highest •OH--RSA activity at 98.64 ± 1.45 mg AAE/g, while the FGL sample demonstrated prominent DPPH, FRAP, and ABTS activities with values of 32.47 ± 1.92 mg TE/g, 62.50 ± 3.70 mg TE/g, and 57.84 ± 1.22 mg AAE/g, respectively. Additionally, TPC and several antioxidant assays had a significant positive correlation, including DPPH, FRAP, and ABTS. The Australian-native passion fruits revealed distinct polyphenolic profiles and diverse antioxidant capacities, establishing a foundation for deeper health benefit analyses. This study accentuates the significance of understanding region-specific cultivars and their potential nutraceutical applications.
Collapse
Affiliation(s)
- Haoyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Department of Pharmacognosy, Faculty of PharmacySuleyman Demirel UniversityIspartaTurkey
| | - Ali Imran
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Department of Food Science, Faculty of Life ScienceGovernment College UniversityFaisalabadPakistan
| | - Colin J. Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Faculty of Biological SciencesThe University of LeedsLeedsUK
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Zheng L, Wang S, Yang Y, Zheng X, Xiao D, Ai B, Sheng Z. Volatile aroma compounds of passion fruit seed Oils: HS-GC-IMS analysis and interpretation. Food Chem X 2024; 21:101212. [PMID: 38389576 PMCID: PMC10881532 DOI: 10.1016/j.fochx.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The physicochemical properties, fatty acid composition and volatile aroma compounds of cold-pressed passion fruit seed oils were analyzed. The oils were rich in linoleic acid, oleic acid and volatile compounds. A total of 108 volatile compounds including 17 aldehydes, 23 alcohols, 21 esters, 19 ketones, 6 acids, 9 alkenes, 5 pyrazines and 8 others were identified using HS-GC-IMS. The significant differences of volatile compounds in the purple and yellow passion fruit seed oils were observed via the GalleryPlot graph and distinguished by principal component analysis. The results showed that acids, alcohols, esters and ketones were major aromatic compounds in purple passion fruit seed oils, which contribute to flavors such as flowery, fruity, creamy, yogurt. Whereas the contents of aldehydes, pyrazines, alkenes were higher in yellow passion fruit seed oils, which contributes to fatty and nutty odors. The findings filled in our understanding of volatilization characteristics in passion fruit seed oils.
Collapse
Affiliation(s)
- Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Shenwan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
- Huazhong Agricultural University, College of Food Science and Technology, Wuhan, Hubei 430070, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zhanwu Sheng
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
5
|
Wu T, Yu L, Xiao L, Wang T, Li P, Mu B. Novel 4-Chromanone-Derived Compounds as Plant Immunity Inducers against CMV Disease in Passiflora spp. (Passion Fruit). Molecules 2024; 29:1045. [PMID: 38474557 DOI: 10.3390/molecules29051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
This study involved the design and synthesis of a series of novel 4-chromanone-derived compounds. Their in vivo anti-cucumber mosaic virus (CMV) activity in field trials against CMV disease in Passiflora spp. was then assessed. Bioassay results demonstrated that compounds 7c and 7g exhibited remarkable curative effects and protection against CMV, with inhibition rates of 57.69% and 51.73% and 56.13% and 52.39%, respectively, surpassing those of dufulin and comparable to ningnanmycin. Field trials results indicated that compound 7c displayed significant efficacy against CMV disease in Passiflora spp. (passion fruit) after the third spraying at a concentration of 200 mg/L, with a relative control efficiency of 47.49%, surpassing that of dufulin and comparable to ningnanmycin. Meanwhile, nutritional quality test results revealed that compound 7c effectively enhanced the disease resistance of Passiflora spp., as evidenced by significant increases in soluble protein, soluble sugar, total phenol, and chlorophyll contents in Passiflora spp. leaves as well as improved the flavor and taste of Passiflora spp. fruits, as demonstrated by notable increases in soluble protein, soluble sugar, soluble solid, and vitamin C contents in Passiflora spp. fruits. Additionally, a transcriptome analysis revealed that compound 7c primarily targeted the abscisic acid (ABA) signaling pathway, a crucial plant hormone signal transduction pathway, thereby augmenting resistance against CMV disease in Passiflora spp. Therefore, this study demonstrates the potential application of these novel 4-chromanone-derived compounds as effective inducers of plant immunity for controlling CMV disease in Passiflora spp. in the coming decades.
Collapse
Affiliation(s)
- Tianli Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lingling Xiao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Light Industry Technical College, Guiyang 550032, China
| | - Tao Wang
- Guizhou Light Industry Technical College, Guiyang 550032, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556011, China
| | - Bo Mu
- Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| |
Collapse
|
6
|
Pereira DTV, Méndez-Albiñana P, Mendiola JA, Villamiel M, Cifuentes A, Martínez J, Ibáñez E. An eco-friendly extraction method to obtain pectin from passion fruit rinds (Passiflora edulis sp.) using subcritical water and pressurized natural deep eutectic solvents. Carbohydr Polym 2024; 326:121578. [PMID: 38142064 DOI: 10.1016/j.carbpol.2023.121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/25/2023]
Abstract
This work evaluated the efficiency of Subcritical Water Extraction (SWE) and Pressurized Natural Deep Eutectic Solvents (P-NaDESs) under different temperatures (100, 120, 140 and 160 °C) in obtaining pectin from Passion Fruit Rinds (PFR) and its residual biomass (PFR - UAPLE), and compare the results with those of Conventional Extraction (CE). The highest pectin yields, 19.1 and 27.6 %, were achieved using P-NaDES (Citric Acid:Glucose:Water) at 120 °C for PFR and its PFR-UAPLE, respectively. Regarding the Degree of Esterification (DE), pectin obtained with SWE and CE had DE below 50 %, while with P-NaDES (Citric Acid: Glucose:Water), DE was above 50 %. Higher Molecular Weights (MW) (98 and 81 kDa) were obtained with SWE and P-NaDES from PFR compared to PFR-UAPLE and CE. Galacturonic acid was the most abundant (74 to 78 %) monosaccharide obtained by SWE. In terms of morphology, water extraction provided pectin with more uniform textures, whereas extraction with acidified mixtures led to more heterogeneous surfaces. Overall, comparing SWE and P-NaDES, the obtained pectins differed in terms of monomeric composition, MW and DE. These results indicate that pectins obtained by both methods can have different applications depending on their structural characteristics.
