1
|
Cruz-García K, Ortiz-Hernández YD, Acevedo-Ortiz MA, Aquino-Bolaños T, Aquino-López T, Lugo-Espinosa G, Ortiz-Hernández FE. Edible Insects: Global Research Trends, Biosafety Challenges, and Market Insights in the Mexican Context. Foods 2025; 14:663. [PMID: 40002106 PMCID: PMC11854334 DOI: 10.3390/foods14040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The growing global interest in edible insects as a sustainable protein source has positioned them as a promising solution to food security challenges. In Mexico, entomophagy is deeply embedded in cultural traditions, particularly in Oaxaca, where grasshoppers, leafcutter ants, and red agave worms form an integral part of the region's intangible heritage. This study conducted a bibliometric analysis of global research on edible insects (2009-2023) using Scopus and tools such as VOSviewer and Bibliometrix to analyze 218 publications. The analysis highlighted research trends, influential authors, and key themes, including nutrition, biosafety, and sustainability. To complement the bibliometric study, an exploratory analysis of edible insect commercialization in Oaxaca was conducted, focusing on virtual platforms and local markets. The findings reveal consistent global growth in edible insect research, with Mexico contributing six publications between 2020 and 2023. Despite advancements in safety standards and regulatory frameworks globally, Mexico still lacks formal sanitary controls and regulations for insect-based products. Nevertheless, its diverse commercialization efforts and rich cultural heritage, particularly in Oaxaca, showcase its potential to bridge tradition and innovation. This study highlights the urgent need for regulatory frameworks and research capacity to ensure safety, preserve cultural identity, and sustainably expand Mexico's edible insect market.
Collapse
Affiliation(s)
- Keyla Cruz-García
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Yolanda Donají Ortiz-Hernández
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Marco Aurelio Acevedo-Ortiz
- Secretaría de Ciencias, Humanidades, Tecnología e Innovación (SECIHTI), Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico;
| | - Teodulfo Aquino-Bolaños
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Tlacaelel Aquino-López
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Gema Lugo-Espinosa
- Secretaría de Ciencias, Humanidades, Tecnología e Innovación (SECIHTI), Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico;
| | | |
Collapse
|
2
|
Mugo-Kamiri L, Imungi JK, Njue L, Diiro G, Ombura FLO, Akutse KS, Chrysantus TM, Khamis FM, Subramanian S. Vendors' handling practices of edible long-horned grasshoppers ( Ruspolia differens) products and implications on microbial safety. Front Microbiol 2024; 15:1385433. [PMID: 38770022 PMCID: PMC11102984 DOI: 10.3389/fmicb.2024.1385433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Edible grasshopper, Ruspolia ruspolia, has nutritional and cherished cultural and economic importance to people from diverse cultures, particularly in over 20 African countries. It is consumed at home or commercially traded as sautéed, deep-fried, or boiled products. However, there is limited information on the hygiene practices of the vendors and the implications on the microbial safety of the final product. This research aimed at assessing the food safety knowledge, handling practices and shelf life of edible long-horned grasshopper products among vendors and the microbial safety of ready-to-eat products sold in 12 different markets in Uganda. Samples of raw, deep-fried and boiled grasshoppers were randomly collected from 74 vendors (62% street and 38% market vendors) and subjected to microbial analysis. Over 85% of the vendors surveyed had no public health food handler's certificate and >95% had limited post-harvest handling knowledge. Total aerobic bacteria (7.30-10.49 Log10 cfu/g), Enterobacteriaceae (5.53-8.56 Log10 cfu/g), yeasts and molds (4.96-6.01 Log10 cfu/g) total counts were significantly high and above the acceptable Codex Alimentarius Commission and Food Safety Authority of Ireland (FSAI) limits for ready-to-eat food products. Eight key pathogenic bacteria responsible for foodborne diseases were detected and these isolates were characterized as Bacillus cereus, Hafnia alvei, Serratia marcescens, Staphylococcus aureus, S. xylosus, S. scuiri, S. haemolyticus, and Pseudomonas aeruginosa. Findings from this study highlight the urgent need to create local and national food safety policies for the edible grasshopper "nsenene" subsector to regulate and guide street and market vending along the value chain, to prevent the transmission of foodborne diseases to consumers.
