1
|
Huang S, Feng X, Yue W, Madjirebaye P, Deng X, Fan Y, Chen J, Wu X. Effects of chemical modifications on allergenicity and functional properties of silkworm pupae proteins. Food Chem 2025; 477:143635. [PMID: 40023949 DOI: 10.1016/j.foodchem.2025.143635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Silkworm pupae proteins (SPP) have been exploited as a new functional protein, but there are still some people who are allergic to it. This study investigated the effects of different chemical modifications (phosphorylation, succinylation, deamidation, glycosylation) on SPP's allergenicity and its structural and functional impact. Spectroscopic analysis showed that all three modifications except glycosylation loosened the three-dimensional structure of SPP. Enzymatic hydrolysis studies have shown that the succinylated group can significantly enhance the hydrolysis resistance of SPP at 30 kDa, and the ability to bind IgE was maintained. Most proteins were hydrolyzed into small peptides within 30 min after combined digestion. A functional study of chemically modified SPP demonstrated that succinylation had a strong water-holding capacity. Further deamidation and phosphorylation have stupendous foaming ability and foaming stability, respectively. This discovery collectively will provide the experimental basis for developing and using silkworm pupae protein in the food industry.
Collapse
Affiliation(s)
- Songyuan Huang
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Xue Feng
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Wenqi Yue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Philippe Madjirebaye
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Xuchao Deng
- Shenzhen Senior High School, Shenzhen 518060, Guangdong Province, PR China
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Jiamin Chen
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| |
Collapse
|
2
|
Li Z, Zhang Y, Balle T, Eser BE, Fang Y, Guo Z. Preparation of Cello-Oligosaccharides by Precise-Controlled Enzymatic Depolymerization and Its Amphiphilic Functionalization for High-Oil Load Emulsification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1458-1467. [PMID: 39757467 DOI: 10.1021/acs.jafc.4c08886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cello-oligosaccharides (COS) are gaining great attention for their prebiotic-like properties, e.g., boosting gut health by promoting beneficial bacteria and improving digestion. This study produced COS, consisting predominantly of 4-10 glucose units (>80% of total COS) through enzymatic selective hydrolysis of cellulose using Ultimase BWL 40 (endoglucanase and xylanase) and Celluclast 1.5 L (cellobiohydrolases and endoglucanase). Celluclast 1.5 L mediated hydrolysis of cellulose for 7 h, yielding 22% COS, and Ultimase BWL 40 for 24 h afforded 32% COS to a large extent governed by the patterns of composed hydrolytes associated with the components and specificity of the enzyme recipe. Moreover, a novel kind of amphiphilic COS product was developed through (2-dodecen-1-yl succinyl) alkylsuccinylation of COS, confirmed by Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1HNMR) spectroscopy; thereby, COS was endowed with the amphiphilic property. Not surprisingly, alkylsuccinylated COS (SAC12) stabilized cosurfactant-free emulsions of high oil-load, e.g., 70 wt % fish oil-in-water emulsions, achieving remarkably homogeneous nano-/microdroplets (500-540 nm), extremely narrow polydispersity index (PDI < 0.1), and strongly negative zeta potential (-45 to -48 mV), thus demonstrating exceptional stability. Overall, alkylsuccinylated COS (SAC12) offers superior emulsifying capabilities without a cosurfactant while maintaining prebiotic benefits, thus providing a versatile sustainable solution for various nutraceutical/pharmaceutical applications.
Collapse
Affiliation(s)
- Ziqian Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Thomas Balle
- Novozymes A/S (Part of Novonesis Group), Biologiens Vej 2 , 2800 Kgs.Lyngby, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| |
Collapse
|
3
|
Yao X, Ma J, Lv X, Liu X, Chen R, Shan Y, Zeng Q, Jin Y, Hu G. Structural and functional optimization of egg white protein hydrogels by succinylation: Gel properties and mineral enrichment. Int J Biol Macromol 2024; 282:137585. [PMID: 39542299 DOI: 10.1016/j.ijbiomac.2024.137585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The development of novel gel-mineral supplements is important for improving the health of patients with dysphagia. In this study, we used natural egg white protein (NEWP) and phosphorylated egg white protein (STEWP) as controls. We modified NEWP with succinic anhydride to produce varying degrees of succinylated egg white protein (SAEWP). The addition of 20 % (w/v) succinic anhydride increased the β-sheet content of SAEWP from 11.97 % to 50.60 %, which stabilized the gel structure and formed a uniformly ordered three-dimensional network, resulting in the average pore size of SAEWP could reach >80 μm. Compared to NEWP, SAEWP hydrogel with 20 % succinic anhydride showed a 22.27 % increase in water holding capacity, a 56.13 % increase in hardness, and a 173.01 % increase in elasticity. Immersion in a calcium chloride solution resulted in a 220 % increase in calcium content. This study provides new insights into the development of innovative gel mineral supplements.