Collapse
Affiliation(s)
- Débora Tamires Vitor Pereira
- State University of Campinas (Unicamp), School of Food Engineering, Department of Engineering and Food Technology, Laboratory of High Pressure in Food Engineering, Campinas, SP 13083 - 862, Brazil; Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pablo Méndez-Albiñana
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jose A Mendiola
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Julian Martínez
- State University of Campinas (Unicamp), School of Food Engineering, Department of Engineering and Food Technology, Laboratory of High Pressure in Food Engineering, Campinas, SP 13083 - 862, Brazil
| | - Elena Ibáñez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Sie YY, Chen LC, Li CW, Wang CC, Li CJ, Liu DZ, Lee MH, Chen LG, Hou WC. Extracts and Scirpusin B from Recycled Seeds and Rinds of Passion Fruits ( Passiflora edulis var. Tainung No. 1) Exhibit Improved Functions in Scopolamine-Induced Impaired-Memory ICR Mice. Antioxidants (Basel) 2023; 12:2058. [PMID: 38136179 PMCID: PMC10741041 DOI: 10.3390/antiox12122058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In this paper, the seeds and rinds of passion fruit, which are the agricultural waste of juice processing, were recycled to investigate their biological activities for sustainable use. De-oiled seed powders (S) were successively extracted by refluxing 95% ethanol (95E), 50E, and hot water (HW), respectively, to obtain S-95EE, S-50EE, and S-HWE. Dried rind powders were successively extracted by refluxing HW and 95E to obtain rind-HWE and rind-95EE, respectively. S-50EE and S-95EE showed the most potent extracts, such as anti-amyloid-β1-42 aggregations and anti-acetylcholinesterase inhibitors, and they exhibited neuroprotective activities against amyloid-β25-35-treated or H2O2-treated SH-SY5Y cells. Scirpusin B and piceatannol were identified in S-95EE, S-50EE, and rind-HWE, and they showed anti-acetylcholinesterase activity at 50% inhibitory concentrations of 62.9 and 258.9 μM, respectively. Daily pretreatments of de-oiled seed powders and rind-HWE (600 mg/kg), S-95EE, and S-50EE (250 mg/kg) or scirpusin B (40 mg/kg) for 7 days resulted in improved learning behavior in passive avoidance tests and had significant differences (p < 0.05) compared with those of the control in scopolamine-induced ICR mice. The seeds and rinds of passion fruit will be recycled as materials for the development of functional foods, promoting neuroprotection and delaying the onset of cognitive dysfunctions.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
| | - Liang-Chieh Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Cai-Wei Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Ching-Chiung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Mei-Hsien Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Lih-Geeng Chen
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Wen-Chi Hou
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| |
Collapse
|
8
|
Wang H, Chen H, Lin Y, Li M, Liu Q, Lin Y, Jiang X, Chen Y. Insights into the Isolation, Identification, and Biological Characterization Analysis of and Novel Control Strategies for Diaporthe passiflorae in Postharvest Passion Fruit. J Fungi (Basel) 2023; 9:1034. [PMID: 37888288 PMCID: PMC10608467 DOI: 10.3390/jof9101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Postharvest diseases seriously restrict developments in the passion fruit industry. In this study, we aimed to identify the postharvest pathogen affecting passion fruit, investigate its pathogenicity, and explore relevant control methods. The pathogen was isolated from rotting passion fruit and identified using morphological characteristics, ITS sequences, and phylogenetic tree analyses. Additionally, preliminary studies were conducted to assess the biological characteristics of the pathogen and evaluate the efficacy of various treatments for disease control. The fungus on the passion fruit called B4 was identified as Diaporthe passiflorae. Optimal conditions for mycelial growth were observed at 25-30 °C and pH 5-6, with starch as the carbon source and peptone as the nitrogen source. Infection by D. passiflorae accelerated fruit decay, reduced the h° value of the peel, and increased the peel cell membrane permeability when compared to the control. Notably, treatments with appropriate concentrations of ɛ-poly-l-lysine, salicylic acid, and melatonin showed inhibitory effects on the pathogen's growth in vitro and may thus be potential postharvest treatments for controlling brown rot caused by D. passiflorae in passion fruit. The results provide a scientific basis for the development of strategies to control postharvest decay and extend the storage period of passion fruit.
Collapse
Affiliation(s)
- Huiling Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Yu Lin
- Department of Intelligent Manufacturing, MinXi Vocational and Technical College, Longyan 364021, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhao Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Vo TP, Nguyen NTU, Le VH, Phan TH, Nguyen THY, Nguyen DQ. Optimizing Ultrasonic-Assisted and Microwave-Assisted Extraction Processes to Recover Phenolics and Flavonoids from Passion Fruit Peels. ACS OMEGA 2023; 8:33870-33882. [PMID: 37744855 PMCID: PMC10515170 DOI: 10.1021/acsomega.3c04550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
This study optimized the ultrasonic-assisted extraction (UAE) and microwave-assisted extraction (MAE) processes to acquire phenolics and flavonoids from passion fruit peels using a mixture of ethanol, acetone, and water. An augmented simplex-centroid design was employed to find the suitable volume ratio among solvent ingredients to attain the highest extraction yield of phenolics and flavonoids. One-factor experiments were conducted to investigate the influence of UAE and MAE parameters on the recovery yield of phenolics and flavonoids before the two processes were optimized using Box-Behnken Design (BBD) models. The optimal UAE conditions for recovering phenolics and flavonoids from passion fruit peel powder (PFP) were 28 mL/g of liquid-to-solid ratio (LSR), 608 W of ultrasonic power, and 63 °C for 20 min to acquire total phenolic content (TPC) and total flavonoid content (TFC) at 39.38 mg of gallic acid equivalents per gram of dried basis (mg GAE/g db) and 25.79 mg of rutin equivalents per gram of dried basis (mg RE/g db), respectively. MAE conditions for attaining phenolics and flavonoids from PFP were 26 mL/g of LSR and 606 W of microwave power for 2 min to recover TPC and TFC at 17.74 mg GAE/g db and 8.11 mg RE/g db, respectively. The second-order kinetic model was employed to determine the UAE and MAE mechanism of TPC and TFC and the thermodynamic parameters of the extraction processes. The antioxidant activities of passion fruit peel extracts at optimal conditions were examined to compare the efficiency of UAE and MAE. This study establishes an effective approach for obtaining phenolics and flavonoids from passion fruit peels.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Nu To Uyen Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Viet Ha Le
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thuy Han Phan
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thi Hoang Yen Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Dinh Quan Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
10
|
Mohammadi MA, Wai MH, Rizwan HM, Qarluq AQ, Xu M, Wang L, Cheng Y, Aslam M, Zheng P, Wang X, Zhang W, Qin Y. Advances in micropropagation, somatic embryogenesis, somatic hybridizations, genetic transformation and cryopreservation for Passiflora improvement. PLANT METHODS 2023; 19:50. [PMID: 37231431 DOI: 10.1186/s13007-023-01030-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Passion fruit is an essential commercial plant in the tropics and subtropics, which has lately seen a rise in demand for high-quality fruits and large-scale production. Generally, different species of passion fruit (Passiflora sp.) are propagated by sexual reproduction. However, asexual reproduction, such as stem cuttings, grafting, or tissue culture, is also available and advantageous in many instances. Recent research on passion fruit has concentrated on improving and establishing methodologies for embryogenesis, clonal proliferation via (somatic embryos), homozygote regeneration (by anther culture), germplasm preservation (via cryopreservation), and genetic transformation. These developments have resulted in potentially new directions for asexual propagation. Even though effective embryo culture and cryogenics are now available, however the limited frequency of embryogenic callus transformation to ex-vitro seedlings still restricts the substantial clonal replication of passion fruit. Here, in this review the advancement related to biotechnological approaches and the current understanding of Passiflora tissue culture. In vitro culture, organogenesis, cryopreservation, breeding, and productivity of Passiflora will significantly improve with novel propagation approaches, which could be applied to a wider range of germplasm.