Collapse
Affiliation(s)
- Loretta Mugo-Kamiri
- International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Department of Food Science Nutrition and Technology, Faculty of Agriculture, University of Nairobi, Nairobi, Kenya
| | - Jasper K. Imungi
- Department of Food Science Nutrition and Technology, Faculty of Agriculture, University of Nairobi, Nairobi, Kenya
| | - Lucy Njue
- Department of Food Science Nutrition and Technology, Faculty of Agriculture, University of Nairobi, Nairobi, Kenya
| | - Gracious Diiro
- International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | | | - Komivi S. Akutse
- International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tanga M. Chrysantus
- International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Fathiya M. Khamis
- International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Sevgan Subramanian
- International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| |
Collapse
|
3
|
Xie M, Zhu Y, Li Z, Yan Y, Liu Y, Wu W, Zhang T, Li Z, Wang H. Key steps for improving bacterial SERS signals in complex samples: Separation, recognition, detection, and analysis. Talanta 2024; 268:125281. [PMID: 37832450 DOI: 10.1016/j.talanta.2023.125281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Rapid and reliable detection of pathogenic bacteria is absolutely essential for research in environmental science, food quality, and medical diagnostics. Surface-enhanced Raman spectroscopy (SERS), as an emerging spectroscopic technique, has the advantages of high sensitivity, good selectivity, rapid detection speed, and portable operation, which has been broadly used in the detection of pathogenic bacteria in different kinds of complex samples. However, the SERS detection method is also challenging in dealing with the detection difficulties of bacterial samples in complex matrices, such as interference from complex matrices, confusion of similar bacteria, and complexity of data processing. Therefore, researchers have developed some technologies to assist in SERS detection of bacteria, including both the front-end process of obtaining bacterial sample data and the back-end data processing process. The review summarizes the key steps for improving bacterial SERS signals in complex samples: separation, recognition, detection, and analysis, highlighting the principles of each step and the key roles for SERS pathogenic bacteria analysis, and the interconnectivity between each step. In addition, the current challenges in the practical application of SERS technology and the development trends are discussed. The purpose of this review is to deepen researchers' understanding of the various stages of using SERS technology to detect bacteria in complex sample matrices, and help them find new breakthroughs in different stages to facilitate the detection and control of bacteria in complex samples.
Collapse
Affiliation(s)
- Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yiting Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zhiyao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Tong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
4
|
Gałęcki R, Bakuła T, Gołaszewski J. Foodborne Diseases in the Edible Insect Industry in Europe-New Challenges and Old Problems. Foods 2023; 12:770. [PMID: 36832845 PMCID: PMC9956073 DOI: 10.3390/foods12040770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Insects play a key role in European agroecosystems. Insects provide important ecosystem services and make a significant contribution to the food chain, sustainable agriculture, the farm-to-fork (F2F) strategy, and the European Green Deal. Edible insects are regarded as a sustainable alternative to livestock, but their microbiological safety for consumers has not yet been fully clarified. The aim of this article is to describe the role of edible insects in the F2F approach, to discuss the latest veterinary guidelines concerning consumption of insect-based foods, and to analyze the biological, chemical, and physical hazards associated with edible insect farming and processing. Five groups of biological risk factors, ten groups of chemical risk factors, and thirteen groups of physical risks factors have been identified and divided into sub-groups. The presented risk maps can facilitate identification of potential threats, such as foodborne pathogens in various insect species and insect-based foods. Ensuring safety of insect-based foods, including effective control of foodborne diseases, will be a significant milestone on the path to maintaining a sustainable food chain in line with the F2F strategy and EU policies. Edible insects constitute a new category of farmed animals and a novel link in the food chain, but their production poses the same problems and challenges that are encountered in conventional livestock rearing and meat production.
Collapse
Affiliation(s)
- Remigiusz Gałęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Janusz Gołaszewski
- Center for Bioeconomy and Renewable Energies, Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Cesaro C, Mannozzi C, Lepre A, Ferrocino I, Belleggia L, Corsi L, Ruschioni S, Isidoro N, Riolo P, Petruzzelli A, Savelli D, Milanović V, Cardinali F, Garofalo C, Cocolin L, Aquilanti L, Osimani A. Staphylococcus aureus artificially inoculated in mealworm larvae rearing chain for human consumption: Long-term investigation into survival and toxin production. Food Res Int 2022; 162:112083. [DOI: 10.1016/j.foodres.2022.112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
|
6
|
Sándor ZJ, Banjac V, Vidosavljević S, Káldy J, Egessa R, Lengyel-Kónya É, Tömösközi-Farkas R, Zalán Z, Adányi N, Libisch B, Biró J. Apparent Digestibility Coefficients of Black Soldier Fly ( Hermetia illucens), Yellow Mealworm ( Tenebrio molitor), and Blue Bottle Fly ( Calliphora vicina) Insects for Juvenile African Catfish Hybrids ( Clarias gariepinus × Heterobranchus longifilis). AQUACULTURE NUTRITION 2022; 2022:4717014. [PMID: 36860442 PMCID: PMC9973197 DOI: 10.1155/2022/4717014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/18/2023]
Abstract
A digestibility trial was conducted with African catfish hybrid juveniles in order to determine the apparent digestibility coefficients (ADCs) of different nutrients. The experimental diets contained defatted black soldier fly (BSL), yellow mealworm (MW), or fully fat blue bottle fly (BBF) meals, in a 70 : 30 ratio between the control diet and the tested insect meals. The indirect method for the digestibility study was performed using 0.1% yttrium oxide as an inert marker. Fish juveniles of 217.4 ± 9.5 g initial weight were distributed in 1 m3 tanks (75 fish/tank) of a recirculating aquaculture system (RAS), in triplicates, and fed until satiation for 18 days. The average final weight of the fish was 346 ± 35.8 g. The ADCs of the dry matter, protein, lipid, chitin, ash, phosphorus, amino acids, fatty acids, and gross energy for the test ingredients and diets were calculated. A six-month storage test was carried out to evaluate the shelf life of the experimental diets, while the peroxidation and microbiological status of the diets were also assessed. The ADC values of the test diets differed significantly (p < 0.001) compared to those of the control for most of the nutrients. Altogether, the BSL diet was significantly more digestible for protein, fat, ash, and phosphorus than the control diet but less digestible for essential amino acids. Significant differences were found between the ADCs of the different insect meals evaluated (p < 0.001) for practically all nutritional fractions analyzed. The African catfish hybrids were able to digest BSL and BBF more efficiently than MW, and the calculated ADC values agreed with those of other fish species. The lower ADCs of the tested MW meal correlated (p < 0.05) with the markedly higher acid detergent fiber (ADF) levels present in the MW meal and MW diet. Microbiological evaluation of the feeds revealed that mesophilic aerobic bacteria in the BSL feed were 2-3 orders of magnitude more abundant than those in the other diets and their numbers significantly increased during storage. Overall, BSL and BBF proved to be potential feed ingredients for African catfish juveniles and the shelf life of the produced diets with 30% inclusion of insect meal retained the required quality during a six-month period of storage.
