1
|
Akbulut M, Çoklar H, Bulut AN, Hosseini SR. Evaluation of black grape pomace, a fruit juice by-product, in shalgam juice production: Effect on phenolic compounds, anthocyanins, resveratrol, tannin, and in vitro antioxidant activity. Food Sci Nutr 2024; 12:4372-4384. [PMID: 38873455 PMCID: PMC11167193 DOI: 10.1002/fsn3.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
The aims of this research were to investigate the usability of black grape pomace in the production of shalgam juice, which is a traditional fermented Turkish beverage, to transform the pomace into the high value-added product and to enrich the shalgam juice with phenolic compounds. Black grape pomace and black carrot were used as the sources of polyphenols and five different formulations were obtained according to the amounts of black carrot and black grape pomace. During the fermentation, the samples were taken at different periods and analyzed for anthocyanins, phenolic compounds, antioxidant activity, and tannin content. Gentisic, caffeic, ferulic, coumaric, and chlorogenic acids, catechin, glucosides of kaemferol and isorhamnetin, resveratrol, rutin, cyanidin-3-xylosylglucosylgalactoside, cyanidin-3-xylosylgalactoside, cyanidin-3-xylosylglucosylgalactoside acylated with sinapic acid, ferulic acid, or coumaric acid, and glucosides of cyanidin, petunidin, and malvidin were identified in the shalgam juices that contained both black grape pomace and black carrot in their formulation. Some of these polyphenols were not detected detect in the shalgam juices that were produced from only the black carrot or black grape pomace. During the fermentation, a decrease in the amount of anthocyanins originated from black carrots and an increase in the amount of anthocyanins orginated from black grape pomace were determined. Black grape pomace addition to the formulation before the fermentation caused an increase in the amount of tannin in the shalgam juice samples. Consequently, it is thought that black grape pomace can be fruitfully evaluated in shalgam juice production and can be enhanced by polyphenolic profile of shalgam juice.
Collapse
Affiliation(s)
- Mehmet Akbulut
- Department of Food Engineering, Agriculture FacultySelcuk UniversityKonyaTurkey
| | - Hacer Çoklar
- Department of Food Engineering, Agriculture FacultySelcuk UniversityKonyaTurkey
| | - Ayşe Nur Bulut
- Department of Food Engineering, Akşehir Faculty of Engineering and ArchitectureSelcuk UniversityKonyaTurkey
| | - Said Reza Hosseini
- Department of Food Engineering, Agriculture FacultySelcuk UniversityKonyaTurkey
| |
Collapse
|
2
|
Choi D, Im HB, Choi SJ, Han D. Safety classification of herbal medicine use among hypertensive patients: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1321523. [PMID: 38881876 PMCID: PMC11176523 DOI: 10.3389/fphar.2024.1321523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of herbal medicines (HMs) for the treatment of hypertension (HTN) is increasing globally, but research on the potential adverse effects and safety of HMs in HTN patients is limited. Therefore, this systematic review and meta-analysis aim to determine the global prevalence of HM usage among HTN patients and assess the safety of identified herbs based on current scientific evidence. Methods The PubMed/MEDLINE, EMBASE (Ovid), and Cumulated Index to Nursing and Allied Health Literature (CINAHL) databases were searched for cross-sectional studies on the use of HM among HTN patients. Our review includes studies published in English up to the year 2023. After extracting and appraising the data from the studies, a meta-analysis was conducted using the Stata version 16.0 to estimate the pooled prevalence of HM use in patients with HTN (PROSPERO: CRD42023405537). The safety classification of the identified HM was done based on the existing scientific literature. Results This study analyzed 37 cross-sectional studies from 21 countries and found that 37.8% of HTN patients used HM to manage their health. The prevalence of HM use varied significantly based on publication year and geographical region. Among the 71 identified herbs, Allium sativum L., Hibiscus sabdariffa L., and Olea europaea L. were the most commonly used. However, four herbs were identified as contraindicated, 50 herbs required caution, and only 11 herbs were considered safe for use. Conclusion The study highlights the potential risks of toxicities and adverse effects associated with HM use in the treatment of HTN. Ensuring patient safety involves using safe HMs in appropriate doses and avoiding contraindicated HMs. Future research should focus on identifying commonly used herbs, especially in resource-limited countries with poor HTN management, and additional clinical research is required to assess the toxicity and safety of commonly used HMs.
Collapse
Affiliation(s)
- Dain Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Hyea Bin Im
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Soo Jeung Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Dongwoon Han
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Ordóñez-Díaz JL, Velasco-Ruiz I, Velasco-Tejero C, Pereira-Caro G, Moreno-Rojas JM. Seasonal and Morphology Effects on Bioactive Compounds, Antioxidant Capacity, and Sugars Profile of Black Carrot ( Daucus carota ssp. sativus var. atrorubens Alef.). Foods 2024; 13:1575. [PMID: 38790875 PMCID: PMC11121725 DOI: 10.3390/foods13101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local variety characterized by a black/purple core, which differs from other black carrot varieties. Therefore, this autochthonous variety was characterized according to the root size and the harvesting season by means of a study of its antioxidant capacity analyzed by three methods, its total carotenoids content, and its sugars and phenolic compounds profile by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-MS). A total of 20 polyphenolic compounds were quantified in 144 samples analyzed. The anthocyanidins group was observed to be the most abundant, followed by the hydroxycinnamic acids group. Moreover, pelargonidin 3-sambubioside was observed in black carrot for the first time. The medium-sized carrots presented the highest content of phenolic compounds, largely due to their significantly higher anthocyanidins content. Comparatively, the small carrots showed a higher content of simple sugars than the large ones. Regarding the influence of season, significantly higher quantities of glucose and fructose were observed in the late-season carrots, while sucrose was the main sugar in early-season samples. No significant differences were observed in the total carotenoid content of black carrot.
Collapse
Affiliation(s)
- José Luis Ordóñez-Díaz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| | - Isabel Velasco-Ruiz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-Anexo Universidad de Córdoba, 14071 Córdoba, Spain
| | - Cristina Velasco-Tejero
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (J.L.O.-D.); (G.P.-C.)
| |
Collapse
|
4
|
Godyla-Jabłoński M, Raczkowska E, Jodkowska A, Kucharska AZ, Sozański T, Bronkowska M. Effects of Anthocyanins on Components of Metabolic Syndrome-A Review. Nutrients 2024; 16:1103. [PMID: 38674794 PMCID: PMC11054851 DOI: 10.3390/nu16081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a significant health problem. The co-occurrence of obesity, carbohydrate metabolism disorders, hypertension and atherogenic dyslipidaemia is estimated to affect 20-30% of adults worldwide. Researchers are seeking solutions to prevent and treat the conditions related to MetS. Preventive medicine, which focuses on modifiable cardiovascular risk factors, including diet, plays a special role. A diet rich in fruits and vegetables has documented health benefits, mainly due to the polyphenolic compounds it contains. Anthocyanins represent a major group of polyphenols; they exhibit anti-atherosclerotic, antihypertensive, antithrombotic, anti-inflammatory and anticancer activities, as well as beneficial effects on endothelial function and oxidative stress. This review presents recent reports on the mechanisms involved in the protective effects of anthocyanins on the body, especially among people with MetS. It includes epidemiological data, in vivo and in vitro preclinical studies and clinical observational studies. Anthocyanins are effective, widely available compounds that can be used in both the prevention and treatment of MetS and its complications. Increased consumption of anthocyanin-rich foods may contribute to the maintenance of normal body weight and modulation of the lipid profile in adults. However, further investigation is needed to confirm the beneficial effects of anthocyanins on serum glucose levels, improvement in insulin sensitivity and reduction in systolic and diastolic blood pressure.