Collapse
Affiliation(s)
- Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Rong Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
4
|
Huang Y, Lin T, Dadmohammadi Y, He Y, Khongkomolsakul W, Noack CE, Abbaspourrad A. Lactoferrin thermal stabilization and iron(II) fortification through ternary complex fabrication with succinylated sodium caseinate. Food Chem X 2024; 22:101498. [PMID: 38911915 PMCID: PMC11190486 DOI: 10.1016/j.fochx.2024.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
A thermally stable co-delivery system for lactoferrin (LF) and iron(II) was developed to address iron deficiency anemia. Complexes were formed between LF, succinylated sodium caseinate (S.NaCas) and FeSO4 with high yield (∼85%). LF-S.NaCas-Fe complexes achieved loading capacities for iron(II) between 2.5 and 12 mg g-1and LF loading capacities between 250 and 690 mg g-1, depending upon initial Fe2+ concentrations and LF ratios. The LF-S.NaCas complex mixtures appeared as smooth cubic particles in SEM, and gradually aggregated to amorphous particles as th iron(II) concentration increased due to iron-facilitated cross-linking. The complexation significantly improved LF thermal stability and addressed the poor solubility of iron(II) under neutral pH. After thermal treatment (95 °C, 5 min), the rehydrated complexes retained 68%-90% LF, with <10% iron(II) release. Circular dichroism spectra showed the secondary structure of the complexed LF was well retained during thermal treatment. This thermally stable system showed great potential in LF thermal protection and iron(II) fortification.
Collapse
Affiliation(s)
- Yunan Huang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tiantian Lin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Yanhong He
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Waritsara Khongkomolsakul
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Claire Elizabeth Noack
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Patil ND, Bains A, Kaur S, Yadav R, Goksen G, Ali N, AlAsmari AF, Chawla P. Effect of dual modifications with ultrasonication and succinylation on Cicer arietinum protein-iron complexes: Characterization, digestibility, in-vitro cellular mineral uptake and preparation of fortified smoothie. Food Res Int 2024; 186:114344. [PMID: 38729696 DOI: 10.1016/j.foodres.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Nemat Ali
- Département of Pharmacology and Toxicology, Collège of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F AlAsmari
- Département of Pharmacology and Toxicology, Collège of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
6
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
7
|
He M, Zhang M, Gao T, Liu Z, Chen L, Liu Y, Huang Y, Teng F, Li Y. Fabrication and characterization of succinylated and glycosylated soy protein isolate and its self-assembled nanogel. Int J Biol Macromol 2023:125104. [PMID: 37257536 DOI: 10.1016/j.ijbiomac.2023.125104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
In this study, we used succinic anhydride (SA) acylation and dextran (DX) glycosylation modified soybean isolate protein (SPI) to develop self-assembled SPI-SA-DX adduct-based nanogels. Degree of modification, SDS-PAGE, and FT-IR studies showed that the amino group of the SPI was replaced by hydrophilic dextran and succinic acid carboxyl groups. Dextran chain and anhydride group attachment to the soybean protein surface enhanced hydrophilicity and spatial site blocking. Modification-induced protein structure unfolding, free sulfhydryl groups to be converted to disulfide bonds, and reduced surface hydrophobicity (H0). H0 was lowest at 33,750 ± 1008.29 when SA content = 10 % protein content (SPI-SA3-DX). The nanometer gel based on SPI-SA3-DX had the maximum turbidity and clear transparent solution without precipitation. Its particle size and polymer dispersibility index (PDI) were also the smallest, with values of (106.87 ± 4.51) nm and 0.21 ± 0.009, respectively. Transmission electron microscopy showed that nanogels had subspherical shell-core structures. Nanogels were stable under different pH, ionic strength, high temperature, and storage conditions.