Collapse
Affiliation(s)
- Zsuzsanna J. Sándor
- Research Centre for Aquaculture and Fisheries (HAKI), Hungarian University of Agriculture and Life Sciences, Anna liget u. 35, Szarvas, Hungary
| | - Vojislav Banjac
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara br. 1, Novi Sad, Serbia
| | - Strahinja Vidosavljević
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara br. 1, Novi Sad, Serbia
| | - Jenő Káldy
- Research Centre for Aquaculture and Fisheries (HAKI), Hungarian University of Agriculture and Life Sciences, Anna liget u. 35, Szarvas, Hungary
| | - Robert Egessa
- Doctoral School of Animal Husbandry Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- National Agricultural Research Organisation (NARO), Jinja, Uganda
| | - Éva Lengyel-Kónya
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Rita Tömösközi-Farkas
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Zsolt Zalán
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Nóra Adányi
- Research Group of Food Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, Budapest, Hungary
| | - Balázs Libisch
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Janka Biró
- Research Centre for Aquaculture and Fisheries (HAKI), Hungarian University of Agriculture and Life Sciences, Anna liget u. 35, Szarvas, Hungary
| |
Collapse
|
7
|
Delgado L, Garino C, Moreno FJ, Zagon J, Broll H. Sustainable Food Systems: EU Regulatory Framework and Contribution of Insects to the Farm-To-Fork Strategy. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lidia Delgado
- European Commission, Joint Research Center (JRC), Belgium
| | - Cristiano Garino
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Jutta Zagon
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Hermann Broll
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
8
|
Selaledi L, Mabelebele M. The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm ( Tenebrio molitor L.). INSECTS 2021; 12:insects12040333. [PMID: 33917808 PMCID: PMC8068098 DOI: 10.3390/insects12040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022]
Abstract
To preserve the quality of the yellow mealworm, different drying methods are being explored by farmers and processors. However, the energy costs associated with these methods are usually high for smallholder insect-rearing farmers. Thus, the core aim of this study was to investigate different drying procedures and their impact on the chemical composition of yellow mealworm larvae. Yellow mealworms (exposed to sun, oven and freeze drying) were later analyzed for their chemical composition and body color. Crude protein (CP) content of freeze and oven-dried mealworms were similar (p > 0.05), but higher (p < 0.05) than those of the sun-dried samples. The b (yellowness) color of the sun-dried samples scored the lowest value (p < 0.05) in comparison with both oven and freeze-dried samples. The majority of the essential amino acids were higher (p < 0.05) in the sun-dried mealworms than both oven and freeze-dried samples. Similarly, the fat content of sun-dried mealworms was higher (p < 0.05) than if they had been oven or freeze dried. However, SFA (saturated fatty acids), PUFA (polyunsaturated fatty acids) and n-6 fatty acids were similar (p > 0.05) for all drying methods. We, therefore, conclude that sun drying resulted in the same nutritional composition as freeze and oven drying despite the noted color changes. Freeze and oven-drying strategies can be used to formulate mealworm-based feed and food products without noticeable nutritional changes. For the benefit of small-scale insect-rearing farmers, an appropriate drying technology that is affordable and easy to use should be developed considering the needs and experiences of these farmers.
Collapse
Affiliation(s)
- Letlhogonolo Selaledi
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida Campus, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa;
- Department of Zoology and Entomology, Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida Campus, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa;
- Correspondence:
| |
Collapse
|
9
|
|
10
|
Microbial dynamics in rearing trials of Hermetia illucens larvae fed coffee silverskin and microalgae. Food Res Int 2020; 140:110028. [PMID: 33648256 DOI: 10.1016/j.foodres.2020.110028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/01/2023]
Abstract
In the present study, Hermetia illucens larvae were reared on a main rearing substrate composed of a coffee roasting byproduct (coffee silverskin, Cs) enriched with microalgae (Schizochytrium limacinum or Isochrysis galbana) at various substitution levels. The microbial diversity of the rearing substrates, larvae, and frass (excrement from the larvae mixed with the substrate residue) were studied by the combination of microbial culturing on various growth media and metataxonomic analysis (Illumina sequencing). High counts of total mesophilic aerobes, bacterial spores, presumptive lactic acid bacteria, coagulase-positive cocci, and eumycetes were detected. Enterobacteriaceae counts were low in the rearing diets, whereas higher counts of this microbial family were observed in the larvae and frass. The microbiota of the rearing substrates was characterized by the presence of lactic acid bacteria, including the genera Lactobacillus, Leuconostoc and Weissella. The microbiota of the H. illucens larvae fed Cs was characterized by the dominance of Paenibacillus. H. illucens fed diets containing I. galbana were characterized by the presence of Enterococcus, Lysinibacillus, Morganella, and Paenibacillus, depending on the algae inclusion level, while H. illucens fed diets containing S. limacinum were characterized by high relative abundances of Brevundimonas, Enterococcus, Paracoccus, and Paenibacillus, depending on the algae inclusion level. Brevundimonas and Alcaligenes dominated in the frass from larvae fed I. galbana; the predominance of Brevundimonas was also observed in the frass from larvae fed Schyzochitrium-enriched diets. Based on the results of the present study, an effect of algae nutrient bioactive substances (e.g. polysaccharides, high-unsaturated fatty acids, taurine, carotenoids) on the relative abundance of some of the bacterial taxa detected in larvae may be hypothesized, thus opening new intriguing perspectives for the control of the entomopathogenic species and foodborne human pathogens potentially occurring in edible insects. Further studies are needed to support this hypothesis. Finally, new information on the microbial diversity occurring in insect frass was also obtained.