Collapse
Affiliation(s)
- Michaela Godyla-Jabłoński
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Anna Jodkowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Alicja Zofia Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Monika Bronkowska
- Institute of Health Sciences—Collegium Salutis Humanae, University of Opole, Katowicka 68, 45-060 Opole, Poland;
| |
Collapse
|
5
|
Stoica F, Rațu RN, Motrescu I, Cara IG, Filip M, Țopa D, Jităreanu G. Application of Pomace Powder of Black Carrot as a Natural Food Ingredient in Yoghurt. Foods 2024; 13:1130. [PMID: 38611434 PMCID: PMC11011250 DOI: 10.3390/foods13071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Researchers and food manufacturers are investigating the use of fruit and vegetable by-products as nutrient-dense food ingredients in response to increasing consumer requests for healthier and more natural foods. Black carrot (Daucus carota L.), a root vegetable variety of deep purple carrot, is a valuable source of nutrients with excellent health benefits and nutraceutical effects. Black carrot pomace (BCP), a by-product of industrial juice extraction, is abundant in bioactive compounds, dietary fiber, antioxidants, and pigments such as anthocyanins. Value addition and sustainability are perspectives provided by using this underutilized agricultural by-product in food applications. With an emphasis on BCP powder's effects on phytochemical and physicochemical qualities, mineral and color characteristics, and sensory aspects, this study aims to assess the effects of adding BCP powder to yogurt formulations. The findings show that the addition of BCP powder improved the nutritional, and the color of the yogurts, providing a visually appealing product. Moreover, adding the BCP powder raised the amount of phytochemicals and the antioxidant activity in the final product's formulation. The manufacturing of such products can not only aid in promoting sustainable food production but also offer consumers a wider range of innovative food options with improved properties.
Collapse
Affiliation(s)
- Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (F.S.); (D.Ț.); (G.J.)
| | - Roxana Nicoleta Rațu
- Department of Food Technologies, Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Iuliana Motrescu
- Department of Exact Sciences, Faculty of Horticulture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Irina Gabriela Cara
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Manuela Filip
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Denis Țopa
- Department of Pedotechnics, Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (F.S.); (D.Ț.); (G.J.)
| | - Gerard Jităreanu
- Department of Pedotechnics, Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (F.S.); (D.Ț.); (G.J.)
| |
Collapse
|
6
|
Thakur P, Anika, Suhag R, Dhiman A, Kumar S. Insights into the current status of bioactive value, postharvest processing opportunities and value addition of black carrot. Food Sci Biotechnol 2024; 33:721-747. [PMID: 38371691 PMCID: PMC10866833 DOI: 10.1007/s10068-023-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 02/20/2024] Open
Abstract
Black carrots are a type of carrot that is naturally dark purple or black in color. They are a good source of antioxidants, vitamins, and minerals, and have been shown to have several health benefits, including reducing the risk of cancer, heart disease, and diabetes. This review article discusses the bioactive compounds present in black carrot, including anthocyanins, phenolic acids, carotenoids, and organic acids and sugars. It also compares the bioactive compounds and antioxidant capacity of black carrot with other carrot varieties. Furthermore, it discusses various postharvest processing methods, both conventional and novel, such as encapsulation, drying, and microbial decontamination, highlighting their effects on preserving and stabilizing the bioactive compounds. The review also emphasizes the incorporation of black carrot into different food products, including dairy items, beverages, and baked goods, and their impact on nutritional enhancement. The article provides knowledge on utilizing black carrot for improved nutritional and functional outcomes.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Anika
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Atul Dhiman
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Satish Kumar
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| |
Collapse
|
7
|
Pandey P, Grover K, Dhillon TS, Chawla N, Kaur A. Development and quality evaluation of polyphenols enriched black carrot (Daucus carota L.) powder incorporated bread. Heliyon 2024; 10:e25109. [PMID: 38322869 PMCID: PMC10844063 DOI: 10.1016/j.heliyon.2024.e25109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Black carrot is a prominent source of polyphenols and the cheapest source of anthocyanins in India. In this study, an attempt has been made to examine the feasibility of black carrot powder as an ingredient in bread. Black carrot bread was prepared by incorporating different concentrations of black carrot powder (BCP) at 2.5, 5.0, 7.5 and 10 %. The developed bread samples were analyzed for physical and textural quality, proximate composition, bioactive compounds, antioxidant properties, sensory characteristics, mineral content and storage quality. The results revealed that loaf volume and specific volume decreased (1995-1254 mL, 5.25-3.28 mL/g) with the incorporation of BCP into bread. Textural analysis revealed that the addition of BCP led to increased hardness in the bread (0.110-12 0.151 N), whereas the resilience (43.64-35.10 %), cohesion and springiness (89.930-13 82.146 %) decreased significantly. The content of bioactive compounds such as total phenols, anthocyanins (29.63-112.68 mg/100 g) and flavonoids increased to exceptionally high levels in BCP-incorporated bread and showed high antioxidant activity. Incorporation of BCP up to 7.5 % showed the most acceptable sensory analysis score (7.85) with a significant increase in dietary fiber (40 %) and total mineral content (50 %), which revealed that black carrot powder could be used up to 7.5 % as an ingredient into bread with high acceptability. The present study revealed significant enhancement in bioactive compounds and mineral content of bread after the incorporation of black carrot powder, which supports its immense potential in preventing hunger and oxidative stress-induced disorders in developing countries.
Collapse
Affiliation(s)
- Pragya Pandey
- Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, 224229, India
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kiran Grover
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Tarsem Singh Dhillon
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Neena Chawla
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
8
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
9
|
Dinis K, Tsamba L, Jamin E, Camel V. Untargeted metabolomics-based approach using UHPLC-HRMS to authenticate carrots (Daucus carota L.) based on geographical origin and production mode. Food Chem 2023; 423:136273. [PMID: 37209545 DOI: 10.1016/j.foodchem.2023.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Carrots produced in different agricultural regions with organic or conventional mode were analyzed by untargeted UHPLC-HRMS using reversed-phase and HILIC modes. Data were first treated separately, and further combined to possibly improve results. An in-house data processing workflow was applied to identify relevant features after peak detection. Based on these features, discrimination models were built using chemometrics. A tentative annotation of chemical markers was performed using online databases and UHPLC-HRMS/MS analyses. An independent set of samples was analyzed to assess the discrimination potential of these markers. Carrots produced in the New Aquitaine region could be successfully discriminated from carrots originating from the Normandy region by an OLPS-DA model. Arginine and 6-methoxymellein could be identified as potential markers with the C18-silica column. Additional markers (N-acetylputrescine, l-carnitine) could be identified thanks to the polar column. Discrimination based on production mode was more challenging: some trend was observed but model metrics remained unsatisfactory.
Collapse
Affiliation(s)
- Katy Dinis
- Eurofins Analytics France, 9 rue Pierre Adolphe Bobierre, B.P. 42301, F-44323 Nantes Cedex 3, France; Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | - Lucie Tsamba
- Eurofins Analytics France, 9 rue Pierre Adolphe Bobierre, B.P. 42301, F-44323 Nantes Cedex 3, France
| | - Eric Jamin
- Eurofins Analytics France, 9 rue Pierre Adolphe Bobierre, B.P. 42301, F-44323 Nantes Cedex 3, France
| | - Valérie Camel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France.
| |
Collapse
|
10
|
Pérez MB, Carvajal S, Beretta V, Bannoud F, Fangio MF, Berli F, Fontana A, Salomón MV, Gonzalez R, Valerga L, Altamirano JC, Yildiz M, Iorizzo M, Simon PW, Cavagnaro PF. Characterization of Purple Carrot Germplasm for Antioxidant Capacity and Root Concentration of Anthocyanins, Phenolics, and Carotenoids. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091796. [PMID: 37176853 PMCID: PMC10181440 DOI: 10.3390/plants12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The present study characterized a genetically and phenotypically diverse collection of 27 purple and two non-purple (one orange and one yellow) carrot accessions for concentration of root anthocyanins, phenolics, and carotenoids, and antioxidant capacity estimated by four different methods (ORAC, DPPH, ABTS, FRAP), in a partially replicated experimental design comprising data from two growing seasons (2018 and 2019). Broad and significant (p < 0.0001) variation was found among the accessions for all the traits. Acylated anthocyanins (AA) predominated over non-acylated anthocyanins (NAA) in all the accessions and years analyzed, with AA accounting for 55.5-100% of the total anthocyanin content (TAC). Anthocyanins acylated with ferulic acid and coumaric acid were the most abundant carrot anthocyanins. In general, black or solid purple carrots had the greatest TAC and total phenolic content (TPC), and the strongest antioxidant capacities, measured by all methods. Antioxidant capacity, estimated by all methods, was significantly, positively, and moderately-to-strongly correlated with the content of all individual anthocyanins pigments, TAC, and TPC, in both years (r = 0.59-0.90, p < 0.0001), but not with the carotenoid pigments lutein and β-carotene; suggesting that anthocyanins and other phenolics, but not carotenoids, are major contributors of the antioxidant capacity in purple carrots. We identified accessions with high concentration of chemically stable AA, with potential value for the production of food dyes, and accessions with relatively high content of bioavailable NAA that can be selected for increased nutraceutical value (e.g., for fresh consumption).