Collapse
Affiliation(s)
- Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Meng Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengnan Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Li Z, Zhang G, Charalampopoulos D, Guo Z. Ionic liquid-mediated regeneration of cellulose dramatically improves decrystallization, TEMPO-mediated oxidation and alkyl/alkenyl succinylation. Int J Biol Macromol 2023; 236:123983. [PMID: 36907307 DOI: 10.1016/j.ijbiomac.2023.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
This work demonstrated a successful strategy that simple ionic liquids (ILs) mediated pretreatment could effectively reduce crystallinity of cellulose from 71 % to 46 % (by C2MIM.Cl) and 53 % (by C4MIM.Cl). The IL-mediated regeneration of cellulose greatly promoted its reactivity for TEMPO-catalyzed oxidation, which the resulting COO- density (mmol/g) increased from 2.00 for non-IL-treated cellulose to 3.23 (by C2MIM.Cl) and 3.42 (C4MIM.Cl); and degree of oxidation enhanced from 35 % to 59 % and 62 %, respectively. More significantly, the yield of oxidized cellulose increased from 4 % to 45-46 %, by 11-fold. IL-regenerated cellulose can also be directly subjected to alkyl/alkenyl succinylation without TEMPO-mediated oxidation, producing nanoparticles with properties similar to oxidized celluloses (55-74 nm in size, -70-79 mV zeta-potential and 0.23-0.26 PDI); but in a much higher overall yield (87-95 %) than IL-regeneration-coupling-TEMPO-oxidation (34-45 %). Alkyl/alkenyl succinylated TEMPO-oxidized cellulose showed 2-2.5 times higher ABTS* scavenging ability than non-oxidized cellulose; however, alkyl/alkenyl succinylation also resulted in a significant decline in Fe2+ chelating property.
Collapse
Affiliation(s)
- Ziqian Li
- Department of Biological and Chemical Engineering, Gustav weids vej 10A, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark
| | - Guoqiang Zhang
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Gustav weids vej 10A, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
9
|
Hou N, Zhao X, Han Z, Jiang X, Fang Y, Chen Y, Li D. Dodecenylsuccinic anhydride-modified oxalate decarboxylase loaded with magnetic nano-Fe 3O 4@SiO 2 for demulsification of oil-in-water emulsions. CHEMOSPHERE 2022; 308:136595. [PMID: 36167213 DOI: 10.1016/j.chemosphere.2022.136595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The inability to demulsify oil-in-water emulsions via green and efficient processes is a challenging problem in many industrial processes. As a novel biodemulsifier, protein demulsifiers display excellent dispersibility and stability, but their demulsification mechanisms are not clear, which severely restricts their large-scale production and application. In this study, the demulsification mechanism of the high-efficiency protein biodemulsifier oxalate decarboxylase (Bacm OxdC), which is secreted by the Bacillus mojavensis XH1 strain, for an oil-in-water emulsion was analyzed. The results showed that Bacm OxdC was spontaneously adsorbed at the oil-water interface and turned its hydrophobic amino acids outward to increase its hydrophobicity and break the emulsified system. Furthermore, it effectively reduced the oil-water interfacial tension and interfacial film strength, thereby reducing the oil-water interfacial energy and finally enabling demulsification. To further improve the demulsification efficiency and reusability, Fe3O4@SiO2@OxdC-DDSA was prepared. This method provided a magnetic response for Bacm OxdC and enabled efficient demulsification. The demulsification rate of Fe3O4@SiO2@OxdC-DDSA reached 98.1% at 24 h, which was 30.7% higher than that of the original Bacm OxdC. After three cycles, the demulsification rate still reached 89.3%, proving it has excellent recyclability. This work is the first study on the demulsification mechanism of protein biodemulsifiers and provides useful insights into the demulsification mechanism of biodemulsifiers for oil-in-water emulsions. In addition, a promising high-efficiency modification technique for protein biodemulsifiers was proposed, which provided information for the development of biodemulsifiers for oil-water separation.