Collapse
Affiliation(s)
- Mohammad Aqa Mohammadi
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Alberoni University, Kapisa, 1254, Afghanistan
| | - Myat Hnin Wai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | - Mengjie Xu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaomei Wang
- Institute of Horticultural Research, Nanning Investigation Station of South Subtropical Fruit Trees, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, 530007, China
| | - Wenbin Zhang
- Xinluo Breeding Center for Excellent Germplasms, Longyan, 361000, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Horticulture, College of Life Sciences, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Pereira ZC, Cruz JMDA, Corrêa RF, Sanches EA, Campelo PH, Bezerra JDA. Passion fruit (Passiflora spp.) pulp: A review on bioactive properties, health benefits and technological potential. Food Res Int 2023; 166:112626. [PMID: 36914332 DOI: 10.1016/j.foodres.2023.112626] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
The Passiflora genus (Passifloraceae family) extends worldwide, but it is mainly found in the Americas. The present review aimed to select the main reports published over the last 5 years involving the chemical composition, health benefits, and products obtained from the pulps of Passifora spp. The pulps of at least 10 species of Passiflora have been studied presenting different classes of organic compounds, especially phenolic acids, and polyphenols. The main bioactivity properties include antioxidant and in vitro α-amylase and α-glucosidase enzyme inhibition. These reports highlight the potential of Passiflora for the development of a variety of products, especially fermented and non-fermented beverages, as well as foods to attend a demand for non-dairy products. In general, these products are prominent source of probiotic bacteria resistant to in vitro gastrointestinal simulation, representing an alternative for intestinal microbiota regulation. Therefore, sensory analysis is encouraging herein, as well as in vivo tests to enable the development of high value pharmaceuticals and food products. The patents confirm the great interest in research and products development in different food technology areas, as well as in biotechnology, pharmacy, and materials engineering.
Collapse
Affiliation(s)
- Zilanir Carvalho Pereira
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | | | - Renilto Frota Corrêa
- Translational Surgery and Animal Experimentation Laboratory of the Central Bioterium of the UEA, State University of Amazonas, Manaus, Amazonas, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Jaqueline de Araújo Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
12
|
Ju Y, Huang L, Luo H, Huang Y, Huang X, Chen G, Gui J, Liu Z, Yang L, Liu X. Passion fruit peel and its zymolyte enhance gut function in Sanhuang broilers by improving antioxidation and short-chain fatty acids and decreasing inflammatory cytokines. Poult Sci 2023; 102:102672. [PMID: 37104904 PMCID: PMC10160589 DOI: 10.1016/j.psj.2023.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The passion fruit peel (PFP) is the by-product of juice processing and is rich in phenolic compounds and dietary fibers. As the high ADF content in PFP (34.20%), we proceeded to treat PFP with cellulase. The ADF decreased to 16.70% after enzymatic processing, and we supposed that enzymolytic passion fruit peel (EPF) should have a greater growth performance than PFP to broilers. Two trials were conducted to evaluate the effects of dietary PFP or EPF supplementation on growth performance, serum biochemical indices, meat quality, and cecal short-chain fatty acids, microbiota, and metabolites in broilers. In Exp. 1, 180 1-day-old Sanhuang broilers (male, 36.17 ± 2.47 g) were randomly allocated into 3 treatments, with 6 replicates in each treatment. The 3 experimental diets included 1 basal diet (control) and 2 PFP-added diets supplemented with 1 and 2% PFP, respectively. The trial lasted for 42 d. In Exp. 2, 144 Sanhuang broilers (male, 112-day-old, 1.62 ± 0.21 kg) were randomly allocated to 3 treatments. Each treatment was distributed among 6 pens, and each pen contained 8 broilers. The 3 treatment diets included: a control diet, a positive control diet supplementing 75 mg/kg chlortetracycline, and the experimental diet supplementing 3% EPF. The trial lasted for 56 d. Results showed that dietary 1 and 2% PFP addition did not affect growth performance in Exp. 1, and the 3% EPF supplementation had a negative effect on ADFI (P < 0.05) in Exp. 2. A decreased serum triglyceride (P < 0.05) in broilers was observed in Exp. 1. Broilers fed EPF had a higher glutathione peroxidase (GSH-Px) (P < 0.05), and lower levels of tumor necrosis factor-α (TNF-α) (P < 0.05) and glucose (P < 0.05) in Exp. 2. We also found that broilers from PFP or EPF-treated treatments had an increased butyrate content and higher microbial diversity in the cecum. The effects of antioxidation, anti-inflammatory function, and elevated SCFAs were confirmed after the microbe and untargeted metabolomic analysis. Dietary EPF supplementation significantly increased the SCFA-generating bacteria, anti-inflammatory-related bacteria, the antioxidant-related and anti-inflammatory-related metabolites. Moreover, dietary 3% EPF addition positively affects the biosynthesis of phenylpropanoids, which strongly correlate with the antioxidant and anti-inflammatory properties. In conclusion, the proper addition level did not affect the growth performance, and the PFP and EPF could improve the antioxidation state, anti-inflammatory activity, and intestinal functions of Sanhuang broilers to some extent.
Collapse
|
13
|
Lu Y, Wang R, Hu T, He Q, Chen ZS, Wang J, Liu L, Fang C, Luo J, Fu L, Yu L, Liu Q. Nondestructive 3D phenotyping method of passion fruit based on X-ray micro-computed tomography and deep learning. FRONTIERS IN PLANT SCIENCE 2023; 13:1087904. [PMID: 36714758 PMCID: PMC9878569 DOI: 10.3389/fpls.2022.1087904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Passion fruit is a tropical liana of the Passiflora family that is commonly planted throughout the world due to its abundance of nutrients and industrial value. Researchers are committed to exploring the relationship between phenotype and genotype to promote the improvement of passion fruit varieties. However, the traditional manual phenotyping methods have shortcomings in accuracy, objectivity, and measurement efficiency when obtaining large quantities of personal data on passion fruit, especially internal organization data. This study selected samples of passion fruit from three widely grown cultivars, which differed significantly in fruit shape, size, and other morphological traits. A Micro-CT system was developed to perform fully automated nondestructive imaging of the samples to obtain 3D models of passion fruit. A designed label generation method and segmentation method based on U-Net model were used to distinguish different tissues in the samples. Finally, fourteen traits, including fruit volume, surface area, length and width, sarcocarp volume, pericarp thickness, and traits of fruit type, were automatically calculated. The experimental results show that the segmentation accuracy of the deep learning model reaches more than 0.95. Compared with the manual measurements, the mean absolute percentage error of the fruit width and length measurements by the Micro-CT system was 1.94% and 2.89%, respectively, and the squares of the correlation coefficients were 0.96 and 0.93. It shows that the measurement accuracy of external traits of passion fruit is comparable to manual operations, and the measurement of internal traits is more reliable because of the nondestructive characteristics of our method. According to the statistical data of the whole samples, the Pearson analysis method was used, and the results indicated specific correlations among fourteen phenotypic traits of passion fruit. At the same time, the results of the principal component analysis illustrated that the comprehensive quality of passion fruit could be scored using this method, which will help to screen for high-quality passion fruit samples with large sizes and high sarcocarp content. The results of this study will firstly provide a nondestructive method for more accurate and efficient automatic acquisition of comprehensive phenotypic traits of passion fruit and have the potential to be extended to more fruit crops. The preliminary study of the correlation between the characteristics of passion fruit can also provide a particular reference value for molecular breeding and comprehensive quality evaluation.