Collapse
Affiliation(s)
- María Belén Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1425, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, Ex Ruta 40 km 96, La Consulta M5567, Argentina
| | - Sofía Carvajal
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1425, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, Ex Ruta 40 km 96, La Consulta M5567, Argentina
| | - Vanesa Beretta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1425, Argentina
| | - Florencia Bannoud
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1425, Argentina
| | - María Florencia Fangio
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Físicas de Mar del Plata, Universidad Nacional de Mar del Plata (CONICET-UNMDP), Mar del Plata B7602, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria M5528, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria M5528, Argentina
| | - María Victoria Salomón
- Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria M5528, Argentina
| | - Roxana Gonzalez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, Ex Ruta 40 km 96, La Consulta M5567, Argentina
| | - Lucia Valerga
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1425, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, Ex Ruta 40 km 96, La Consulta M5567, Argentina
| | - Jorgelina C Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, CONICET-UNCuyo-Gobierno de Mendoza), Av. Ruiz Leal s/n, Parque General San Martín, Mendoza M5500, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza M5500, Argentina
| | - Mehtap Yildiz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yüzüncü Yıl University, 65080 Van, Turkey
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, 2721 Founders Drive, Raleigh, NC 27695, USA
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Philipp W Simon
- Department of Horticulture, University of Wisconsin-Madison, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI 53706, USA
| | - Pablo F Cavagnaro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1425, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, Ex Ruta 40 km 96, La Consulta M5567, Argentina
- Instituto de Horticultura, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria M5528, Argentina
| |
Collapse
|
11
|
Bao S, Yin D, Zhao Q, Zhou Y, Hu Y, Sun X, Liu X, Ma T. Comprehensive evaluation of the effect of five sterilization methods on the quality of black carrot juice based on PCA, TOPSIS and GRA models. Food Chem X 2023; 17:100604. [PMID: 36974191 PMCID: PMC10039260 DOI: 10.1016/j.fochx.2023.100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The effect of thermal pasteurization (TP), high temperature long time (HTLT), ultra-high temperature instantaneous (UHT), high hydrostatic pressure (HHP) and thermosonication (TS) sterilization on the physicochemical, sensory and functional properties of black carrot juice (BCJ) were studied. And for the first time, the comprehensive quality of sterilized BCJ was quantified by mathematical modeling. UHT was the least suitable sterilization method for BCJ resulting from the most severe deterioration in functional properties. TS had adverse effects on sensory and physicochemical properties, but significantly increased the total flavonoids and anthocyanins contents (p < 0.05) and showed the strongest antioxidant activity, making it a nutritional high-value processing method. TP and HHP balanced the improvement of sensory properties and the retention of functional properties, which were the most suitable sterilization methods for BCJ. This study determined the optimal sterilization methods of BCJ, and provided a scientific solution for the screening of high quality processing methods.
Collapse
|
12
|
Grewal J, Kumar V, Gandhi Y, Rawat H, Singh R, Singh A, Narasimhaji CV, Acharya R, Mishra SK. Current Perspective and Mechanistic Insights on Bioactive Plant Secondary Metabolites for the Prevention and Treatment of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2023; 23:157-176. [PMID: 37921163 DOI: 10.2174/011871529x262371231009132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the most prevalent medical conditions of modern era and are one of the primary causes of adult mortality in both developing and developed countries. Conventional medications such as use of aspirin, beta-blockers, statins and angiotensin- converting enzyme inhibitors involve use of drugs with many antagonistic effects. Hence, alternative therapies which are safe, effective, and relatively cheap are increasingly being investigated for the treatment and prevention of CVDs. The secondary metabolites of medicinal plants contain several bioactive compounds which have emerged as alternatives to toxic modern medicines. The detrimental effects of CVDs can be mitigated via the use of various bioactive phytochemicals such as catechin, isoflavones, quercetin etc. present in medicinal plants. Current review intends to accumulate previously published data over the years using online databases concerning herbal plant based secondary metabolites that can help in inhibition and treatment of CVDs. An in-depth review of various phytochemical constituents with therapeutic actions such as antioxidant, anti-inflammatory, vasorelaxant, anti-hypertensive and cardioprotective properties has been delineated. An attempt has been made to provide a probable mechanistic overview for the pertinent phytoconstituent which will help in achieving a better prognosis and effective treatment for CVDs.
Collapse
Affiliation(s)
- Jyotika Grewal
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Yashika Gandhi
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ch V Narasimhaji
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| |
Collapse
|
13
|
Effects of different cooking treatments on the sensory qualities and pigmented phytochemicals of carrots. Food Chem 2022; 405:135015. [DOI: 10.1016/j.foodchem.2022.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
|
14
|
Kitano A, Norikura T, Matsui-Yuasa I, Shimakawa H, Kamezawa M, Kojima-Yuasa A. Phosphodiesterase 4 mRNA Level Suppression is Important for Extract of Black Carrot to Protect Against Hepatic Injury Induced by Ethanol. J Med Food 2022; 25:982-992. [PMID: 36201260 DOI: 10.1089/jmf.2021.k.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Excessive alcohol use often results in alcoholic liver disease (ALD). An early change in the liver due to excessive drinking is hepatic steatosis, which may ultimately progress to hepatitis, liver fibrosis, cirrhosis, and liver cancer. Among these debilitating processes, hepatic steatosis is reversible with the appropriate treatment. Therefore, it is important to find treatments and foods that reverse hepatic steatosis. Black carrot has antioxidant and anti-inflammatory effects. In this study, we examined the effectiveness of black carrot extract (BCE) on hepatic steatosis in in vivo and in vitro ethanol-induced liver injury models. For the in vivo experiments, serum aminotransferase activities enhanced by ethanol- and carbon tetrachloride were significantly suppressed by the BCE diet. Furthermore, morphological changes in the liver hepatic steatosis and fibrosis were observed in the in vivo ethanol-induced liver injury model, however, BCE feeding resulted in the recovery to an almost normal liver morphology. In the in vitro experiments, ethanol treatment induced reactive oxygen species (ROS) levels in hepatocytes at 9 h. Conversely, ROS production was suppressed to control levels and hepatic steatosis was suppressed when hepatocyte culture with ethanol were treated with BCE. Furthermore, we investigated enzyme activities, enzyme protein levels, and messenger RNA levels of alcohol dehydrogenase (ADH), cytochrome p450 2E1 (CYP2E1), and aldehyde dehydrogenase (ALDH) using enzyme assays, western blot, and quantitative reverse transcription-polymerase chain reaction analyses. We found that the activities of ADH, CYP2E1, and ALDH were regulated through the cAMP-PKA pathway at different levels, namely, translational, posttranslational, and transcriptional levels, respectively. The most interesting finding of this study is that BCE increases cAMP levels by suppressing the Pde4b mRNA and PDE4b protein levels in ethanol-treated hepatocytes, suggesting that BCE may prevent ALD.
Collapse
Affiliation(s)
- Atsuko Kitano
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Toshio Norikura
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | | | - Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| |
Collapse
|
15
|
Zhao J, Wang Z, Xu D, Sun X. Advances on Cyclocarya paliurus polyphenols: Extraction, structures, bioactivities and future perspectives. Food Chem 2022; 396:133667. [PMID: 35853374 DOI: 10.1016/j.foodchem.2022.133667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Cyclocaryapaliurus (C. paliurus) is an edible and medicinal plant, distributed in southern China. As a kind of new food raw material, the leaves of C. paliurus are processed as tea products in daily life. C. paliurus is recognized as a good source to polyphenols, showing excellent bioactivities, which has attracted more and more attention. Polyphenols are important functional bioactive components in C. paliurus. C. paliurus polyphenols perform nutritional functions in anti-diabetes, anti-hyperlipidemic, anti-obesity, anti-oxidant, and other activities. In this review, we summarize the research progress of extraction technologies, structural characteristics, and bioactivities of C. paliurus polyphenols. Other potential functions of C. paliurus polyphenols are prospected. This review provides a reference for further research and applications of C. paliurus polyphenols in a field of functional food and medicines.