Collapse
|
11
|
Kooh P, Jury V, Laurent S, Audiat-Perrin F, Sanaa M, Tesson V, Federighi M, Boué G. Control of Biological Hazards in Insect Processing: Application of HACCP Method for Yellow Mealworm ( Tenebrio molitor) Powders. Foods 2020; 9:E1528. [PMID: 33114308 PMCID: PMC7690899 DOI: 10.3390/foods9111528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022] Open
Abstract
Entomophagy has been part of human diets for a long time in a significant part of the world, but insects are considered to be a novel food everywhere else. It would appear to be a strategic alternative in the future of human diet to face the challenge of ensuring food security for a growing world population, using more environmentally sustainable production systems than those required for the rearing of other animals. Tenebrio molitor, called yellow mealworm, is one of the most interesting insect species in view of mass rearing, and can be processed into a powder that ensures a long shelf life for its use in many potential products. When considering insects as food or feed, it is necessary to guarantee their safety. Therefore, manufacturers must implement a Hazard Analysis Critical Control plan (HACCP), to limit risks for consumers' health. The aim of this case study was to develop a HACCP plan for Tenebrio molitor larvae powders for food in a risk-based approach to support their implementation in industry. Specific purposes were to identify related significant biological hazards and to assess the efficiency of different manufacturing process steps when used as Critical Control Points. Then, combinations of four different processes with four potential uses of powders by consumers in burger, protein shake, baby porridge, and biscuits were analyzed with regard to their safety.
Collapse
Affiliation(s)
- Pauline Kooh
- French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (P.K.); (F.A.-P.); (M.S.)
| | - Vanessa Jury
- Oniris, Université de Nantes, CNRS, GEPEA, UMR 6144 F-44000 Nantes, France; (V.J.); (S.L.)
| | - Sophie Laurent
- Oniris, Université de Nantes, CNRS, GEPEA, UMR 6144 F-44000 Nantes, France; (V.J.); (S.L.)
| | - Frédérique Audiat-Perrin
- French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (P.K.); (F.A.-P.); (M.S.)
| | - Moez Sanaa
- French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (P.K.); (F.A.-P.); (M.S.)
| | - Vincent Tesson
- INRAe, Oniris, Secalim UMR 1014, route de Gachet, CS 40706, 44307 Nantes, France; (V.T.); (M.F.)
| | - Michel Federighi
- INRAe, Oniris, Secalim UMR 1014, route de Gachet, CS 40706, 44307 Nantes, France; (V.T.); (M.F.)
| | - Géraldine Boué
- INRAe, Oniris, Secalim UMR 1014, route de Gachet, CS 40706, 44307 Nantes, France; (V.T.); (M.F.)
| |
Collapse
|
12
|
Cappelli A, Cini E, Lorini C, Oliva N, Bonaccorsi G. Insects as food: A review on risks assessments of Tenebrionidae and Gryllidae in relation to a first machines and plants development. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106877] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Mao X, Kusstatscher P, Li H, Chen X, Berg G, Yang M, Cernava T. Microbiome-Guided Exploration of the Microbial Assemblage of the Exotic Beverage "Insect Tea" Native to Southwestern China. Front Microbiol 2020; 10:3087. [PMID: 32063890 PMCID: PMC7000658 DOI: 10.3389/fmicb.2019.03087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
Insect tea is a unique beverage that is native to Southwestern China and traditionally produced by local farmers in an elaborate process. It consists of insect larvae excrements that are commonly obtained from meal moths (Pyralis farinalis Linnaeus 1758) reared on a specific plant-based diet. We have reconstructed the whole production process under laboratory conditions in order to obtain microbiome-level insights into this uncommon beverage and to trace back the origin of the prevalent bacteria in the final product. The bacterial community composition was specific for each production stage, with a high proportion of Streptomycetacea, Pseudonocaridaceae, Enterococcaceae, and Enterobacteriaceae in the insect tea. A large proportion of the constituents was traced back to the producing insect (13.2%) and its excrements (43.8%), while the initial plant-based substrate for tea production was found to contribute only 0.6% of the traceable bacteria in the final product. Moreover, an enrichment of Enterobactericeae was observed during the analyzed process steps and verified with complementary analyses. The cultivation experiments indicated a high occurrence of viable bacteria in the tea at 2.7 × 105 ± 1.2 × 105 cfu g-1. The isolated bacteria included Bordetella petrii and Enterococcus spp. that were recovered from a commercial product. By implementing an integrative approach, the insect tea was shown to harbor a species-rich bacterial community that can be traced back to certain plant and insect microbiome constituents from distinct production steps. Moreover, the microbial profile of the insect tea was found to be unique for a food product so far and contained several bacterial groups that are considered from the current perspective as food contaminants or yet unreported in other beverages. Due to the high number of viable bacteria, the tea harbors a so far undescribed dynamic component that might have implications for human health.