Collapse
Affiliation(s)
- Yuwei Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Wang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Tianyu Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang He
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Zhou Shuai Chen
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Jinhu Wang
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Lingbo Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Lejun Yu
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Biomedical Engineering, Hainan University, Haikou, China
| |
Collapse
|
14
|
Formulation and characterization of popsicles using dehydrated passion fruit juice with foxtail millet milk. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Liang Y, Yang Y, Zheng L, Zheng X, Xiao D, Wang S, Ai B, Sheng Z. Extraction of Pectin from Passion Fruit Peel: Composition, Structural Characterization and Emulsion Stability. Foods 2022; 11:foods11243995. [PMID: 36553737 PMCID: PMC9777908 DOI: 10.3390/foods11243995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Extraction methods directly affect pectin extraction yield and physicochemical and structural characteristics. The effects of acid extraction (AE), ultrasonic-assisted acid extraction (UA), steam explosion pretreatment combined with acid extraction (SEA) and ultrasonic-assisted SEA (USEA) on the yield, structure, and properties of passion fruit pectin were studied. The pectin yield of UA was 6.5%, equivalent to that of AE at 60 min (5.3%), but the emulsion stability of UA pectin was poor. The pectin obtained by USEA improved emulsion stability. Compared with UA, it had higher protein content (0.62%), rhamnogalacturonan I (18.44%) and lower molecular weight (0.72 × 105 Da). In addition, SEA and USEA had high pectin extraction yields (9.9% and 10.7%) and the pectin obtained from them had lower degrees of esterification (59.3% and 68.5%), but poor thermal stability. The results showed that ultrasonic-assisted steam explosion pretreatment combined with acid extraction is a high-efficiency and high-yield method. This method obtains pectin with good emulsifying stability from passion fruit peel.
Collapse
Affiliation(s)
- Yonglun Liang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Shenwan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
- Correspondence:
| |
Collapse
|
16
|
Zhao L, Wu L, Li L, Zhu J, Chen X, Zhang S, Li L, Yan JK. Physicochemical, structural, and rheological characteristics of pectic polysaccharides from fresh passion fruit (Passiflora edulis f. flavicarpa L.) peel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Fonseca AM, Geraldi MV, Junior MRM, Silvestre AJ, Rocha SM. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res Int 2022; 160:111665. [DOI: 10.1016/j.foodres.2022.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
|
18
|
Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Lucas-González R, Capanoglu E, Pateiro M, Mousavi Khaneghah A, Hano C, Lorenzo JM. Current trends in Passiflora genus research: Obesity and fermented foods systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Ning X, Zhou Y, Wang Z, Zheng X, Pan X, Chen Z, Liu Q, Du W, Cao X, Wang L. Evaluation of passion fruit mesocarp flour on the paste, dough, and quality characteristics of dried noodles. Food Sci Nutr 2022; 10:1657-1666. [PMID: 35592275 PMCID: PMC9094450 DOI: 10.1002/fsn3.2788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 02/13/2022] [Indexed: 11/06/2022] Open
Abstract
Reasonable intake of high-fiber staple food is already one of the most effective measures in fiber deficiency disease prevention and control. Passion fruit mesocarp flour (PFMF), the primary byproduct during passion fruit processing, was utilized to manufacture high-fiber dried noodles. The presence of PFMF boosted wheat flour gelatinization and retrogradation. The competition for water between PFMF and wheat flour inhibited the formation of the gluten network, which harmed the cooking properties and decreased consumer acceptance of the resulting dried noodles. Nevertheless, PFMF fortification could considerably increase the dietary fiber content of noodles. Especially for noodles with 9% PFMF, the total dietary fiber content was greater than 6%, and they thus could be regarded as a high-dietary-fiber food. Generally, the current work demonstrates the feasibility of fabricating PFMF-enriched dried noodles and their nutritional superiority compared to the corresponding normal product.
Collapse
Affiliation(s)
- Xin Ning
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Yahan Zhou
- School of Light Industry Beijing Technology and Business University Beijing China
| | - Zhen Wang
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Xiaodong Zheng
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-operatives Jinan China
| | - Xiaoli Pan
- School of Physical and Telecommunication Engineering Yulin Normal University Yulin China
| | - Zhilin Chen
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Qiuping Liu
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Wei Du
- Guangxi Hong Bang Food Co., Ltd. Yulin China
| | - Xiaohuang Cao
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Lei Wang
- College of Chemistry and Food Science Yulin Normal University Yulin China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology Yulin China.,Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi Yulin China
| |
Collapse
|
21
|
Fonseca HC, Melo DDS, Ramos CL, Menezes AGT, Dias DR, Schwan RF. Sensory and flavor-aroma profiles of passion fruit juice fermented by potentially probiotic Lactiplantibacillus plantarum CCMA 0743 strain. Food Res Int 2022; 152:110710. [PMID: 35181110 DOI: 10.1016/j.foodres.2021.110710] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022]
Abstract
Several non-dairy probiotic beverages are already available to consumers and have been considered suitable carriers for probiotic bacteria. This study aimed to investigate the effect of Lactiplantibacillus plantarum CCMA 0743 in single and co-culture on the volatile compounds and sensory profiles of fermented passion fruit juice. The viability of strains inoculated in juice and MRS matrices was evaluated in a simulated gastrointestinal condition. The bacterial viability after 28 days of refrigerated storage of the juices was also evaluated. L. plantarum CCMA 0743 showed high viability (6.18 Log CFU/mL) after passage throughout simulated digestion in the passion fruit juice matrix. Both juices maintained high probiotic counts (>8.0 Log CFU/mL) during storage. Also, the yellow color was stable after 28 days of storage. Volatile compounds of passion fruit juices were modified after the fermentation process, such as ketones and alcohol formation degradation. The sensory profile of passion fruit juice was modified by single and co-culture fermentations. The fermented samples were mainly correlated with the terminologies "salty, acidic and bitter tastes" and "sweetener aftertaste". Overall, passion fruit juice proved to be an adequate food matrix to deliver the evaluated strains. However, individual strains or strain-strain interactions with the food matrix affect the fermented product, demonstrating that strain and matrices evaluations are essential for developing novel products with acceptable characteristics.
Collapse
Affiliation(s)
- Hugo Calixto Fonseca
- Food Science Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Dirceu de Sousa Melo
- Biology Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Cíntia Lacerda Ramos
- Department of Basic Science, Federal University of Jequitinhonha and Mucuri Valeys, 39100-000 Diamantina, Minas Gerais, Brazil
| | | | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
23
|
Vitor Pereira DT, Barrales FM, Pereira E, Viganó J, Iglesias AH, Reyes Reyes FG, Martínez J. Phenolic compounds from passion fruit rinds using ultrasound-assisted pressurized liquid extraction and nanofiltration. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Antoniassi R, Wilhelm AE, Reis SLR, Regis SA, Faria-Machado AF, Bizzo HR, Cenci SA. Expeller pressing of passion fruit seed oil: Pressing efficiency and quality of oil. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.16821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The passion fruit juice production generates around 70% of by-products comprising rind, seeds and arils that are commonly discarded. The seeds consist of 4% of fruit weight with the potential to produce around 2,500 ton/year of high added-value oil in Brazil. In this work, passion fruit seeds from different juice manufacturers and the effect of the seed moisture were evaluated towards oil quality and extraction efficiency, using a continuous expeller press of 100 kg/h capacity. The seeds were washed and dried before pressing. The main fatty acids detected were linoleic (67% to 68%), oleic (16% to 17.4%) and palmitic (11%). The oil quality and oil recovery depended on the seed oil content, i.e., the seed moisture before pressing and the different provenances of the seeds. Significant differences were observed for oxidative stability, acidity and conjugated dienes (p < 0.05) for oils from different fruit juice manufacturers. Among them, only one met the requirements of Brazilian regulation regarding oil acidity (less than 2%), thus indicating the need for an effective waste treatment process after juice extraction. Regarding the seed moisture, the highest Oil Stability Index (OSI) (7.4 h) and lowest free fatty acid content (0.63%) were obtained for the oil from the lowest seed moisture content. The oil recovery varied from 78% to 89% and the cake oil content was lower than 8% showing the elements of the feasibility of the process to obtain good quality oil.