Collapse
Affiliation(s)
- Jinjin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zhangtie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Deping Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Perez MB, Da Peña Hamparsomian MJ, Gonzalez RE, Denoya GI, Dominguez DLE, Barboza K, Iorizzo M, Simon PW, Vaudagna SR, Cavagnaro PF. Physicochemical properties, degradation kinetics, and antioxidant capacity of aqueous anthocyanin-based extracts from purple carrots compared to synthetic and natural food colorants. Food Chem 2022; 387:132893. [PMID: 35397275 DOI: 10.1016/j.foodchem.2022.132893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/19/2022] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
As a means to evaluate the potential of carrot anthocyanins as food colorants and nutraceutical agents, we investigated the physicochemical stability and antioxidant capacity of purple carrot extracts under different pH (2.5-7.0) and temperature (4-40 °C) conditions, in comparison to a commercial synthetic (E131) and a natural grape-based (GRP) colorant. During incubation, the colorants were weekly-monitored for various color parameters, concentration of anthocyanins and phenolics, and antioxidant capacity. Carrot colorants were more stable than GRP; and their thermal stability was equal (at 4 °C) or higher than that of E131 (at 25-40 °C). Carrot anthocyanins had lower degradation rate at low pH and temperature, with acylated anthocyanins (AA) being significantly more stable than non-acylated anthocyanins (NAA). Anthocyanins acylated with feruloyl and coumaroyl glycosides were the most stable carrot pigments. The higher stability of carrot colorants is likely due to their richness in AA and -to a lesser extent- copigmentation with other phenolics.
Collapse
Affiliation(s)
- María B Perez
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina
| | - María J Da Peña Hamparsomian
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina
| | - Roxana E Gonzalez
- National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina
| | - Gabriela I Denoya
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Institute of Food Technology, Agroindustrial Research Center, National Institute of Agricultural Technology (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina
| | - Deolindo L E Dominguez
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina
| | - Karina Barboza
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, Raleigh and Plants for Human Health Institute, North Carolina State University, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Philipp W Simon
- Department of Horticulture, University of Wisconsin-Madison and USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706-1514, USA
| | - Sergio R Vaudagna
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Institute of Food Technology, Agroindustrial Research Center, National Institute of Agricultural Technology (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina
| | - Pablo F Cavagnaro
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina; Faculty of Agricultural Sciences, National University of Cuyo, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina.
| |
Collapse
|
19
|
Dar NA, Mir MA, Mir JI, Mansoor S, Showkat W, Parihar TJ, Haq SAU, Wani SH, Zaffar G, Masoodi KZ. MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Mol Biol Rep 2022; 49:5353-5364. [PMID: 35088377 DOI: 10.1007/s11033-021-07077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
AIM Anthocyanin, an essential ingredient of functional foods, is present in a wide range of plants, including black carrots. The current investigation was carried out to analyse the effect of cold stress on the expression of major anthocyanins and anthocyanin biosynthetic pathway genes, MYB6 and LDOX-1. METHODS AND RESULTS Five cultivated carrot genotypes belonging to the eastern group, having anthocyanin pigment, were used in the current study. The qRT-PCR analysis revealed that relative gene expression of transcription factor MYB-6 and LDOX1gene was highly expressed upon cold stress compared to non-stress samples. High-performance liquid chromatography-based quantification of Cyanidin 3-O-glucoside (Kuromanin chloride), Ferulic acid, 3,5-Dimethoxy-4-hydroxycinnamic acid (Sinapic acid), and Rutin revealed a significant increase in these major anthocyanins in response to cold stress when compared to control plants. CONCLUSION We conclude that MYB6 and LDOX1 gene expression increases upon cold stress, which induces accumulation of major anthocyanins in purple black carrot and suggests a possible cross-link between cold stress and anthocyanin biosynthesis in purple black carrot.
Collapse
Affiliation(s)
- Niyaz A Dar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Mudasir A Mir
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Javid I Mir
- Central Institute of Temperate Horticulture, Rangreth, Srinagar, Jammu and Kashmir, 191132, India
| | - Sheikh Mansoor
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Wasia Showkat
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tasmeen J Parihar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Syed Anam Ul Haq
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, SKUAST-Kashmir, Khudwani, Jammu and Kashmir, 192101, India
| | - Gul Zaffar
- Division of Plant Breeding & Genetics, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
20
|
Badalamenti N, Modica A, Ilardi V, Bruno M, Maresca V, Zanfardino A, Di Napoli M, Castagliuolo G, Varcamonti M, Basile A. Daucus carota subsp. maximus (Desf.) Ball from Pantelleria, Sicily (Italy): isolation of essential oils and evaluation of their bioactivity. Nat Prod Res 2021; 36:5842-5847. [PMID: 34927490 DOI: 10.1080/14786419.2021.2018588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Daucus is a genus of economically important plants belonging to Apiaceae family spread in temperate regions. Species of this genus are used as food and several biological properties have reported. The chemical composition of the essential oils from different organs (roots, stems and flowers) of Daucus carota subsp. maximus, a species not previously investigated, was analyzed by GC-MS. Our results showed the presence of β-phellandrene as the most abundant component of stems and flowers and of γ-terpinene as a major compound of the oil from the roots. Flower essential oil caused a greater increase in the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in polymorphonuclear leukocytes (PMN) cells compared to stem and root essential oils. The antimicrobial activity of the flower and stem oil were more effective, compared to root oil, against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Aurora Modica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Vincenzo Ilardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.,Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Nath P, Dukare A, Kumar S, Kale S, Kannaujia P. Black carrot (
Daucus carota
subsp.
sativus
) anthocyanin‐infused potato chips: Effect on bioactive composition, color attributes, cooking quality, and microbial stability. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Prerna Nath
- Division of Horticultural Crop Processing ICAR‐CIPHET Abohar India
| | - Ajinath Dukare
- ICAR‐Central Institute for Research on Cotton Technology (CIRCOT) Mumbai India
| | - Sunil Kumar
- ICAR‐Indian Institute of Wheat & Barley Research Karnal India
| | - Sakharam Kale
- Division of Horticultural Crop Processing ICAR‐CIPHET Abohar India
| | - Pankaj Kannaujia
- Division of Horticultural Crop Processing ICAR‐CIPHET Abohar India
| |
Collapse
|
22
|
Zaim M, Kara I, Muduroglu A. Black carrot anthocyanins exhibit neuroprotective effects against MPP+ induced cell death and cytotoxicity via inhibition of oxidative stress mediated apoptosis. Cytotechnology 2021; 73:827-840. [PMID: 34776632 DOI: 10.1007/s10616-021-00500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease induced by the death of dopaminergic neurons. Anthocyanins are naturally found antioxidants and well-known for their preventive effects in neurodegenerative disorders. Black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) are a rich source of anthocyanins predominantly including acylated cyanidin-based derivatives making them more stable. However, there have been no reports analysing the neuroprotective role of black carrot anthocyanins (BCA) on PD. In order to investigate the potential neuroprotective effect of BCA, human SH-SY5Y cells were treated with MPP+ (1-methyl-4-phenylpyridinium) to induce PD associated cell death and cytotoxicity. Anthocyanins were extracted from black carrots and the composition was determined by HPLC-DAD. SH-SY5Y cells were co-incubated with BCA (2.5, 5, 10, 25, 50, 100 µg/ml) and 0.5 mM MPP+ to determine the neuroprotective effect of BCA against MPP+ induced cell death and cytotoxicity. Results indicate that BCA concentrations did not have any adverse effect on cell viability. BCA revealed its cytoprotective effect, especially at higher concentrations (50, 100 µg/ml) by increasing metabolic activity and decreasing membrane damage. BCA exhibited antioxidant activity via scavenging MPP+ induced reactive oxygen species (ROS) and protecting dopaminergic neurons from ROS mediated apoptosis. These results suggest a neuroprotective effect of BCA due to its high antioxidant and antiapoptotic activity, along with the absence of cytotoxicity. The elevated stability of BCA together with potential neuroprotective effects may shed light to future studies in order to elucidate the mechanism and further neuro-therapeutic potential of BCA which is promising as a neuroprotective agent. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00500-4.