Collapse
Affiliation(s)
- Xin Mao
- College of Forestry, Guizhou University, Guiyang, China
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Haoxi Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Maofa Yang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Tomislav Cernava
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- College of Tobacco Science, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Osimani A, Milanović V, Roncolini A, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Olivotto I, Zarantoniello M, Cardinali F, Garofalo C, Aquilanti L, Clementi F. Hermetia illucens in diets for zebrafish (Danio rerio): A study of bacterial diversity by using PCR-DGGE and metagenomic sequencing. PLoS One 2019; 14:e0225956. [PMID: 31821372 PMCID: PMC6903733 DOI: 10.1371/journal.pone.0225956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022] Open
Abstract
In the present research, bacterial diversity was studied during a 6-month feeding trial utilizing zebrafish (Danio rerio) fed Hermetia illucens reared on different substrates with an emphasis on fish gut bacterial diversity. A polyphasic approach based on viable counting, PCR-DGGE and metagenomic 16S rRNA gene amplicon target sequencing was applied. Two different H. illucens groups were reared on coffee by-products (C) or a mixture of vegetables (S). Viable counts showed a wide variability based on substrate. PCR-DGGE and Illumina sequencing allowed the major and minor bacterial taxa to be detected. Both samples of larvae and their frass reared on the S substrate showed the highest richness and evenness of bacterial communities, whereas zebrafish (ZHC) fed H. illucens reared on substrate C and zebrafish (ZHS) fed H. illucens reared on substrate S had the lowest bacterial richness and evenness. A stimulating effect of bioactive compounds from coffee by-products on the occurrence of Lactobacillaceae and Leuconostoccaceae in H. illucens reared on substrate C has been hypothesized. Zebrafish gut samples originating from the two feeding trials showed complex microbial patterns in which Actinobacteria and Alteromonadales were always detected, irrespective of the diet used. Enterobacteriaceae in fish guts were more abundant in ZHS than in ZHC, thus suggesting an influence of the bioactive compounds (chlorogenic and caffeic acids) in the substrate on Enterobacteriaceae in fish guts. ZHC showed a higher abundance of Clostridia than did ZHS, which was likely explained by stimulating activity on the bacteria in this class by the bioactive compounds contained in H. illucens reared on substrate C. An influence of the microbiota of H. illucens or insect-derived bioactive compounds on the gut microbiota of zebrafish has been suggested. The presence of bacteria consistently associated with zebrafish guts has been found irrespective of the diet, thus attesting to the likely stability of the core fish microbiota.
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Roncolini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Franciosi
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Kieran Tuohy
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
15
|
|
16
|
Murefu T, Macheka L, Musundire R, Manditsera F. Safety of wild harvested and reared edible insects: A review. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res Int 2019; 125:108527. [PMID: 31554102 DOI: 10.1016/j.foodres.2019.108527] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/08/2023]
Abstract
Because of their positive nutritional characteristics and low environmental impact, edible insects might be considered a 'food of the future'. However, there are safety concerns associated with the consumption of insects, such as contaminating chemical and biological agents. The possible presence of pathogenic and toxigenic microorganisms is one of the main biological hazards associated with edible insects. This review presents an overview of the microbiota of edible insects, highlighting the potential risks for human health. Detailed information on the microbiota of edible insects from literature published in 2000-2019 is presented. These data show complex ecosystems, with marked variations in microbial load and diversity, among edible insects as well as stable and species-specific microbiota for some of the most popular edible insect species, such as mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria). Raw edible insects generally contain high numbers of mesophilic aerobes, bacterial endospores or spore-forming bacteria, Enterobacteriaceae, lactic acid bacteria, psychrotrophic aerobes, and fungi, and potentially harmful species (i.e. pathogenic, mycotoxigenic, and spoilage microbes) may be present. Several studies have focused on reducing the microbial contamination of edible insects by applying treatments such as starvation, rinsing, thermal treatments, chilling, drying, fermentation, and marination, both alone and, sometimes, in combination. Although these studies show that various heat treatments were the most efficient methods for reducing microbial numbers, they also highlight the need for species-specific mitigation strategies. The feasibility of using edible insects as ingredients in the food industry in the development of innovative insect-based products has been explored; although, in some cases, the presence of spore-forming bacteria and other food-borne pathogens is a concern. Recent studies have shown that a risk assessment of edible insects should also include an evaluation of the incidence of antibiotic-resistance (AR) genes and antibiotic-resistant microorganisms in the production chain. Finally, as proposed in the literature, microbial hazards should be limited through the implementation of good hygienic practices during rearing, handling, processing, and storage, as well as the implementation of an appropriate HACCP system for edible insect supply chains. Another issue frequently reported in the literature is the need for a legislative framework for edible insect production, commercialisation, and trading, as well as the need for microbiological criteria specifically tailored for edible insects. Microbiological criteria like those already been established for the food safety and hygiene (e.g. those in the European Union food law) of different food categories (e.g. ready-to-eat products) could be applied to edible insect-based products.