Collapse
|
25
|
de Araújo Esteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM. Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 2021; 12:11106-11120. [PMID: 34651638 DOI: 10.1039/d1fo01976g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Brazilian biodiversity is one of the largest in the world, with about 41 000 species cataloged within two global biodiversity hotspots: Atlantic Forest and Cerrado, the Brazilian savannah. Passiflora, known also as passion flowers, is a genus of which 96% of its species are distributed in the Americas, mainly Brazil and Colombia. Passion fruit extracts have a commercial value on a global scale through the pharmaceutical, nutraceutical, self-care, and food and beverage industries. Passiflora are widely studied due to their potential antioxidant, anti-inflammatory, anxiolytic, antidepressant and vascular and neuronal protective effects, probably owing to their content of polyphenols. Passiflora setacea DC is a species of wild passion fruit from the Brazilian Cerrado, rich in flavonoid C-glycosides, homoorientin, vitexin, isovitexin and orientin. Intake of these plant food bioactives has been associated with protection against chronic non-communicable diseases (CNDCs), including cardiovascular diseases, cancers, and neurodegenerative diseases. In this review, we aimed to discuss the varieties of Passiflora, their content in plant food bioactives and their potential molecular mechanisms of action in preventing or reversing CNDCs.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tatiana Karla Borges
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasília DF 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil
| |
Collapse
|
26
|
Li X, Zhang G, Li J, Jiang T, Chen H, Li P, Guan Y. Degradation by Vc‐H
2
O
2
, characterization and antioxidant activity of polysaccharides from
Passiflora edulis
peel. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xia Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Guozhu Zhang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Jing Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Tiemin Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Huiying Chen
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Peijun Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Yuan Guan
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
27
|
Urrego N, Sepúlveda P, Aragón M, Ramos FA, Costa GM, Ospina LF, Castellanos L. Flavonoids and saponins from Passiflora edulis f. edulis leaves (purple passion fruit) and its potential anti-inflammatory activity. J Pharm Pharmacol 2021; 73:1530-1538. [PMID: 34436599 DOI: 10.1093/jpp/rgab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The objective of this work was to evaluate the anti-inflammatory activity of the aqueous extract, fractions and major compounds, which are isolated and identified from Passiflora edulis f. edulis (purple passion fruit) leaves extract. METHODS For the isolation of the major compounds, reversed-phase chromatography and normal phase countercurrent chromatography were used. The separation was followed by thin layer chromatography and HPLC-DAD-ELSD. One-dimensional and two-dimensional NMR and ESI-TOF-MS/MS were used for structural elucidation. The anti-inflammatory activity was evaluated on a TPA multiple dose model of skin chronic inflammation in mice. Additionally, myeloperoxidase (MPO) and nitric oxide synthase (NOS) activity assays were performed as possible mechanisms of action studies. KEY FINDINGS AND CONCLUSIONS The study of the butanolic fraction mainly showed the presence of saponins and flavonoids. Three minor flavonoids were detected; and three known saponins, cyclopassiflosides IX, XI and III were isolated and identified. This is the first unequivocal report of the presence of these compounds in P. edulis f. edulis leaves. The most favourable results of anti-inflammatory activity were obtained for the flavonoid-rich fraction. All the fractions and isolated compounds evaluated, presented high percentages of inhibition of nitric oxide synthase activity.
Collapse
Affiliation(s)
- Norman Urrego
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Paula Sepúlveda
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Marcela Aragón
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Freddy A Ramos
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Bogotá, Colombia
| | - Geison M Costa
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Química, Bogotá, Colombia
| | - Luis F Ospina
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Leonardo Castellanos
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Bogotá, Colombia
| |
Collapse
|
28
|
Lourenção Zomer AP, Rodrigues CA, Rotta EM, Vilela Junqueira NT, Visentainer JV, Maldaner L. An improved analytical strategy based on the QuEChERS method for piceatannol analysis in seeds of Passiflora species. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2022.2057533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | | | | | - Liane Maldaner
- Chemistry Department, State University of Maringá (UEM), Maringá-PR, Brazil
| |
Collapse
|
29
|
Baseggio AM, Kido LA, Viganó J, Carneiro MJ, Lamas CDA, Martínez J, Sawaya ACHF, Cagnon VHA, Maróstica Júnior MR. Systemic antioxidant and anti-inflammatory effects of yellow passion fruit bagasse extract during prostate cancer progression. J Food Biochem 2021; 46:e13885. [PMID: 34338308 DOI: 10.1111/jfbc.13885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023]
Abstract
We evaluated the impact of yellow passion fruit (Passiflora edulis sp.) bagasse extract (PFBE) administration in systemic oxidative and inflammatory parameters in vivo, considering prostate cancer progression in transgenic mice (TRAMP). Piceatannol, scirpusin-B, dicaffeoylquinic acid, citric acid, and (+)-catechin were identified in PFBE, and the extract showed high in vitro antioxidant capacity. Some alterations in systemic parameters were verified during prostate cancer progression, as the increase in ALT and MDA levels, and SOD and GPx activities in the plasma. In the liver, higher MDA, TNF-α, and NF-κB levels, and GR and GPx activities were verified. Compared to their respective controls, the short- and long-term PFBE administration reduced MDA levels in the liver and plasma. The long-term treatment increased the catalase activity in the plasma, while the short-term treatment increased the hepatic SOD and catalase activities. Still, a reduction in hepatic TNF-α and NF-κB levels was verified after long-term treatment. PRACTICAL APPLICATIONS: Prostate cancer progression is associated with changes in systemic redox status and inflammation markers. Moreover, the intake of polyphenols with antioxidant properties, besides delaying prostate carcinogenesis, may improve the systemic antioxidant defenses and inflammatory response. In vitro studies pointed to a promising antioxidant and anti-inflammatory potential of yellow passion fruit bagasse. However, in vivo studies are scarce. Our results provided information about in vivo impacts of PFBE oral consumption on antioxidant defense and inflammation, indicating its potential as an adjuvant during the initial steps of prostate cancer.