Collapse
Affiliation(s)
- Merve Zaim
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul Turkey
| | - Ihsan Kara
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul Turkey
| | - Aynur Muduroglu
- Department of Physical Therapy and Rehabilitation, Nisantasi University, Maslak, Istanbul Turkey
| |
Collapse
|
23
|
Yusuf E, Tkacz K, Turkiewicz IP, Wojdyło A, Nowicka P. Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03857-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractTwelve carrot varieties in different colours and sizes were investigated for chemical properties (dry matter, ash, pectins, titratable acidity, and pH), contents of vitamin C, sugar, organic acids, mineral (sodium, potassium, calcium, iron, and magnesium), and anti-oxidant activities (ABTS, FRAP, and ORAC). Moreover, total polyphenolics and total tetraterpenoids of colourful carrot varieties were presented. According to the study, sucrose was the dominant sugar and isocitric acid was the most common organic acid in carrot samples. In the case of mineral content, potassium, sodium, calcium, magnesium, and iron were identified, while copper was not identified in carrots. Additionally, most of the analyzed carrots were a good source of pectins (average—1.3%), except for mini-orange carrot. Purple-coloured carrot samples demonstrated the highest results for total sugar (11.2 g/100 g fm), total organic acid (2.8 g/100 g fm), total polyphenolic contents (224.4 mg/100 g fm), and anti-oxidant activities (17.1 mmol Trolox equivalents/100 g dm). In turn, the lowest results were observed in normal yellow carrot for total polyphenols (7.3 mg/100 g fm), and anti-oxidant activities (2.5 mmol Trolox equivalents/100 g dm); besides, the lowest total tetraterpenoids were determined in micro-white carrot—0.2 mg/100 g fm.
Collapse
|
24
|
Ozel B, Kruk D, Wojciechowski M, Osuch M, Oztop MH. Water Dynamics in Whey-Protein-Based Composite Hydrogels by Means of NMR Relaxometry. Int J Mol Sci 2021; 22:9672. [PMID: 34575838 PMCID: PMC8469572 DOI: 10.3390/ijms22189672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023] Open
Abstract
Whey-protein-isolate-based composite hydrogels with encapsulated black carrot (Daucus carota) extract were prepared by heat-induced gelation. The hydrogels were blended with gum tragacanth, pectin and xanthan gum polysaccharides for modulating their properties. 1H spin-lattice relaxation experiments were performed in a broad frequency range, from 4 kHz to 30 MHz, to obtain insight into the influence of the different polysaccharides and of the presence of black carrot on dynamical properties of water molecules in the hydrogel network. The 1H spin-lattice relaxation data were decomposed into relaxation contributions associated with confined and free water fractions. The population of the confined water fraction and the value of the translation diffusion coefficient of water molecules in the vicinity of the macromolecular network were quantitatively determined on the basis of the relaxation data. Moreover, it was demonstrated that the translation diffusion is highly anisotropic (two-dimensional, 2D).
Collapse
Affiliation(s)
- Baris Ozel
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey; (B.O.); (M.H.O.)
- Department of Food Engineering, Ahi Evran University, Kirsehir 40100, Turkey
| | - Danuta Kruk
- Department of Physics & Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Michala Oczapowskiego 4, 10-719 Olsztyn, Poland;
| | - Milosz Wojciechowski
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, 10-710 Olsztyn, Poland;
| | - Maciej Osuch
- Department of Physics & Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Michala Oczapowskiego 4, 10-719 Olsztyn, Poland;
| | - Mecit Halil Oztop
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey; (B.O.); (M.H.O.)
| |
Collapse
|
25
|
YILDIZ E, GULDAS M, ELLERGEZEN P, ACAR AG, GURBUZ O. Obesity-associated Pathways of Anthocyanins. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.39119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Effects of Anthocyanins on Vascular Health. Biomolecules 2021; 11:biom11060811. [PMID: 34070757 PMCID: PMC8227852 DOI: 10.3390/biom11060811] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disorders are leading mortality causes worldwide, often with a latent evolution. Vascular health depends on endothelial function, arterial stiffness, and the presence of atherosclerotic plaques. Preventive medicine deserves special attention, focusing on modifiable cardiovascular risk factors, including diet. A diet rich in fruits and vegetables has well-known health benefits, especially due to its polyphenolic components. Anthocyanins, water-soluble flavonoid species, responsible for the red-blue color in plants and commonly found in berries, exert favorable effects on the endothelial function, oxidative stress, inhibit COX-1, and COX-2 enzymes, exert antiatherogenic, antihypertensive, antiglycation, antithrombotic, and anti-inflammatory activity, ameliorate dyslipidemia and arterial stiffness. The present review aims to give a current overview of the mechanisms involved in the vascular protective effect of anthocyanins from the human diet, considering epidemiological data, in vitro and in vivo preclinical research, clinical observational, retrospective, intervention and randomized studies, dietary and biomarker studies, and discussing preventive benefits of anthocyanins and future research directions.
Collapse
|
27
|
Pandey P, Grover K, Dhillon TS, Kaur A, Javed M. Evaluation of polyphenols enriched dairy products developed by incorporating black carrot ( Daucus carota L.) concentrate. Heliyon 2021; 7:e06880. [PMID: 34013075 PMCID: PMC8113845 DOI: 10.1016/j.heliyon.2021.e06880] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/26/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dairy products like ice cream, yogurt and buttermilk are consumed widely due to their rich taste but these products lack anthocyanins, which are polyphenol and exhibit great antioxidant activity in both in vivo and in vitro studies. Therefore, adding a natural source of these antioxidants to the commonly consumed dairy product will be beneficial to the masses. Among all the sources, black carrots are the extraordinary and cheapest source of anthocyanins, which are commonly consumed as a natural fermented drink. In this study, an attempt has been made to examine the feasibility of black carrot concentrate as an ingredient into dairy products. METHODOLOGY Ice cream, yogurt and buttermilk were prepared by incorporating black carrot concentrate at 2.5, 5.0, 7.5 and 10% level and were subjected to sensory analysis. The most acceptable products with 7.5% black carrot concentrate were analyzed for minerals, polyphenols and antioxidant activity. Effects of storage on physicochemical, microbial and sensory attributes of black carrot concentrate incorporated dairy products were further analyzed. RESULTS Sensory analysis revealed that black carrot concentrate could be used up to 7.5% as an ingredient into dairy product with high acceptability. Significant improvement in mineral content (Mg and Fe), polyphenols and antioxidant activity were reported in black carrot concentrate added dairy products. Developed dairy products exhibited an excellent amount of 24.52-113.27 mg/100g anthocyanins. Flavonoids increased by 14.52-34.62 times and Folin-Ciocalteu reducing capacity increased by 26.39-35.87 times in experimental dairy products. The storage study revealed that ice cream could be stored for more than 60 days, yogurt up to 5 days and buttermilk up to 10 days with excellent stability attributes. CONCLUSION Incorporation of black carrot concentrate at the level of 7.5% resulted in high acceptability and exceptional nutraceutical property of dairy products. Incorporation of black carrot concentrate into dairy products would enhance the nutraceutical properties and mineral content of food, which could be highly significant in preventing hidden hunger and oxidative stress-induced disorders in developing countries.
Collapse
Affiliation(s)
- Pragya Pandey
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
- Department of Food Technology and Nutrition, Lovely Professional University, 144411, India
| | - Kiran Grover
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | | | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Mohammed Javed
- Department of Mathematics, Statistics & Physics, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
28
|
Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods 2021; 10:foods10040808. [PMID: 33918549 PMCID: PMC8070462 DOI: 10.3390/foods10040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Twelve carrot varieties with different colours (purple, orange, yellow, and white) and sizes (normal, mini, and micro) were analysed for prospective health benefits (activities against diabetes-, obesity-, and aging- related enzymes-α-amylase, α-glucosidase, lipase, acetylocholinesterase, and butyrylocholinesterase, respectively) and nutritional contents (polyphenols, carotenoids, and chlorophylls). The conducted studies showed that the highest content of total polyphenols was observed in different sizes of purple carrots. The normal yellow and mini orange carrots demonstrated the highest content of carotenoids. According to the study results, the mini purple carrot showed the highest activities against diabetes-related enzyme (α-glucosidase); furthermore, the highest activities of cholinesterase inhibitors were observed for micro purple carrot. Nevertheless, normal orange carrot exhibited the highest activity against lipase. The results of the present study showed that purple-coloured carrot samples of different sizes (normal, mini, and micro) exhibited attractive nutritional contents. However, their pro-health effects (anti-diabetic, anti-obesity, anti-aging) should not be seen in the inhibition of amylase, glucosidase, lipase, and cholinesterase. Probably the mechanisms of their action are more complex, and the possible health-promoting effect results from the synergy of many compounds, including fibre, phytochemicals, vitamins, and minerals. Therefore, it would be worth continuing research on different varieties of carrots.