Collapse
|
18
|
Cappellozza S, Leonardi MG, Savoldelli S, Carminati D, Rizzolo A, Cortellino G, Terova G, Moretto E, Badaile A, Concheri G, Saviane A, Bruno D, Bonelli M, Caccia S, Casartelli M, Tettamanti G. A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals (Basel) 2019; 9:ani9050278. [PMID: 31137732 PMCID: PMC6562786 DOI: 10.3390/ani9050278] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Protein production for animal husbandry is a crucial ecological problem because of its impact on the environment, as it requires water, energy, and land. These resources are limited and not reusable. In this study, we obtained a continuously regenerating system in which by-products of a process constituted rough material for another one. Leftovers from fruit and vegetable markets were employed as rearing substrate for insects (Black Soldier Fly). Insect biomass was transformed into meal and oil for fish feeding and food/pharmaceutical industry, respectively. The residuals from insect rearing were then used as substrate to grow earthworms, which transformed this material into compost for plants. Therefore, we returned to the starting point of our economic and ecological closed loop, i.e., to soil improvers (nutrient material) for fruit and vegetable production. Moreover, earthworms can be conveniently employed as fishing bites. We also studied a series of physiological parameters of the living organisms involved in this system to verify their health conditions (insects), and growth performances (insects and fish). Microbiological analyses of insects, rearing substrate, and insect meal were conducted to assess their safety for fish and humans. Related technological processes, such as insects drying, grinding, and oil extraction, were also tested. Abstract The worldwide growing consumption of proteins to feed humans and animals has drawn a considerable amount of attention to insect rearing. Insects reared on organic wastes and used as feed for monogastric animals can reduce the environmental impact and increase the sustainability of meat/fish production. In this study, we designed an environmentally closed loop for food supply in which fruit and vegetable waste from markets became rearing substrate for Hermetia illucens (BSF— black soldier fly). A vegetable and fruit-based substrate was compared to a standard diet for Diptera in terms of larval growth, waste reduction index, and overall substrate degradation. Morphological analysis of insect organs was carried out to obtain indications about insect health. Processing steps such as drying and oil extraction from BSF were investigated. Nutritional and microbiological analyses confirmed the good quality of insects and meal. The meal was then used to produce fish feed and its suitability to this purpose was assessed using trout. Earthworms were grown on leftovers of BSF rearing in comparison to a standard substrate. Chemical analyses of vermicompost were performed. The present research demonstrates that insects can be used to reduce organic waste, increasing at the same time the sustainability of aquaculture and creating interesting by-products through the linked bio-system establishment.
Collapse
Affiliation(s)
- Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padua, Italy.
| | - Maria Giovanna Leonardi
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Sara Savoldelli
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Domenico Carminati
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy.
| | - Anna Rizzolo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milan, Italy.
| | - Giovanna Cortellino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milan, Italy.
| | - Genciana Terova
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, 21100 Varese, Italy.
| | - Enzo Moretto
- Museo Vivente degli Insetti "Esapolis"- Butterfly Arc, 35143, Padua, Italy.
| | - Andrea Badaile
- Museo Vivente degli Insetti "Esapolis"- Butterfly Arc, 35143, Padua, Italy.
| | - Giuseppe Concheri
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente (DAFNAE), Università degli Studi di Padova, 35020, Legnaro (Pd), Italy.
| | - Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padua, Italy.
| | - Daniele Bruno
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, 21100 Varese, Italy.
| | - Marco Bonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Silvia Caccia
- Dipartimento di Agraria, Università degli Studi di Napoli, Federico II, 80055 Naples, Italy.
| | - Morena Casartelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Gianluca Tettamanti
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, 21100 Varese, Italy.
| |
Collapse
|
19
|
Roncolini A, Milanović V, Cardinali F, Osimani A, Garofalo C, Sabbatini R, Clementi F, Pasquini M, Mozzon M, Foligni R, Raffaelli N, Zamporlini F, Minazzato G, Trombetta MF, Van Buitenen A, Van Campenhout L, Aquilanti L. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS One 2019; 14:e0211747. [PMID: 30707742 PMCID: PMC6358109 DOI: 10.1371/journal.pone.0211747] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
In the present study, inclusion of mealworm (Tenebrio molitor L.) powder into bread doughs at 5 and 10% substitution level of soft wheat (Triticum aestivum L.) flour was tested to produce protein fortified breads. The addition of mealworm powder (MP) did not negatively affect the technological features of either doughs or breads. All the tested doughs showed the same leavening ability, whereas breads containing 5% MP showed the highest specific volume and the lowest firmness. An enrichment in protein content was observed in experimental breads where the highest values for this parameter were recorded in breads containing 10% MP. Breads fortified with 10% MP also exhibited a significant increase in the content of free amino acids, and especially in the following essential amino acids: tyrosine, methionine, isoleucine, and leucine. By contrast, no differences in nutritional quality of lipids were seen between fortified and control breads. Results of sensory analyses revealed that protein fortification of bread with MP significantly affected bread texture and overall liking, as well as crust colour, depending on the substitution level. Overall, proof of concept was provided for the inclusion of MP into bread doughs started with different leavening agents (sourdough and/or baker’s yeast), at 5 or 10% substitution level of soft wheat flour. Based on the Technology Readiness Level (TRL) scale, the proposed bread making technology can be situated at level 4 (validation in laboratory environment), thus suggesting that the production of breads with MP might easily be scaled up at industrial level. However, potential spoilage and safety issues that need to be further considered were highlighted.