Collapse
Affiliation(s)
- Ning Hou
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Xin Zhao
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Ziyi Han
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Xinxin Jiang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Yongping Fang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Yun Chen
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
10
|
A functional spreadable canola and milk proteins oleogels as a healthy system for candy gummies. Sci Rep 2022; 12:12619. [PMID: 35871205 PMCID: PMC9308800 DOI: 10.1038/s41598-022-16809-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, interest and demand for healthy and useful food products have become a global requirement. Thus, the production of functional foods with high polyunsaturated fatty acids and antioxidants is very challenging. In this study, four functional spreadable oleogels based on canola oil and milk proteins were developed. These spreadable oleogels were used as an innovative model for the preparation of candy gummies. The chemical composition, oxidative stability, and effects of storage conditions were studied. The results showed that the fat content in spreadable oleogels and gummies ranged from 35 to 47 and 2.40–4.15%, respectively. The protein content in spreadable doum and carrot was 7.41%, while it was 6.15% in the spreadable plain and ranged from 10.25 to 12.78% in gummies. The hardness of spreadable oleogels and gummies ranged from 0.3 to 0.9 and 6.22–16.30 N, respectively. Spreadable carrot and spreadable doum had peroxide values greater than 8 meqO2/kg after storage, whereas spreadable plain and spreadable canola oleogel had better oxidative stability. The antioxidant activity of spreadable oleogels and gummies ranged from 66.98–46.83% to 51.44–40.37%, respectively. In addition, transmission electron microscopy and polarized light microscopy micrographs showed the presence of a coherent entangled network between oleogels and nutritional polymers. The oil binding capacity of spreadable carrot oleogel had a maximum value of 97.89%, while formed gummies were higher than 99%. This study showed a promising way to make functional spreadable oleogels as a model for food products that are good for health and nutrition.
Collapse
|
11
|
Shilpashree B, Arora S, Chawla P, Sharma V. A comparison of zinc interactions with succinylated milk protein concentrate and sodium caseinate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Wang R, Wang JJ, Guo X, Li Y, Wu Y, Liu H, Zhao Y. Physicochemical and functional properties of the Antarctic krill proteins modified by succinylation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Zhang T, Xu J, Huang S, Tao N, Wang X, Zhong J. Anhydride structures affect the acylation modification and emulsion stabilization ability of mammalian and fish gelatins. Food Chem 2021; 375:131882. [PMID: 34954583 DOI: 10.1016/j.foodchem.2021.131882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 11/04/2022]
Abstract
In this work, ring-like anhydrides (C4, C5, and C6) with different sizes and succinic anhydrides (C4, C10, C12, C14, and C16) with different side chain lengths were used to modify bovine bone gelatin (BBG) and cold-water fish skin gelatin (CFG), and the effect of acylated gelatins on fish oil-loaded emulsions stability was explored. The results showed that the degree of N-acylation decreased with increased ring sizes or side chain lengths, and the surface hydrophobicity of acylated gelatins increased with increased anhydride carbon numbers. Acylated CFGs had higher droplet stability and lower liquid-gel transition time than acylated BBGs. Only BBG-C12 had a slight increase on the creaming stability among these acylated gelatins. These results demonstrated that the gelatins could be modified by all the anhydrides and their emulsion stabilization ability was dependent on the gelatin type and anhydride structure. The results could be beneficial for protein-based emulsifier development and application.
Collapse
Affiliation(s)
- Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shudan Huang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
14
|
Tosif MM, Najda A, Bains A, Krishna TC, Chawla P, Dyduch-Siemińska M, Klepacka J, Kaushik R. A Comprehensive Review on the Interaction of Milk Protein Concentrates with Plant-Based Polyphenolics. Int J Mol Sci 2021; 22:ijms222413548. [PMID: 34948345 PMCID: PMC8709213 DOI: 10.3390/ijms222413548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Functional properties and biological activities of plant-derived polyphenolic compounds have gained great interest due to their epidemiologically proven health benefits and diverse industrial applications in the food and pharmaceutical industry. Moreover, the food processing conditions and certain chemical reactions such as pigmentation, acylation, hydroxylation, and glycosylation can also cause alteration in the stability, antioxidant activity, and structural characteristics of the polyphenolic compounds. Since the (poly)phenols are highly reactive, to overcome these problems, the formulation of a complex of polyphenolic compounds with natural biopolymers is an effective approach. Besides, to increase the bioavailability and bioaccessibility of polyphenolic compounds, milk proteins such as whey protein concentrate, sodium caseinate, and milk protein concentrate act as natural vehicles, due to their specific structural and functional properties with high nutritional value. Therefore, milk proteins are suitable for the delivery of polyphenols to parts of the gastrointestinal tract. Therefore, this review reports on types of (poly)phenols, methods for the analysis of binding interactions between (poly)phenols-milk proteins, and structural changes that occur during the interaction.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (M.M.T.); (T.C.K.)