Collapse
|
29
|
Karaman S, Ozcan T. Determination of gelation properties and bio‐therapeutic potential of black carrot fibre‐enriched functional yoghurt produced using pectin and gum arabic as prebiotic. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saliha Karaman
- Department of Food Engineering, Faculty of Agriculture Bursa Uludag University Gorukle Bursa16059Turkey
| | - Tulay Ozcan
- Department of Food Engineering, Faculty of Agriculture Bursa Uludag University Gorukle Bursa16059Turkey
| |
Collapse
|
30
|
Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace "Polignano" Carrot. PLANTS 2021; 10:plants10030564. [PMID: 33802658 PMCID: PMC8002536 DOI: 10.3390/plants10030564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The carrot is one of the most cultivated vegetables in the world. Black or purple carrots contain acylated anthocyanins which are of special interest to the food industry for their stability and nutraceutical characteristics. Anthocyanin-rich fruits and vegetables have gained popularity in the last ten years, due to the health benefits they provide. In this paper, the characterizations of the bioactive compounds and antioxidant capacities of different anthocyanin-containing carrots (a black carrot—BC, and a local purple carrot, the “Polignano” carrot—PC), compared to the commercial orange carrot (OC) (lacking of anthocyanins), are reported. The anthocyanin profiles of the polyphenolic extracts of BC and PC were similar, but differences were observed at quantitative levels. The total anthocyanin content in BC was more than twice that in PC (13.84 ± 0.61 vs. 5.64 ± 0.48 mg K Eq. g−1 DW). Phenolic acids (mostly chlorogenic acid) were also present at high level in anthocyanin-rich carrots compared to OC. High polyphenol content accounted also for a high reducing capacity (evaluated by Folin–Ciocalteu reagent, FCR), and antioxidant capacity (evaluated by TEAC and ORAC assays) which were the highest for BC (FCR value: 16.6 ± 1.1 mg GAE. g−1 DW; TEAC: 76.6 ± 10.6 µmol TE. g−1 DW; ORAC: 159.9 ± 3.3 µmol TE. g−1 DW). All carrot genotypes (mostly OC) were rich in carotenoids (BC 0.14 ± 0.024; PC 0.33 ± 0.038; OC 1.29 ± 0.09 mg. g−1 DW), with predominance of α and β-carotene, in OC, and lutein in BC. PC showed the highest malic acid and sugar (glucose plus fructose) content. In conclusion, while BC is remarkable for nutraceutical features, the local genotype (“Polignano” carrot) is worth considering in genetic biodiversity conservation programme.
Collapse
|
31
|
A Roadmap to Modulated Anthocyanin Compositions in Carrots. PLANTS 2021; 10:plants10030472. [PMID: 33801499 PMCID: PMC7999315 DOI: 10.3390/plants10030472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Anthocyanins extracted from black carrots have received increased interest as natural colorants in recent years. The reason is mainly their high content of acylated anthocyanins that stabilizes the color and thereby increases the shelf-life of products colored with black carrot anthocyanins. Still, the main type of anthocyanins synthesized in all black carrot cultivars is cyanidin limiting their use as colorants due to the narrow color variation. Additionally, in order to be competitive against synthetic colors, a higher percentage of acylated anthocyanins and an increased anthocyanin content in black carrots are needed. However, along with the increased interest in black carrots there has also been an interest in identifying the structural and regulatory genes associated with anthocyanin biosynthesis in black carrots. Thus, huge progress in the identification of genes involved in anthocyanin biosynthesis has recently been achieved. Given this information it is now possible to attempt to modulate anthocyanin compositions in black carrots through genetic modifications. In this review we look into genetic modification opportunities for generating taproots of black carrots with extended color palettes, with a higher percentage of acylated anthocyanins or a higher total content of anthocyanins.
Collapse
|
32
|
Pereira-Caro G, Ordóñez-Díaz JL, de Santiago E, Moreno-Ortega A, Cáceres-Jiménez S, Sánchez-Parra M, Roldán-Guerra FJ, Ortiz-Somovilla V, Moreno-Rojas JM. Antioxidant Activity and Bio-Accessibility of Polyphenols in Black Carrot ( Daucus carota L. ssp. sativus var. atrorubens Alef.) and Two Derived Products during Simulated Gastrointestinal Digestion and Colonic Fermentation. Foods 2021; 10:foods10020457. [PMID: 33669662 PMCID: PMC7922073 DOI: 10.3390/foods10020457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Black carrot has been attracting increasing thanks to its high bioactive compound content. This study presents the polyphenol bio-accessibility of black carrot and two derived products (black carrot snack (BC snack) and black carrot seasoning (BC seasoning)) after in vitro gastrointestinal digestion and colonic fermentation. Additionally, antioxidant activity was measured by 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays. Nine flavonoids and eight anthocyanins were determined by ultra high-performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS) analysis, the predominant compounds being the hydroxycinnamic acids 3-O-feruloylquinic acid, 4-O-feruloylquinic acid and chlorogenic acid. The BC snack (108 µmol/g DW) presented the highest total polyphenol content, followed by BC seasoning (53 µmol/g DW) and black carrot (11.4 µmol/g DW). The main polyphenols still bio-accessible after in vitro digestion were the hydroxycinnamic acids, with mean recovery rates of 113 % for black carrot, 69% for BC snack and 81% for BC seasoning. The incubation of black carrot and its derived products with human faecal bacterial resulted in the complete degradation of anthocyanins and in the formation of mainly 3-(4′-hydroxyphenyl)propanoic acid as the major catabolic event. In conclusion, our results suggest that the black carrot matrix impacts significantly affects the bio-accessibility of polyphenols and, therefore, their potential health benefits.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
| | - José Luis Ordóñez-Díaz
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
| | - Elsy de Santiago
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
| | - Alicia Moreno-Ortega
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo 9 Universidad de Córdoba, 14071 Córdoba, Spain
| | - Salud Cáceres-Jiménez
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
| | - Mónica Sánchez-Parra
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
| | - Francisco Javier Roldán-Guerra
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
| | - Víctor Ortiz-Somovilla
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and 7 Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain; (G.P.-C.); (J.L.O.-D.); (E.d.S.); (A.M.-O.); (S.C.-J.); (M.S.-P.); (F.J.R.-G.); (V.O.-S.)
- Correspondence:
| |
Collapse
|
33
|
Purkiewicz A, Ciborska J, Tańska M, Narwojsz A, Starowicz M, Przybyłowicz KE, Sawicki T. The Impact of the Method Extraction and Different Carrot Variety on the Carotenoid Profile, Total Phenolic Content and Antioxidant Properties of Juices. PLANTS 2020; 9:plants9121759. [PMID: 33322599 PMCID: PMC7764007 DOI: 10.3390/plants9121759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 12/02/2022]
Abstract
The study assesses the antioxidant activity (AA), carotenoid profile and total phenolic content (TPC) of carrot juices obtained from three different varieties (black, orange and yellow) and prepared using high- (HSJ) and low-speed juicer (LSJ). The AA assessment was carried out using four assays (DPPH, ABTS, PCL ACW and PCL ACL). The content of carotenoids was conducted by high performance liquid chromatography equipped with a diode array detector (HPLC-DAD) method, while the total phenolic content by the spectrophotometric method. It was shown that orange carrot juices contain more carotenoids than yellow and black carrot juices, approximately ten and three times more, respectively. The total carotenoid content in orange carrot juice made by the HSJ was higher (by over 11%) compared to juice prepared by the LSJ. The highest total phenolic content was noticed in black carrot juices, while the lowest in orange carrot juices. In black carrot juices, a higher range of TPC was found in juices made by HSJ, while in the case of the orange and yellow carrots, the highest content of TPC was detected in juices prepared by the LSJ. AA of the juices was highly dependent on the carrot variety, juice extraction method. The most assays confirmed the highest AA values in black carrot juices. Furthermore, it was shown that the HSJ method is more preferred to obtain orange and yellow carrot juices with higher antioxidant properties, while the LSJ method is more suitable for black carrot juice extraction.