Collapse
Affiliation(s)
- Andressa Mara Baseggio
- Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas (UNICAMP), Campinas, Brazil
| | - Larissa Akemi Kido
- Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas (UNICAMP), Campinas, Brazil.,Institute of Biology, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliane Viganó
- Faculty of Food Engineering, Department of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mara Junqueira Carneiro
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Celina de Almeida Lamas
- Institute of Biology, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Julian Martínez
- Faculty of Food Engineering, Department of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Valéria Helena Alves Cagnon
- Institute of Biology, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
30
|
Exploration of nutritional, antioxidant and antibacterial properties of unutilized rind and seed of passion fruit from Northeast India. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00899-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Taborda JAV, Arango WM, Méndez Arteaga JJ, Guerra Almonacid CM. Encapsulation of bioactive compounds from byproducts of two species of passionflowers: evaluation of the physicochemical properties and controlled release in a gastrointestinal model. Heliyon 2021; 7:e07627. [PMID: 34355105 PMCID: PMC8322279 DOI: 10.1016/j.heliyon.2021.e07627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to evaluate the release of active components with antioxidant and antihypertensive capacity from encapsulated extracts of the peel and seeds of Gulupa (Passiflora edulis f. edulis) and Cholupa (Passiflora maliformis) in an in vitro gastrointestinal digestion model. Microencapsulated extracts were prepared with enzymatically modified rice starch as the encapsulating material and ethanol extracts of seeds and peel of P. edulis f. edulis and P. maliformis as encapsulated material. Microcapsule characterization was performed by scanning electron microscopy with values of 4.54-5.13 μm and ξ potential values of -6.34 mV and -6.66 mV. Dynamic light scattering (DLS) analysis was conducted with polydispersion values from 1.33 to 1.51, and dispersion stability analysis was also conducted. The total phenol content and antioxidant activities (ABTS, DPPH, and FRAP) and ACE inhibitory activity (in vitro antihypertensive activity) were evaluated after each stage of digestion, with values greater than 80% of activity before gastrointestinal transit and with values greater than 55% activity after the end of gastrointestinal transit. Gastrointestinal evaluation of the encapsulated extracts was performed with an ex vivo model using pig intestines and simulating the conditions of digestion in three phases: the gastric (pH 2.0 with 1.0 M HCl +0.5 g/L pepsin), enteric (pH 8.0 with Krebs solution +1.0 mL/L bile) and final enteric (pH 7.5 Krebs solution only) phases. The microencapsulation of passionflower extracts showed good behavior against changes in pH and enzymatic activities throughout digestion, thus promoting a controlled release and targeted delivery of bioactive compounds, undergoing a paracellular mechanism through the intestinal barrier to preserve the antioxidant activity and ACE inhibitory that was shown by the extracts before encapsulation of the material.
Collapse
Affiliation(s)
| | - Walter Murillo Arango
- Chemistry department, GIPRONUT Research Group, Faculty of Sciences, Tolima University, Ibagué, Colombia
| | - Jonh Jairo Méndez Arteaga
- Chemistry department, GIPRONUT Research Group, Faculty of Sciences, Tolima University, Ibagué, Colombia
| | - Carlos Martín Guerra Almonacid
- Pedagogy and Technological Mediations Department, GIRYSOUT Research Group, Distance Education Institute, Tolima University, Ibagué, Colombia
| |
Collapse
|
32
|
Espinosa-Murillo NDC, Ulloa JA, Urías-Silvas JE, Rosas-Ulloa P, Ramírez-Ramírez JC, Gutiérrez-Leyva R, Ulloa-Rangel BE. Impact of high-intensity ultrasound on the physicochemical and functional properties of a protein isolate from passion fruit (Passiflora edulis) seeds. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A protein isolate from passion fruit seeds (PFSPI) obtained by alkaline extraction and isoelectric precipitation was treated with sonication for 15 and 30 min at 40 kHz to evaluate its impact on the physicochemical and functional properties. The PFSPI had a purity of 96.21% protein, with albumins being the main fraction (75.66%). Ultrasound increased the bulk density (ρ) of PFSPI by 13.3% and the formation a more porous structure by a greater separation between particles. Protein solubility of PFSPI in the range of pH 2–12 sonicated for 15 and 30 min, increased on average 5.21 and 9.86%, respectively, in comparison with the control. PFSPI foaming properties were influenced by pH and sonication time, achieving up to 577%, while the minimum gelling concentration was reduced from 4 to 2% at pH 7. Therefore, sonication treatment improved some functional properties of PFSPI for its potential use as a food ingredient.
Collapse
Affiliation(s)
- Natalia del Carmen Espinosa-Murillo
- Posgrado en Ciencias Biológico Agropecuarias , Universidad Autónoma de Nayarit , Carretera Tepic-Compostela Km 9, 63780 , Xalisco , Nayarit , México
| | - José Armando Ulloa
- Posgrado en Ciencias Biológico Agropecuarias , Universidad Autónoma de Nayarit , Carretera Tepic-Compostela Km 9, 63780 , Xalisco , Nayarit , México
- Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit , Ciudad de la Cultura Amado Nervo, 63155 , Tepic , Nayarit , México
| | - Judith Esmeralda Urías-Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , A.C., Av. Normalistas No. 800 Col. Colinas de la Normal, 44270 , Guadalajara , Jalisco , México
| | - Petra Rosas-Ulloa
- Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit , Ciudad de la Cultura Amado Nervo, 63155 , Tepic , Nayarit , México
| | - José Carmen Ramírez-Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia , Universidad Autónoma de Nayarit , Carretera a Chapalilla Km 3.5, 63700 , Compostela , Nayarit , México
| | - Ranferi Gutiérrez-Leyva
- Unidad Académica de Medicina Veterinaria y Zootecnia , Universidad Autónoma de Nayarit , Carretera a Chapalilla Km 3.5, 63700 , Compostela , Nayarit , México
| | - Blanca Estela Ulloa-Rangel
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas , Universidad Autónoma de Nayarit , Ciudad de la Cultura Amado Nervo, 63155 , Tepic , Nayarit , México
| |
Collapse
|
33
|
Guan Y, Sun H, Chen H, Li P, Shan Y, Li X. Physicochemical characterization and the hypoglycemia effects of polysaccharide isolated from Passiflora edulis Sims peel. Food Funct 2021; 12:4221-4230. [PMID: 33876796 DOI: 10.1039/d0fo02965c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One polysaccharide, designated as WPEP-A, was isolated from Passiflora edulis Sims peel and its hypoglycemic effects on diabetic db/db mice were evaluated. Physicochemical characterization showed that WPEP-A was composed of galactose, glucose, xylose, rhamnose, galacturonic acid and glucuronic acid with a molecular weight of 9.51 × 104 Da. We observed an inhibition in weight gain and blood glucose levels. Glucose tolerance and insulin tolerance improved after the administration of WPEP-A. In addition, our data showed increased antioxidant enzyme activities. Furthermore, the levels of serum insulin and triglyceride decreased with the recovery of liver damage. Meanwhile, positive changes in short chain fatty acid content were observed, and the mRNA levels of glucagon-like peptide 1 receptor, glucagon and prohormone convertase 3 were up-regulated in the intestinal tract. In summary, our results showed that WPEP-A had hypoglycemic activity and improved intestinal function in diabetic mice, which may contribute to the attenuation of the hypoglycemia effects.
Collapse
Affiliation(s)
- Yuan Guan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, China.
| | - Hefei Sun
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, China.
| | - Huiying Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, China.
| | - Peijun Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, China.
