1
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
2
|
Cowen D, Zhang R, Komorowski M. Infections in long-duration space missions. THE LANCET. MICROBE 2024; 5:100875. [PMID: 38861994 DOI: 10.1016/s2666-5247(24)00098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
As government space agencies and private companies announce plans for deep space exploration and colonisation, prioritisation of medical preparedness is becoming crucial. Among all medical conditions, infections pose one of the biggest threats to astronaut health and mission success. To gain a comprehensive understanding of these risks, we review the measured and estimated incidence of infections in space, effect of space environment on the human immune system and microbial behaviour, current preventive and management strategies for infections, and future perspectives for diagnosis and treatment. This information will enable space agencies to enhance their comprehension of the risk of infection in space, highlight gaps in knowledge, aid better crew preparation, and potentially contribute to sepsis management in terrestrial settings, including not only isolated or austere environments but also conventional clinical settings.
Collapse
Affiliation(s)
- Daniel Cowen
- School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Matthieu Komorowski
- Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
3
|
Zhang J, Yang H, Sun Y, Yan B, Chen W, Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr Rev Food Sci Food Saf 2024; 23:e13418. [PMID: 39073089 DOI: 10.1111/1541-4337.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Exploring isolated and confined environments (IACEs), such as deep-sea ecosystems, polar regions, and outer space, presents multiple challenges. Among these challenges, ensuring sustainable food supply over long timescales and maintaining the health of personnel are fundamental issues that must be addressed. Microalgae, as a novel food resource, possess favorable physiological and nutritional characteristics, demonstrating potential as nutritional support in IACEs. In this review, we discuss the potential of microalgae as a nutritional supplement in IACEs from four perspectives. The first section provides a theoretical foundation by reviewing the environmental adaptability and previous studies in IACEs. Subsequently, the typical nutritional components of microalgae and their bioavailability are comprehensively elucidated. And then focus on the impact of these ingredients on health enhancement and elucidate its mechanisms in IACEs. Combining the outstanding stress resistance, rich active ingredients, the potential to alleviate osteoporosis, regulate metabolism, and promote mental well-being, microalgae demonstrate significant value for food applications. Furthermore, the development of novel microalgae biomatrices enhances health safeguards. Nevertheless, the widespread application of microalgae in IACEs still requires extensive studies and more fundamental data, necessitating further exploration into improving bioavailability, high biomass cultivation methods, and enhancing palatability.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuying Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Santhoshkumar P, Negi A, Moses JA. 3D printing for space food applications: Advancements, challenges, and prospects. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:158-165. [PMID: 38245341 DOI: 10.1016/j.lssr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 01/22/2024]
Abstract
Space foods closely associate with the performance and mental health of astronauts. Over the years, a range of manufacturing technologies have been explored and advancements in food 3D printing can provide answers to certain existing challenges and revolutionize the way foods are prepared for space exploration missions. Apart from the nutrition and satiety perspective, product shelf-life, variety, personalization, and the need for customized diets are critical considerations. In such long-duration human-crewed space missions, under microgravity conditions and exposure to space, psychological factors heavily affect food consumption patterns. Therefore, there has been a surge in research funding for developing products and methods that offer safe, nutritionally balanced, and delightful food options. 3D food printing could be a creative solution for such requirements. While multiple challenges must be addressed, the technology promises waste minimization and the scope for on-site on-demand food preparation. This article begins with fundamental concepts of this subject, provides a timeline of the advancements in the field, and details the futuristic prospects of the technology for long-duration space missions.
Collapse
Affiliation(s)
- P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Ministry of Food Processing Industries (MoFPI), Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Ministry of Food Processing Industries (MoFPI), Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Ministry of Food Processing Industries (MoFPI), Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
5
|
Dakkumadugula A, Pankaj L, Alqahtani AS, Ullah R, Ercisli S, Murugan R. Space nutrition and the biochemical changes caused in Astronauts Health due to space flight: A review. Food Chem X 2023; 20:100875. [PMID: 38144801 PMCID: PMC10740090 DOI: 10.1016/j.fochx.2023.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023] Open
Abstract
Astronauts required food that is healthy, nutritious, and tasted good, while also meeting their dietary needs. To ensure the astronauts' nutritional needs are met, a Nutritional Status Assessment Supplemental Medical Objective (Nutrition SMO) is conducted. This involves collecting blood and urine samples from the astronauts, which are then tested and analysed. The assessment looks for indications of bone health, muscle loss, hormonal imbalances, gastrointestinal functions, cardiovascular health, iron metabolism, ophthalmic changes, and immune changes that occur during space flight under conditions of microgravity or weightlessness. It was discovered that iron levels in astronauts tend to increase due to the decrease in body volume during space flight. It requires skilful optimization considering nutrient delivery, shelf life, and packaging of space food, while minimizing resource usage and ensuring reliability, safety, and addressing the physiological and psychological effects on the crew members.