Collapse
Affiliation(s)
- Aleksandra Purkiewicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland; (A.P.); (J.C.); (A.N.); (K.E.P.)
| | - Joanna Ciborska
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland; (A.P.); (J.C.); (A.N.); (K.E.P.)
| | - Małgorzata Tańska
- Chair of Plant Raw Materials Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn, Poland;
| | - Agnieszka Narwojsz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland; (A.P.); (J.C.); (A.N.); (K.E.P.)
| | - Małgorzata Starowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland; (A.P.); (J.C.); (A.N.); (K.E.P.)
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland; (A.P.); (J.C.); (A.N.); (K.E.P.)
- Correspondence:
| |
Collapse
|
34
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
35
|
Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods 2020; 9:foods9101515. [PMID: 33096865 PMCID: PMC7589261 DOI: 10.3390/foods9101515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022] Open
Abstract
Carrots contain a significant content of phenolic compounds, mainly phenolic acids. Technological processing of carrots inflicts wounding stress and induces accumulation of these compounds, especially caffeic acid derivatives, in the periderm tissue. In this study, the effect of minimal processing (polishing, washing, peeling, and grating) on the retention of soluble phenolic acids in carrots was monitored during cold storage. Storage for up to 4 weeks and 24 h was used for whole and grated carrot samples, respectively. Total phenolic acid levels found in differently processed carrots varied greatly at the beginning of the storage period and on dry weight basis they ranged from 228 ± 67.9 mg/kg (grated carrot) to 996 ± 177 mg/kg (machine washed). In each case, processing followed by storage induced phenolic acid accumulation in the carrots. At the end of the experiment (4 weeks at +8 °C), untreated and machine-washed carrots contained ca. 4-fold more phenolic acids than at day 0. Similarly, polished carrots contained 9-fold and peeled carrots 31-fold more phenolic acids than at day 0. The phenolic acid content in grated carrot doubled after 24 h storage at +4 °C. Individual phenolic acids were characterized by high resolution mass spectrometry. MS data strongly suggest the presence of daucic acid conjugates of phenolic acids in carrot. Storage time did not have statistically similar effect on all compounds and generally in a way that dicaffeoyldaucic acid had the highest increase. This research provides important information for primary production, packaging, catering, the fresh-cut industry and consumers regarding the selection of healthier minimally processed carrots.
Collapse
|
36
|
Iorizzo M, Curaba J, Pottorff M, Ferruzzi MG, Simon P, Cavagnaro PF. Carrot Anthocyanins Genetics and Genomics: Status and Perspectives to Improve Its Application for the Food Colorant Industry. Genes (Basel) 2020; 11:E906. [PMID: 32784714 PMCID: PMC7465225 DOI: 10.3390/genes11080906] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Purple or black carrots (Daucus carota ssp. sativus var. atrorubens Alef) are characterized by their dark purple- to black-colored roots, owing their appearance to high anthocyanin concentrations. In recent years, there has been increasing interest in the use of black carrot anthocyanins as natural food dyes. Black carrot roots contain large quantities of mono-acylated anthocyanins, which impart a measure of heat-, light- and pH-stability, enhancing the color-stability of food products over their shelf-life. The genetic pathway controlling anthocyanin biosynthesis appears well conserved among land plants; however, different variants of anthocyanin-related genes between cultivars results in tissue-specific accumulations of purple pigments. Thus, broad genetic variations of anthocyanin profile, and tissue-specific distributions in carrot tissues and organs, can be observed, and the ratio of acylated to non-acylated anthocyanins varies significantly in the purple carrot germplasm. Additionally, anthocyanins synthesis can also be influenced by a wide range of external factors, such as abiotic stressors and/or chemical elicitors, directly affecting the anthocyanin yield and stability potential in food and beverage applications. In this study, we critically review and discuss the current knowledge on anthocyanin diversity, genetics and the molecular mechanisms controlling anthocyanin accumulation in carrots. We also provide a view of the current knowledge gaps and advancement needs as regards developing and applying innovative molecular tools to improve the yield, product performance and stability of carrot anthocyanin for use as a natural food colorant.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Philipp Simon
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706, USA;
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI 53706, USA
| | - Pablo F. Cavagnaro
- National Scientific and Technical Research Council (CONICET), National Agricultural Technology Institute (INTA) E.E.A. La Consulta, Mendoza 5567, Argentina;
- Faculty of Agricultural Sciences, National University of Cuyo, Mendoza 5505, Argentina
| |
Collapse
|
37
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
38
|
Sucheta, Misra N, Yadav SK. Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105592] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Pace B, Capotorto I, Cefola M, Minasi P, Montemurro N, Carbone V. Evaluation of quality, phenolic and carotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103363] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
In vitro digestion of polysaccharide including whey protein isolate hydrogels. Carbohydr Polym 2020; 229:115469. [DOI: 10.1016/j.carbpol.2019.115469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023]
|
41
|
Curaba J, Bostan H, Cavagnaro PF, Senalik D, Mengist MF, Zhao Y, Simon PW, Iorizzo M. Identification of an SCPL Gene Controlling Anthocyanin Acylation in Carrot ( Daucus carota L.) Root. FRONTIERS IN PLANT SCIENCE 2020; 10:1770. [PMID: 32082341 PMCID: PMC7005140 DOI: 10.3389/fpls.2019.01770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023]
Abstract
Anthocyanins are natural health promoting pigments that can be produced in large quantities in some purple carrot cultivars. Decoration patterns of anthocyanins, such as acylation, can greatly influence their stability and biological properties and use in the food industry as nutraceuticals and natural colorants. Despite recent advances made toward understanding the genetic control of anthocyanin accumulation in purple carrot, the genetic mechanism controlling acylation of anthocyanin in carrot root have not been studied yet. In the present study, we performed fine mapping combined with gene expression analyses (RNA-Seq and RT-qPCR) to identify the genetic factor conditioning the accumulation of non-acylated (Cy3XGG) versus acylated (Cy3XFGG and Cy3XSGG) cyanidin derivatives, in three carrot populations. Segregation and mapping analysis pointed to a single gene with dominant effect controlling anthocyanin acylation in the root, located in a 576kb region containing 29 predicted genes. Orthologous and phylogenetic analyses enabled the identification of a cluster of three SCPL-acyltransferases coding genes within this region. Comparative transcriptome analysis indicated that only one of these three genes, DcSCPL1, was always expressed in association with anthocyanin pigmentation in the root and was co-expressed with DcMYB7, a gene known to activate anthocyanin biosynthetic genes in carrot. DcSCPL1 sequence analysis, in root tissue containing a low level of acylated anthocyanins, demonstrated the presence of an insertion causing an abnormal splicing of the 3rd exon during mRNA editing, likely resulting in the production of a non-functional acyltransferase and explaining the reduced acylation phenotype. This study provides strong linkage-mapping and functional evidences for the candidacy of DcSCPL1 as a primary regulator of anthocyanin acylation in carrot storage root.