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Xia Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, China.
| |
Collapse
|
34
|
Borgonovi TF, Casarotti SN, Penna ALB. Lacticaseibacillus casei SJRP38 and buriti pulp increased bioactive compounds and probiotic potential of fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Wang W, Gao YT, Wei JW, Chen YF, Liu QL, Liu HM. Optimization of Ultrasonic Cellulase-Assisted Extraction and Antioxidant Activity of Natural Polyphenols from Passion Fruit. Molecules 2021; 26:molecules26092494. [PMID: 33923350 PMCID: PMC8123174 DOI: 10.3390/molecules26092494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, ultrasonic cellulase extraction (UCE) was applied to extract polyphenols from passion fruit. The extraction conditions for total phenol content (TPC) and antioxidant activity were optimized using response surface methodology (RSM) coupled with a Box-Behnken design (BBD). The results showed that the liquid-to-solid ratio (X2) was the most significant single factor and had a positive effect on all responses. The ANOVA analysis indicated quadratic models fitted well as TPC with R2 = 0.903, DPPH scavenging activity with R2 = 0.979, and ABTS scavenging activity with R2 = 0.981. The optimal extraction parameters of passion fruit were as follows: pH value of 5 at 30 °C for extraction temperature, 50:1 (w/v) liquid-to-solid ratio with extraction time for 47 min, the experimental values were found matched with those predicted. Infrared spectroscopy suggested that the extract contained the structure of polyphenols. Furthermore, three main polyphenols were identified and quantified by HPLC. The results showed the content of phenolic compounds and antioxidant activity of the optimized UCE were 1.5~2 times higher than that determined by the single extraction method and the Soxhlet extraction method, which indicates UCE is a competitive and effective extraction technique for natural passion fruit polyphenols.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yu-Ting Gao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Ji-Wen Wei
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yin-Feng Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Qing-Lei Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Hui-Min Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
- Correspondence: ; Tel.: +86-186-1677-8997
| |
Collapse
|
36
|
Wang C, Ye X, Ng TB, Zhang W. Study on the Biocontrol Potential of Antifungal Peptides Produced by Bacillus velezensis against Fusarium solani That Infects the Passion Fruit Passiflora edulis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2051-2061. [PMID: 33570936 DOI: 10.1021/acs.jafc.0c06106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bacterium identified as Bacillus velezensis with a growth inhibitory effect against Fusarium solani, a pathogen that caused basal stem rot in the passion fruit Passiflora edulis, was isolated in this study. From the fermentation broth of B. velezensis, a type of antifungal peptide (named BVAP) with a molecular weight of ca. 1.5 kDa was purified and found to be fengycin. BVAP suppressed mycelial growth in F. solani with an IC50 of 5.58 μg/mL, which was superior to those of the chemical fungicides thiram (41.24 μg/mL) and hymexazol (343.31 μg/mL). The antifungal activity remained stable after exposure to 50-100 °C or following incubation with solutions at pH 1-3. Further research revealed that BVAP increased the permeability of the F. solani mycelial membrane, brought about swelling at the tips of hyphae, and elicited abnormal accumulation of nucleic acids and chitin at the sites of swelling. These findings indicate that BVAP possessed a remarkable biocontrol potential toward F. solani.
Collapse
Affiliation(s)
- Caicheng Wang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiujuan Ye
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Wenjing Zhang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
37
|
Folin-Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8871301. [PMID: 33511200 PMCID: PMC7822687 DOI: 10.1155/2021/8871301] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
Passiflora edulis Flavicarpa, Passiflora edulis Sims, and Passiflora ligularis Juss are Colombian fruits (passion fruits) of important exportation value. They act efficiently as antioxidants, antifungal, and antimicrobial compounds due to their high polyphenol content. Polyphenols can be quantified by the Folin-Ciocalteu (F-C) reaction. Food matrices, solvent polarity, and several different reacting conditions are critical for the optimum extraction and quantification of polyphenols. Chromatographic identification and quantitation are satisfactory with access to a vast number of reference standards considering the availability of abundant phenolic compounds in crude extracts. The purpose of this study was to evaluate alternatives and specific F-C reacting conditions aiming at determining the highest total phenolic content (TPC) in three Colombian Passifloras. Among optimum reacting conditions, reduced reaction time and diluted alkali conditions yielded desirable positive results highlighting lower working time and minimum reagent waste production. For higher extraction yield, acetone 70% was the best solvent to capture more phenolics from the seedless pulp of these Colombian passion fruits.
Collapse
|
38
|
Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
39
|
Xie X, Chen C, Fu X. Study on the bioaccessibility of phenolic compounds and bioactivities of passion fruit juices from different regions in vitro digestion. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Xie
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
| | - Chun Chen
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety Guangzhou China
| | - Xiong Fu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
40
|
Pereira DTV, Zabot GL, Reyes FGR, Iglesias AH, Martínez J. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: Impact on phenolic yield, extraction kinetics and technical-economic evaluation. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ning X, Wu J, Luo Z, Chen Y, Mo Z, Luo R, Bai C, Du W, Wang L. Cookies fortified with purple passion fruit epicarp flour: Impact on physical properties, nutrition, in vitro starch digestibility, and antioxidant activity. Cereal Chem 2020. [DOI: 10.1002/cche.10367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Ning
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology Yulin China
- Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi Yulin China
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Juanjuan Wu
- Foreign Languages Department Yulin Normal University Yulin China
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology Yulin China
- Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi Yulin China
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Yuan Chen
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology Yulin China
- Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi Yulin China
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Zimei Mo
- Guangxi‐Asean Center for Food and Drug Safety Control Nanning China
| | - Ronghua Luo
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Chuanjiang Bai
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Wei Du
- Guangxi Hong Bang Food Co. Ltd Yulin China
| | - Lei Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology Yulin China
- Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi Yulin China
- College of Chemistry and Food Science Yulin Normal University Yulin China
| |
Collapse
|
42
|
Ghada B, Pereira E, Pinela J, Prieto MA, Pereira C, Calhelha RC, Stojković D, Sokóvić M, Zaghdoudi K, Barros L, Ferreira ICFR. Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties. Molecules 2020; 25:molecules25143203. [PMID: 32674320 PMCID: PMC7397062 DOI: 10.3390/molecules25143203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
The potential of passion fruit (Passiflora edulis Sims) epicarp to produce anthocyanin-based colorants with bioactive properties was evaluated. First, a five-level three-factor factorial design coupled with response surface methodology was implemented to optimize the extraction of anthocyanins from dark purple epicarps. The extraction yield and cyanidin-3-O-glucoside content were used as response criteria. The constructed models were fitted to the experimental data and used to calculate the optimal processing conditions (t = 38 min, T = 20 °C, S = 0% ethanol/water (v/v) acidified with citric acid to pH 3, and RS/L = 50 g/L) that lead to maximum responses (3.4 mg/g dried epicarp and 9 mg/g extract). Then, the antioxidant, antimicrobial, and cytotoxic activities of anthocyanin extracts obtained using the optimized method and a conventional extraction method were evaluated in vitro. The extract obtained by the optimized method revealed a higher bioactivity, in agreement with the higher cyanidin-3-O-glucoside content. This study highlighted the coloring and bioactive potential of a bio-based ingredient recycled from a bio-waste, which promotes a sustainable bioeconomy in the agri-food sector.
Collapse
Affiliation(s)
- Bejaoui Ghada
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- Department of Chemical Engineering, Tunisia Private University (ULT), 32 Bis Av. Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- Correspondence: (E.P.); (L.B.)
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (M.S.)
| | - Marina Sokóvić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (M.S.)
| | - Khalil Zaghdoudi
- Department of Chemical Engineering, Tunisia Private University (ULT), 32 Bis Av. Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- Correspondence: (E.P.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| |
Collapse
|
43
|
He X, Luan F, Yang Y, Wang Z, Zhao Z, Fang J, Wang M, Zuo M, Li Y. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front Pharmacol 2020; 11:617. [PMID: 32508631 PMCID: PMC7251050 DOI: 10.3389/fphar.2020.00617] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Passiflora edulis, also known as passion fruit, is widely distributed in tropical and subtropical areas of the world and becomes popular because of balanced nutrition and health benefits. Currently, more than 110 phytochemical constituents have been found and identified from the different plant parts of P. edulis in which flavonoids and triterpenoids held the biggest share. Various extracts, fruit juice and isolated compounds showed a wide range of health effects and biological activities such as antioxidant, anti-hypertensive, anti-tumor, antidiabetic, hypolipidemic activities, and so forth. Daily consumption of passion fruit at common doses is non-toxic and safe. P. edulis has great potential development and the vast future application for this economically important crop worldwide, and it is in great demand as a fresh product or a formula for food, health care products or medicines. This mini-review aims to provide systematically reorganized information on physiochemical features, nutritional benefits, biological activities, toxicity, and potential applications of leaves, stems, fruits, and peels of P. edulis.