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, India;
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (M.M.T.); (T.C.K.)
- Correspondence: (A.N.); (P.C.)
| | - Magdalena Dyduch-Siemińska
- Faculty of Agrobioengineering, Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India;
| |
Collapse
|
15
|
Krishna TC, Najda A, Bains A, Tosif MM, Papliński R, Kapłan M, Chawla P. Influence of Ultra-Heat Treatment on Properties of Milk Proteins. Polymers (Basel) 2021; 13:polym13183164. [PMID: 34578063 PMCID: PMC8468757 DOI: 10.3390/polym13183164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Milk can be considered one of the primary sources of nutrients for the mammalian neonate. Therefore, milk and milk-based products, such as infant formula, whey protein isolate, different varieties of cheese, and others are prepared to meet the nutritional requirements of the consumer. Due to its significant nutritional components and perishable nature, a variety of pathogenic microorganisms can grow and multiply quickly in milk. Therefore, various heat treatments can be employed for the improvement of the shelf life of milk. In comparison to pasteurized milk, due to excessive and severe heating, UHT milk has a more cooked flavor. During storage, changes in the physicochemical properties of milk can lead to off-flavors, undesirable browning, separation of fat, sediment formation, or gelation during the subsequent storage. Several important factors such as processing parameters, time-temperature abuse (storage condition), and packaging type also influence the quality characteristics and consumer acceptance of the milk; however, the influence of heat treatments on milk protein is inconstant. The major protein modifications that occur during UHT treatment are denaturation and aggregation of the protein, and chemical modifications of its amino acids. These UHT-induced protein alterations can change digestibility and the overall biological influence of the intake of these proteins. Therefore, this review is focused on the influence of UHT on the physicochemical and structural attributes of milk proteins during storage. There are many indications of milk proteins present in the UHT milk, and milk products are altered during processing and storage.
Collapse
Affiliation(s)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland;
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar, Punjab 144020, India;
| | - Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India; (T.C.K.); (M.M.T.)
| | - Rafał Papliński
- Department of Vegetable Crops and Medicinal Plants, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland;
| | - Magdalena Kapłan
- Department of Pomology, Nursery, and Enology, University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India; (T.C.K.); (M.M.T.)
- Correspondence: (A.N.); (P.C.)
| |
Collapse
|
16
|
Higa FA, Nickerson MT. Plant Protein-Carbohydrate Conjugates: A Review of Their Production, Functionality and Nutritional Attributes. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Federica A. Higa
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Lu Y, Pan D, Xia Q, Cao J, Zhou C, He J, Sun Y, Xu S. Impact of pH-dependent succinylation on the structural features and emulsifying properties of chicken liver protein. Food Chem 2021; 358:129868. [PMID: 33933953 DOI: 10.1016/j.foodchem.2021.129868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
This work aims at investigating the pH-regulated relationship between the structural features and emulsifying properties of chicken liver protein (CLP) during succinylation and related mechanisms behind. The results demonstrated that the major succinylation sites occurred at lysine, histidine and tyrosine of CLP, and the succinylation degree increased by 30.66% as pH increased to 10. The succinylation pH elevation increased the solubility and oil absorption capacity of CLP, thus favoring its improvement in emulsifying properties, due to the succinylation process-induced increase in surface charge density and amphiphilic balance as well as modified network structure. However, the surface hydrophobicity of succinylated products decreased by 10.75% when the pH increased from 7 to 10. Besides, succinylation-induced variations in electrostatic repulsive and particle size distribution greatly improved the storability of the emulsions. These results suggested the great potential of pH-modulated succinylation to regulate the structure-property relationship of protein-based products.