Collapse
Affiliation(s)
- Andrea Roncolini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
- * E-mail: (AO); (LA)
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Riccardo Sabbatini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Massimo Mozzon
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Nadia Raffaelli
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Federica Zamporlini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Gabriele Minazzato
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Maria Federica Trombetta
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Anse Van Buitenen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Faculty of Engineering Technology, Lab4Food, Technology Campus Geel, Geel, Belgium
- KU Leuven, Leuven Food Science and Nutrition Rese Centre (LFoRCe), Leuven, Belgium
| | - Leen Van Campenhout
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Faculty of Engineering Technology, Lab4Food, Technology Campus Geel, Geel, Belgium
- KU Leuven, Leuven Food Science and Nutrition Rese Centre (LFoRCe), Leuven, Belgium
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
- * E-mail: (AO); (LA)
| |
Collapse
|
20
|
Welfare Dilemmas Created by Keeping Insects in Captivity. Anim Welf 2019. [DOI: 10.1007/978-3-030-13947-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Kooh P, Ververis E, Tesson V, Boué G, Federighi M. Entomophagy and Public Health: A Review of Microbiological Hazards. Health (London) 2019. [DOI: 10.4236/health.2019.1110098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Ruschioni S, Riolo P, Isidoro N, Loreto N, Galarini R, Moretti S, Petruzzelli A, Micci E, Tonucci F, Aquilanti L. Distribution of Transferable Antibiotic Resistance Genes in Laboratory-Reared Edible Mealworms ( Tenebrio molitor L.). Front Microbiol 2018; 9:2702. [PMID: 30510544 PMCID: PMC6252353 DOI: 10.3389/fmicb.2018.02702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/23/2018] [Indexed: 11/25/2022] Open
Abstract
In the present study, the distribution of antibiotic resistance genes in laboratory-reared fresh mealworm larvae (Tenebrio molitor L.), their feeding substrates (carrots and wheatmeal), and frass was assessed. Microbial counts on selective media added with antibiotics highlighted the presence of lactic acid bacteria resistant to ampicillin and vancomycin and, more specifically, enterococci resistant to the latter antibiotic. Moreover, staphylococci resistant to gentamicin, erythromycin, tetracycline, and vancomycin were detected. Enterobacteriaceae resistant to ampicillin and gentamicin were also found, together with Pseudomonadaceae resistant to gentamicin. Some of the genes coding for resistance to macrolide-lincosamide-streptogramin B (MLSB) [erm(A), erm(C)], vancomycin [vanA, vanB], tetracycline [tet(O)], and β-lactams [mecA and blaZ] were absent in all of the samples. For the feeding substrates, organic wheatmeal was positive for tet(S) and tet(K), whereas no AR genes were detected in organic carrots. The genes tet(M), tet(K), and tet(S) were detected in both mealworms and frass, whereas gene aac-aph, coding for resistance to amynoglicosides was exclusively detected in frass. No residues for any of the 64 antibiotics belonging to 10 different drug classes were found in either the organic wheatmeal or carrots. Based on the overall results, the contribution of feed to the occurrence of antibiotic resistance (AR) genes and/or antibiotic-resistant microorganisms in mealworm larvae was hypothesized together with vertical transmission via insect egg smearing.
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, Pesaro, Italy
| | - Eleonora Micci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, Pesaro, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, Pesaro, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
23
|
Séré A, Bougma A, Ouilly JT, Traoré M, Sangaré H, Lykke AM, Ouédraogo A, Gnankiné O, Bassolé IHN. Traditional knowledge regarding edible insects in Burkina Faso. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2018; 14:59. [PMID: 30217159 PMCID: PMC6137937 DOI: 10.1186/s13002-018-0258-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/29/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Insects play an important role as a diet supplement in Burkina Faso, but the preferred insect species vary according to the phytogeographical zone, ethnic groups, and gender. The present study aims at documenting indigenous knowledge on edible insects in Burkina Faso. METHODS A structured ethno-sociological survey was conducted with 360 informants in nine villages located in two phytogeographical zones of Burkina Faso. Identification of the insects was done according to the classification of Scholtz. Chi-square tests and principal component analysis were performed to test for significant differences in edible insect species preferences among phytogeographical zones, villages, ethnic groups, and gender. RESULTS Edible insects were available at different times of the year. They were collected by hand picking, digging in the soil, and luring them into water traps. The edible insects collected were consumed fried, roasted, or grilled. All species were indifferently consumed by children, women, and men without regard to their ages. A total of seven edible insect species belonging to five orders were cited in the Sudanian zone of Burkina Faso. Macrotermes subhyalinus (Rambur), Cirina butyrospermi (Vuillet, 1911), Kraussaria angulifera (Krauss, 1877), Gryllus campestris (Linnaeus, 1758), and Carbula marginella (Thunberg) (35.66-8.47% of the citations) were most cited whereas Rhynchophorus phoenicis (Fabricius, 1801) and Oryctes sp. (3.41-0.27%) were least cited. Cirina butyrospermi was most cited in the South Sudanian zone, whereas Macrotermes subhyalinus and Kraussaria angulifera were most cited in the North Sudanian zone but were cited in all nine villages. Cirina butyrospermi was preferred by Bobo, Guin, Sambla, Senoufo, and Turka ethnic groups whereas Macrotermes subhyalinus was preferred by Fulani, Mossi, and Toussian ethnic groups. Oryctes sp. was cited only by the Toussian. CONCLUSION A diversity of edible insects was consumed in both the South and North Sudanian zone of Burkina Faso with significant differences in species preferences according to phytogeographical zones, villages, ethnic groups, and gender.