Collapse
Affiliation(s)
- Angel Dakkumadugula
- Food Science and Technology, Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| | - Lakshaa Pankaj
- Food Science and Technology, Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| | - Ali S. Alqahtani
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- HGF Agro, Ata Teknokent, TR-25240, Erzurum, Turkiye
| | - Rajadurai Murugan
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| |
Collapse
|
6
|
Extrusion-based 3D printing of food biopolymers: A highlight on the important rheological parameters to reach printability. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Pandith JA, Neekhra S, Ahmad S, Sheikh RA. Recent developments in space food for exploration missions: A review. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:123-134. [PMID: 36682821 DOI: 10.1016/j.lssr.2022.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Food and nutrition have greatly influenced the effectiveness of space exploration missions. With the development of technology, attention is now being paid more and more to preparing food for the microgravity environment, taking into account factors like nutrient density, shelf life, optimized packaging, preservations, innovations, challenges, and applications. The spectrum of food products is designed to meet the balanced nutritional requirements, reduce hazards encountered by astronauts, and utilize space in explorers during space missions. For the long duration of space missions and, consequently, for human permanence in space, it is crucial to provide humans with an adequate supply of fresh food to meet their nutritional needs. By doing this, astronauts could reduce the health risks associated with psychological stress, microgravity, and radiation exposure from space. Maintaining astronauts' health, happiness, and vitality during long-duration human-crewed missions has recently emerged as an essential and critical research area. The food they eat appears to be an important factor. For short-term space missions, astronauts' food could be brought from earth. Still, for long-term space missions to the Moon, Mars, and other distant missions, which are the current research destinations, they must find a way to eat, such as by cultivating plants or finding other means of survival. Scientists and researchers are attempting to develop novel food production technologies or systems that require minimal inputs while maximizing safe, nutritionally balanced, and delicious food outputs for long-duration space missions that could benefit people on earth. This review summarizes various aspects of space food, including evolution, innovations, technological advancements to prolong shelf life, and astronauts' problems. It also involves current research, including space foods like 3D printing and space farming for a long-term space mission.
Collapse
Affiliation(s)
- Junaid Ahmad Pandith
- Department of Post-Harvest Engineering and Technology, Faculty of Agriculture, Aligarh Muslim University, Aligarh, 202002, India.
| | - Somya Neekhra
- Department of Food Engineering and Technology, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Saghir Ahmad
- Department of Post-Harvest Engineering and Technology, Faculty of Agriculture, Aligarh Muslim University, Aligarh, 202002, India
| | - Rayees Ahmad Sheikh
- Department of Chemistry, Government Degree College Pulwama, Jammu and Kashmir, 192301, India
| |
Collapse
|
8
|
Niu D, Zhang M, Mujumdar AS, Cao P. Recent progress on quality improvement and detection technologies of special foods used for activities in space and aviation: a review. Crit Rev Food Sci Nutr 2022; 64:1452-1464. [PMID: 36062820 DOI: 10.1080/10408398.2022.2117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper focuses on the development and evolution, quality improvement and research progress in the rapidly emerging area of new detection technologies of special foods for use in space and to some extent aviation. The quality improvement aspects covered in this review ranged from the special food processing technology, sterilization treatment and product packaging to new detection technologies for quality assurance based on DNA microarray technology, sensor, imaging technology, carbon nanotubes and novel probe technology.
Collapse
Affiliation(s)
- Dongle Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Ping Cao
- China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
9
|
Kim H, Park B, Park H, Choi I, Rhee M. Low-shear modeled microgravity affects metabolic networks of Escherichia coli O157:H7 EDL933: Further insights into space-microbiology consequences. Food Res Int 2022; 154:111013. [DOI: 10.1016/j.foodres.2022.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/04/2022]
|
10
|
Liu W, Zhang M, Mujumdar AS, Chen J. Role of dehydration technologies in processing for advanced ready-to-eat foods: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:5506-5520. [PMID: 34961367 DOI: 10.1080/10408398.2021.2021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Advanced ready-to-eat foods, which can be consumed directly or only need simple processed before consumption, refer to the products that processing with cutting-edge food science and technology and have better quality attribute. Cold chain and chemical addition are commonly used options to ensure microbial safety of high moisture advanced ready-to-eat foods. However, this requires freezing/thawing processing at high cost or has undesirable residue. Dehydration treatment has the potential to compensate those shortcomings. This article reviewed the positive effects of dehydration on advanced ready-to-eat foods, current application status of dehydration technologies, novel dehydration related technologies and the pathogenic bacteria control of products. It is observed that dehydration treatment is receiving increasing attention for ready-to-eat foods including space foods, 3 D-printed personalized foods and formula foods for special medical purposes. Recently developed drying technologies such as pulsed spouted microwave freeze-drying and infrared freeze-drying have attracted much interest due to their excellent drying characteristics. Finally, intelligent drying, dehydration-nano-hybridization and dehydration-induced multi-dimensional modification technology are some of the emerging R and D areas in this field.
Collapse
Affiliation(s)
- Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
11
|
Escalante-Aburto A, Trujillo-de Santiago G, Álvarez MM, Chuck-Hernández C. Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Compr Rev Food Sci Food Saf 2021; 20:5722-5741. [PMID: 34643023 DOI: 10.1111/1541-4337.12849] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional food printing (3DFP) uses additive manufacturing concepts to fabricate customized designed products with food ingredients in powder, liquid, dough, or paste presentations. In some cases, it uses additives, such as hydrocolloids, starch, enzymes, and antibrowning agents. Chocolate, cheese, sugar, and starch-based materials are among the most used ingredients for 3DFP, and there is a broad and growing interest in meat-, fruit-, vegetable-, insect-, and seaweed-based alternative raw materials. Here, we reviewed the most recent published information related to 3DFP for novel uses, including personalized nutrition and health-oriented applications, such as the use of 3D-printed food as a drug vehicle, and four-dimensional food printing (4DFP). We also reviewed the use of this technology in aesthetic food improvement, which is the most popular use of 3DFP recently. Finally, we provided a prospective and perspective view of this technology. We also reflected on its multidisciplinary character and identified aspects in which social and regulatory affairs must be addressed to fulfill the promises of 3DFP in human health improvement.
Collapse
Affiliation(s)
- Anayansi Escalante-Aburto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo León, México.,Department of Nutrition, School of Health Sciences, Universidad de Monterrey, Nuevo León, México
| | | | - Mario M Álvarez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo León, México
| | | |
Collapse
|