Collapse
Affiliation(s)
- Yinyin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Shenlu Xu
- Hangzhou Xueyu Biotechnology Co. Ltd., Hangzhou, Zhejiang 311201, China
| |
Collapse
|
18
|
Prashar S, Sharma S, Kumar N, Kaushik R, Chawla P. Formulation, Characterization, and In Vitro Mineral Absorption of Ficus Palmata Fruit Extract Nanoemulsion. J Am Coll Nutr 2021; 41:291-300. [PMID: 33856969 DOI: 10.1080/07315724.2021.1879693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Loss of vital bioactive components of Ficus palmata fruit extract during food processing is a major issue. Therefore, to retain the antioxidant potential and to increase the mineral bioavailability, gum arabic stabilized nanoemulsion of Fig fruit extract was prepared. METHOD . Nanoemulsion was formulated using three different levels (1, 3, and 5%) of fig extract, however, to optimize the fig extract concentration, the amount of gum arabic and linoleic acid was kept constant. RESULTS The average droplet size of nanoemulsion was observed in the range of 22.88-37.87 nm, whereas the Fourier Transform Infrared (FTIR) Spectroscopy confirmed the presence of functional groups in the emulsion system. Also, increased ionic concentration significantly (p < 0.05) increased the average droplet size and zeta potential of nanoemulsion during storage. Increased shear rate and temperature unveiled a slight decrease in apparent viscosity of the nanoemulsion. Non-significant (p < 0.05) difference in TBA value confirmed the oxidative stability of the emulsion. Significantly (p < 0.05) higher mineral bioavailability for calcium was observed as compared to iron and zinc. CONCLUSION Our results manifested improved anti-oxidant activity, mineral bioavailability, and oxidative stability of Fig extract nanoemulsion, suggesting its potential use as a therapeutic alternative.
Collapse
Affiliation(s)
| | | | - Naveen Kumar
- Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ravinder Kaushik
- University of Petroleum and Energy Studies, Dehradun, Uttrakhand, India
| | - Prince Chawla
- Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
19
|
He M, Li L, Wu C, Zheng L, Jiang L, Huang Y, Teng F, Li Y. Effects of glycation and acylation on the structural characteristics and physicochemical properties of soy protein isolate. J Food Sci 2021; 86:1737-1750. [PMID: 33822377 DOI: 10.1111/1750-3841.15688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 11/29/2022]
Abstract
This study examined the effects of different sequential treatments of dextran glycation and succinic anhydride acylation on the structure and physicochemical properties of soy protein isolate (SPI). The tested properties included electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy, surface hydrophobicity (H0 ), free sulfhydryl (-SH), solubility, interfacial properties, rheological properties, and scanning electron microscope (SEM). The results show that the two treatments significantly improved the structure and functional characteristics of the SPI. The order of the methods had an important effect on the SPI. The lowest H0 (231.76 ± 11.92), the highest free -SH content (3.09 ± 0.09 µmol/g), and the highest solubility at pH = 7 (77 ± 3.97%) were obtained when the acylation treatment was followed by the glycation treatment. Emulsification, emulsion stability, foaming, and foam stability were also the highest. Glycation and acylation caused the viscosity coefficient (k) of the SPI solution to decrease compared with SPI alone, but the flow index (n) value increased, and the sum G' value of the conjugate system decreased as gel time increased. SEM showed that its microstructure has changed significantly. Therefore, this research provided an effective method for improving the functional characteristics of SPI and had potential industrial application prospects. PRACTICAL APPLICATION: Glycation and acylation of soybean protein isolate improved the chemical modification method of protein, improved the functional properties of soybean protein, widened its application in food and materials, and provided a new idea for the further development and utilization of soybean protein.