Collapse
Affiliation(s)
- Aminata Séré
- Département de Biochimie Microbiologie, Université Ouaga I Professeur Joseph KI-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Adjima Bougma
- Département de Biochimie Microbiologie, Université Ouaga I Professeur Joseph KI-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Judicaël Thomas Ouilly
- Département de Biochimie Microbiologie, Université Ouaga I Professeur Joseph KI-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Mamadou Traoré
- Département Productions Forestières, Institut de l’Environnement et de Recherches Agricoles (INERA), 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Hassane Sangaré
- Département de Biochimie Microbiologie, Université Ouaga I Professeur Joseph KI-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Anne Mette Lykke
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Amadé Ouédraogo
- Département de biologie et physiologie végétale, Université Ouaga I Professeur Joseph KI-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Olivier Gnankiné
- Département de biologie et physiologie animales, Université Ouaga I Professeur Joseph KI-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Imaël Henri Nestor Bassolé
- Département de Biochimie Microbiologie, Université Ouaga I Professeur Joseph KI-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
24
|
Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.06.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Grabowski NT, Franco Olivas J, Galván Lozano D, Kehrenberg C, Aguilar DG. Assessment of pasteurisation of edible insects using enzymatic tests (activity of alkaline phosphatase and lactoperoxidase) applied in dairy products. FOOD SCI TECHNOL INT 2018; 24:699-704. [PMID: 30019591 DOI: 10.1177/1082013218789815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrialising edible insects goes along with quality control and hazard analysis and critical control points. One of those steps is assessing heat treatment. For the present contribution, the potential of enzymatic heat assessment tests used in the dairy industry (alkaline phosphatase and lactoperoxidase) to detect heat treatment in several insect species ( Acheta domesticus, Gryllus assimilis, Gryllus bimaculatus, Locusta migratoria, Schistocerca gregaria, Chilecomadia moorei, Galleria mellonella, Bombyx mori, Pachnoda marginata, Tenebrio molitor, Zophobas atratus, Apis mellifera, and Hermetia illucens) was evaluated. Insect material was homogenised, diluted, and the enzymatic tests (Lactognost®, Peroxtesmo®) were carried with these liquids as if they were milk. All species but C. moorei, B. mori, P. marginata, and A. mellifera showed alkaline phosphatase activity in raw samples and none in heated (10 min at 100 ℃) ones, while only G. mellonella, T. molitor, and Z. atratus reacted accordingly with lactoperoxidase. In trial 2 focusing only on alkaline phosphatase activity, inactivation of the enzyme after 5, 10, and 15 min of heating occurred species specific within a range of 60-86 ℃, i.e. within ordinary pasteurisation schemes. Thus and for the time being, heat treatment in many edible insect species can be assessed using alkaline phosphatase activity test kits. In contrast to milk samples, positive results may display bluish or greenish colours, and the time until a reliable reading is possible is extended to 1-1.5 h (24 h in the case of Gryllidae).
Collapse
Affiliation(s)
- N T Grabowski
- 1 Institute for Food Quality and Food Safety (LMQS), University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - D Galván Lozano
- 3 Department of Public Health, University Centre for Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan, Mexico
| | - C Kehrenberg
- 1 Institute for Food Quality and Food Safety (LMQS), University of Veterinary Medicine Hannover, Hannover, Germany
| | - D González Aguilar
- 3 Department of Public Health, University Centre for Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan, Mexico
| |
Collapse
|
26
|
Osimani A, Milanović V, Garofalo C, Cardinali F, Roncolini A, Sabbatini R, De Filippis F, Ercolini D, Gabucci C, Petruzzelli A, Tonucci F, Clementi F, Aquilanti L. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. Int J Food Microbiol 2018; 276:54-62. [DOI: 10.1016/j.ijfoodmicro.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
|
27
|
Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Pasquini M, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Petruzzelli A, Foglini M, Gabucci C, Tonucci F, Aquilanti L. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Int J Food Microbiol 2018. [PMID: 29525619 DOI: 10.1016/j.ijfoodmicro.2018.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens known to be associated with this insect species should be carefully assessed in order to reduce the minimum risk for consumers, by identifying the most opportune processing methods (e.g., boiling, frying, drying, etc.).
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Franciosi
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Kieran Tuohy
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Martina Foglini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
28
|
Fraqueza MJR, Patarata LADSC. Constraints of HACCP Application on Edible Insect for Food and Feed. FUTURE FOODS 2017. [DOI: 10.5772/intechopen.69300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|