Collapse
Affiliation(s)
- Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Fei Luan
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ze Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zefeng Zhao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jiacheng Fang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Min Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yongsheng Li
- Department of Pharmacy, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
44
|
Castellanos L, Naranjo-Gaybor SJ, Forero AM, Morales G, Wilson EG, Ramos FA, Choi YH. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. PHYTOCHEMISTRY 2020; 172:112272. [PMID: 32032827 DOI: 10.1016/j.phytochem.2020.112272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Banana passion fruit of the Passiflora genus, are commercially cultivated on a small to medium scale, mainly as edible fruits or as components of traditional herbal medicines. This subgenus comprises several species and hybrid specimens that grow readily in the wild. Due to their taxonomical complexity, many of these species have recently been reclassified (Ocampo Pérez and Coppens d'Eeckenbrugge, 2017), and their chemical profile has still to be determined. In this study, an 1H NMR-based platform was applied to the chemical profiling of seven wild species of the Passiflora subgenus, and UHPLC-DAD-MS was additionally used for the identification of phenolic compounds. A total of 59 compounds were detected including 26 O- and C-glycosidated flavonoids and polyphenols, nine organic acids, seven amino acids, GABA, sucrose, glucose, myo-inositol, and five other non-identified compounds. Two of the identified compounds are the previously undescribed C-glycosyl flavonoids, apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside. These C-glycosyl flavonoids were isolated to confirm their proposed structures by NMR and LCMS analysis. The PCA score plots obtained from the 1H NMR data of the studied Passiflora samples showed P. cumbalensis and P. uribei as the species with the most distinguishable chemical profile. In addition, a correlation analysis using OPLS-DA was conducted between 1H-NMR data and the quorum quenching activity (QQ) of Chromobacterium violaceum ATCC 31532. This analysis revealed P. lehmannii, and P. uribei extracts to be the most active, and apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside were identified as possibly responsible for the QQ activity. To confirm this, QQ activity of both compounds was tested against C. violaceum ATCC 3153. An inhibition of violacein production of 0.135 mM (100 μg/mL) and 0.472 mM (300 μg/mL) was observed for apigenin-4'-O-β-glucopyranosyl,8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside respectively, while bacterial growth was unaffected in both cases. Furthermore, both compounds showed the ability to inhibit the production of the toxoflavin of the phytopathogen Burkholderia glumae ATCC 33617.
Collapse
Affiliation(s)
- Leonardo Castellanos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| | - Sandra Judith Naranjo-Gaybor
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Universidad de las Fuerzas Armadas. ESPE Carrera de Ingeniería Agropecuaria Extensión Santo Domingo, Av. General Rumiñahui s/n, Sangolquí, Ecuador
| | - Abel M Forero
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Gustavo Morales
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Erica Georgina Wilson
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Freddy A Ramos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 02447, Seoul, Republic of Korea
| |
Collapse
|
45
|
Guo R, Tian S, Li X, Wu X, Liu X, Li D, Liu Y, Ai L, Song Z, Wu Y. Pectic polysaccharides from purple passion fruit peel: A comprehensive study in macromolecular and conformational characterizations. Carbohydr Polym 2019; 229:115406. [PMID: 31826397 DOI: 10.1016/j.carbpol.2019.115406] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/28/2022]
Abstract
A polysaccharide (PFPP) from purple passion fruit peel was optimally extracted, with the highest yield (10.05%, w/w) obtained under 35 °C extraction temperature, 240 W ultrasonic power, 65:1 mL/g liquid-to-solid ratio, 0.6% (w/v) ammonium oxalate, 30 min extraction time and pH 2.0. According to composition analyses, pectic PFPP and its fractions (PFPP-10, -15 and -20) were revealed as linear homogalacturonans interrupted by rhamnogalacturonan I in different lengths and extensities, where low esterification degrees (35.35-39.66%) were indicated via FT-IR. Furthermore, based on macromolecular models, comprehensive analyses on macromolecular and conformational characterizations of PFPP fractions were conducted quantitatively through, e.g., shape factor (1.42-1.79), Mark-Houwink-Sakurada exponent (0.55-0.74), conformational power-law exponent (0.52-0.58), fractal dimension (1.72-1.94) and persistence length (6.73-13.47 nm). Therefore, different semi-flexible coil conformations were proposed schematically, where lower molecular-weight PFPP fractions were less flexible. This could provide a molecular basis for precise re-utilizations of PFPP in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Rui Guo
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sen Tian
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejiao Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Liu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
46
|
Zhang R, Lan W, Ding J, Ahmed S, Qin W, He L, Liu Y. Effect of PLA/PBAT Antibacterial Film on Storage Quality of Passion Fruit during the Shelf-Life. Molecules 2019; 24:E3378. [PMID: 31533273 PMCID: PMC6767302 DOI: 10.3390/molecules24183378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
In this experiment, we studied the effect of poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blend films on the efficiency of passion fruit preservation at 20 °C. The weight loss, shrinkage index, firmness, and total sugar of passion fruit packaged with PLA/PBAT films had no significant differences compared with PE films during 21 days (p > 0.05). PLA/PBAT films can more effectively reduce the rising of ethanol content and delay the total acid, ascorbic acid, and sensory evaluation. Compared with unpackaged (CK) and polyethylene (PE) films, PLA/PBAT films are more conducive to preserve the overall flavor of passion fruit during storage time, in agreement with sensory evaluation, tested by E-nose, E-tongue, and GC-MS, which also proved that it can effectively maintain the edible quality of passion fruit during storage time. We believe that our study makes a significant contribution to literature because it paves the way to the generalization and application of packaging films based on composite antibacterial polymers and facilitates the commercialization of fresh passion fruit as an important health food.
Collapse
Affiliation(s)
- Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wenting Lan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Jie Ding
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China.
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Li He
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Rotta EM, Rodrigues CA, Jardim ICSF, Maldaner L, Visentainer JV. Determination of phenolic compounds and antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS method and UHPLC-MS/MS. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Guiné RPF, De Lemos ET. Development of New Dairy Products with Functional Ingredients. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2018. [DOI: 10.1080/15428052.2018.1552901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raquel P. F. Guiné
- CI&DETS Research Centre and Department of Food Industry, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Edite Teixeira De Lemos
- CI&DETS Research Centre and Department of Food Industry, Polytechnic Institute of Viseu, Viseu, Portugal
| |
Collapse
|
49
|
Luciano WA, Matte TC, Portela IA, de Medeiros LL, dos Santos Lima M, Maciel JF, de Souza EL, Garcia EF, Magnani M. Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Res Int 2018; 114:159-168. [DOI: 10.1016/j.foodres.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
|
50
|
Valorization of passion fruit peel by-product: Xylanase production and its potential as bleaching agent for kraft pulp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|