Collapse
Affiliation(s)
- Mingyu He
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Lijia Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Changling Wu
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Li Zheng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Lianzhou Jiang
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - YuYang Huang
- National Soybean Engineering Technology Research Center, Harbin, Heilongjiang, 150030, China.,Department of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang, 150028, China
| | - Fei Teng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yang Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.,National Soybean Engineering Technology Research Center, Harbin, Heilongjiang, 150030, China.,Heilongjiang Academy of Green Food Science, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
20
|
Kang KM, Lee SH, Kim HY. Quality properties of whole milk powder on chicken breast emulsion-type sausage. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:405-416. [PMID: 33987614 PMCID: PMC8071734 DOI: 10.5187/jast.2021.e30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
The aim of the study was to determine the effect of whole milk powder (WMP) as
heterologous proteins on chicken breast emulsion-type sausages. The quality
properties of WMP on such chicken breast emulsion-type sausages were
investigated by measuring the proximate composition, pH, color, cooking yield,
protein solubility, and by applying other methods, such as texture profile
analysis (TPA), microphotograph, sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE), and electronic nose. The crude fat, protein, and ash
contents of 15% WMP samples were significantly higher than the control samples
(p < 0.05). The redness of the cooked samples
significantly increased with an increase in the WMP contents (p
< 0.05). The cooking yield of WMP treated samples was significantly
higher than the control sample (p < 0.05). Additionally,
the hardness, gumminess, and chewiness of WMP treated samples were significantly
higher than the control sample (p < 0.05). The
sarcoplasmic and myofibrillar proteins of samples containing 15% WMP were
significantly higher than the control samples (p <
0.05). The result of SDS-PAGE showed that the C protein, sarcoplasmic protein,
actin, and tropomyosin increased with an increase in the WMP contents. The
principal component analysis plot of WMP-treated samples was clearly different
from that of the control samples. Based on these results, it was predicted that
WMP could be useful as heterologous protein on emulsion-type sausage.
Collapse
Affiliation(s)
- Kyu-Min Kang
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Sol-Hee Lee
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
21
|
Huamaní‐Meléndez VJ, Barragán‐Condori M, Mauro MA, Darros‐Barbosa R. Rheological and equilibrium properties of milk proteins and tara gum mixtures. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Víctor J. Huamaní‐Meléndez
- Department of Food Engineering and Technology Institute of Biosciences, Humanities and Exact Sciences São Paulo State University – UNESP Campus of São José do Rio Preto, R. Cristóvão Colombo, 2265 ‐ Jardim Nazareth São José do Rio Preto SP15054‐000Brazil
| | - Melquiades Barragán‐Condori
- Department of Basic Sciences National Intercultural University of Quillabamba – UNIQ El Arenal S/N Quillabamba Cusco08741Peru
| | - Maria Aparecida Mauro
- Department of Food Engineering and Technology Institute of Biosciences, Humanities and Exact Sciences São Paulo State University – UNESP Campus of São José do Rio Preto, R. Cristóvão Colombo, 2265 ‐ Jardim Nazareth São José do Rio Preto SP15054‐000Brazil
| | - Roger Darros‐Barbosa
- Department of Food Engineering and Technology Institute of Biosciences, Humanities and Exact Sciences São Paulo State University – UNESP Campus of São José do Rio Preto, R. Cristóvão Colombo, 2265 ‐ Jardim Nazareth São José do Rio Preto SP15054‐000Brazil
| |
Collapse
|
22
|
Zhang T, Ding M, Tao L, Liu L, Tao N, Wang X, Zhong J. Octenyl succinic anhydride modification of bovine bone and fish skin gelatins and their application for fish oil-loaded emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Abstract
The aim of this work is to determine the usage effectiveness of milk-protein concentrates as an analogue of cottage cheese at culinary products manufacturing. For attaining the set aim, we determined the biological value of protein in products, made using a milk-protein concentrate, comparing to traditional culinary products of fatless cottage cheese.
The research object was chosen as a milk-protein concentrate of buttermilk, obtained by the method of thermo-acid coagulation. Puree of cranberries was used as a coagulant. Classic recipes of different groups of culinary products, based on cottage cheese: cheese cakes, cottage cheese casserole, cottage cheese stuffing and cottage cheese biscuits were used as control samples for the studies.
The protein value of the milk concentrate and also products on its base was determined by the method of digestible indispensable amino acid score calculation.
The conducted studies have demonstrated that despite the less amino acid score of the concentrate, comparing with a control sample, products on its base have higher amino acid score, comparing with their cottage cheese analogues. Thus, the amino acid score of cheese cakes based on the concentrate is 84 % and exceeds the control sample, which amino acid score is 33 %, in 2.5 times. The amino acid score of cottage cheese casserole based on the concentrate is 68 % and exceeds the control sample in 1.7 times. The amino acid score parameter of protein stuffing is 94 % that exceeds the control sample with score 36 % in 2.6 times. The amino acid score of biscuits based on the concentrate is 26 % that exceeds the score of a cottage cheese analogue in 2 times.
The obtained results may be used for elaborating and correcting the food ration for the population under conditions of protein deficiency.
Collapse
|