Collapse
Affiliation(s)
- Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Pablo F. Cavagnaro
- National Scientific and Technical Research Council (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA) E.E.A., La Consulta, Mendoza, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Douglas Senalik
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI, United States
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI, United States
| | - Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Yunyang Zhao
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Philipp W. Simon
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI, United States
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
42
|
Uncu AO, Uncu AT. High-throughput simple sequence repeat (SSR) mining saturates the carrot (Daucus carota L.) genome with chromosome-anchored markers. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1701551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ayse Ozgur Uncu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Meram, Turkey
| | - Ali Tevfik Uncu
- Department of Molecular Biology & Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Turkey
| |
Collapse
|
43
|
Jayaprakasha G, Chidambara Murthy K, Pellati F, Patil BS. BetaSweet carrot extracts have antioxidant activity and in vitro antiproliferative effects against breast cancer cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
44
|
Chaturvedi K, Yadav SK. Ultrasonication assisted salt-spices impregnation in black carrots to attain anthocyanins stability, quality retention and antimicrobial efficacy on hot-air convective drying. ULTRASONICS SONOCHEMISTRY 2019; 58:104661. [PMID: 31450364 DOI: 10.1016/j.ultsonch.2019.104661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/10/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
The present study aims at optimisation of enhanced solute impregnation through ultrasonication (US) at 37 kHz using central composite design of response surface methodology (RSM). Black carrots were blanched at 98 °C/3 min followed by immersion in salt-spices based solutions for 8 h, treated with bath sonication at specific intervals (2, 4 & 6 h) for 5, 10 and 15 min. Responses for optimum water loss (WL), solute gain (SG), anthocyanins retention, texture and highest antioxidant activity were optimized in effect of NaCl%, spices mix% and US time. The suggested models were of good fit while lack of fit as non-significant (p < 0.0500). Best combination was compared for anthocyanins retention on pressure-cooking (120 °C/15 psi) with fresh, blanched, salt-spiced without US subjected to hot-air convective drying (55 °C/5 h). Ultrasonication-assisted salt-spiced convective dried (USPCD) carrots retained highest anthocyanin content (41%) post cooking which correlated with increased glass transition (Tg) and antimicrobial efficacy (as zone of inhibition) in comparison to fresh, blanched convective dried (BCD) and salt-spiced convective dried (SPCD) carrots. FTIR spectra suggested the correlation of textural effects with pectin degradation and solute impregnation. XRD spectra revealed changes in pectin (2θ = 22.06°) and NaCl crystallinity peaks at 2θ = 27.49, 31.86, 45.62, 56.68, 66.45 and 75.43°, owing to the processing of black carrots. The spectra also confirmed higher solute impregnation in USPCD than SPCD carrots. Scanning electron micrographs of USPCD also indicated higher impregnation through smallest pores visible in longitudinal section of carrot tissue structure, which also appeared to be polymeric network filled with higher solutes than SPCD. Taken together, US assisted solute impregnation might have provided protection to the anthocyanins degradation as well as retention of other quality parameters on processing.
Collapse
Affiliation(s)
- Kartikey Chaturvedi
- National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali 140306, PB, India.
| |
Collapse
|
45
|
Phytochemicals in Daucus carota and Their Health Benefits-Review Article. Foods 2019; 8:foods8090424. [PMID: 31546950 PMCID: PMC6770766 DOI: 10.3390/foods8090424] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Carrots are a multi-nutritional food source. They are an important root vegetable, rich in natural bioactive compounds, which are recognised for their nutraceutical effects and health benefits. This review summarises the occurrence, biosynthesis, factors affecting concentration, and health benefits of phytochemicals found in Daucus carota. Two hundred and fifty-five articles including original research papers, books, and book chapters were analysed, of which one hundred and thirty articles (most relevant to the topic) were selected for writing the review article. The four types of phytochemicals found in carrots, namely phenolics, carotenoids, polyacetylenes, and ascorbic acid, were summarised. These chemicals aid in the risk reduction of cancer and cardiovascular diseases due to their antioxidant, anti-inflammatory, plasma lipid modification, and anti-tumour properties. Numerous factors influence the amount and type of phytochemicals present in carrots. Genotype (colour differences) plays an important role; high contents of α and β-carotene are present in orange carrots, lutein in yellow carrots, lycopene in red carrots, anthocyanins in the root of purple carrots, and phenolic compounds abound in black carrots. Carotenoids range between 3.2 mg/kg and 170 mg/kg, while vitamin C varies from 21 mg/kg to 775 mg/kg between cultivars. Growth temperatures of carrots influence the level of the sugars, carotenoids, and volatile compounds, so that growing in cool conditions results in a higher yield and quality of carrots, while higher temperatures would increase terpene synthesis, resulting in carrots with a bitter taste. It is worthwhile to investigate the cultivation of different genotypes under various environmental conditions to increase levels of phytochemicals and enhance the nutritional value of carrot, along with the valorisation of carrot by-products.
Collapse
|
46
|
Żary-Sikorska E, Fotschki B, Fotschki J, Wiczkowski W, Juśkiewicz J. Preparations from purple carrots containing anthocyanins improved intestine microbial activity, serum lipid profile and antioxidant status in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Giannenas I, Bonos E, Filliousis G, Stylianaki I, Kumar P, Lazari D, Christaki E, Florou-Paneri P. Effect of a Polyherbal or an Arsenic-Containing Feed Additive on Growth Performance of Broiler Chickens, Intestinal Microbiota, Intestinal Morphology, and Lipid Oxidation of Breast and Thigh Meat. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Tao F, Jiang H, Chen W, Zhang Y, Pan J, Jiang J, Jia Z. Covalent modification of soy protein isolate by (-)-epigallocatechin-3-gallate: effects on structural and emulsifying properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5683-5689. [PMID: 29736983 DOI: 10.1002/jsfa.9114] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) has promising applications in various food products because of its excellent functional properties and nutritional quality. The structural and emulsifying properties of covalently modified SPI by (-)-epigallocatechin-3-gallate (EGCG) were investigated. RESULTS SPI was covalently modified by EGCG under alkaline conditions. SDS-PAGE analysis revealed that EGCG modification caused crosslinking of SPI proteins. Circular dichroism spectra demonstrated that the secondary structure of SPI proteins was changed by EGCG modification. In addition, the modifications resulted in the perturbation of the tertiary structure of SPI as evidenced by intrinsic fluorescence spectra and surface hydrophobicity measurements. Oil-in-water emulsions of modified SPI had smaller droplet sizes and better creaming stability compared to those from unmodified SPI. CONCLUSION The covalent modification by EGCG improved the emulsifying property of SPI. This study therefore provided an innovative approach for improving the emulsifying properties of proteins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - He Jiang
- Center for Food Safety & Quality, Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Wenwei Chen
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Yongyong Zhang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Jiarong Pan
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Jiaxin Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Zhenbao Jia
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| |
Collapse
|
49
|
Moraczewski K, Stepczyńska M, Malinowski R, Budner B, Karasiewicz T, Jagodziński B. Selected properties of polycaprolactone containing natural anti-aging compounds. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Rafał Malinowski
- Institute for Engineering of Polymer Materials and Dyes; Toruń Poland
| | - Bogusław Budner
- Institute of Optoelectronics; Military University of Technology; Warsaw Poland
| | | | | |
Collapse
|
50
|
Ozel B, Aydin O, Grunin L, Oztop MH. Physico-Chemical Changes of Composite Whey Protein Hydrogels in Simulated Gastric Fluid Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9542-9555. [PMID: 30111102 DOI: 10.1021/acs.jafc.8b02829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polysaccharide blended whey protein isolate (WPI) hydrogels were developed for the delivery of black carrot ( Daucus carota) concentrate as bioactive agent in simulated gastric fluid (SGF). Pectin (PC), gum tragacanth (GT), and xanthan gum (XG) were blended as additional polymers to modulate the release characteristics of the WPI hydrogels. Experiments showed that sole whey protein (C), XG, and GT blended hydrogels possessed restricted release profiles 67%, 61%, and 67%, respectively, whereas PC samples attained higher release rates (83%) ( p < 0.05). Interactions between polymers and aqueous medium were analyzed by nuclear magnetic resonance relaxometry. C (82 ms) and GT (84 ms) hydrogels attained higher T2 values than PC (74 ms) and XG (73 ms) samples in SGF. Hardness of only XG hydrogels increased from 1.9 to 4.1 N after gastric treatment. Physicochemical changes within hydrogels during release were also investigated, and hydrogels were proved to be appropriate for desired delivery purposes.
Collapse
Affiliation(s)
- Baris Ozel
- Food Engineering Department , Ahi Evran University , 40100 Kirsehir , Turkey
- Food Engineering Department , Middle East Technical University , 06800 Ankara , Turkey
| | - Ozlem Aydin
- Food Engineering Department , Middle East Technical University , 06800 Ankara , Turkey
| | - Leonid Grunin
- Physics Department , Volga State University of Technology , Yoshkar-Ola , Mari El , Russian Federation 424000
| | - Mecit H Oztop
- Food Engineering Department , Ahi Evran University , 40100 Kirsehir , Turkey
| |
Collapse
|