1
|
Li B, Cheng K, Huang L, Chen P, Luo L, Zhang L, Du T, Zhang T, Li Q, Ma Y, Fu B, Jin M, Wang J. Directional anchoring of polymer-lysozyme nanohybrids for adhesive capture and enhanced removal of Alicyclobacillus acidoterrestris in fruit juices. Food Chem 2025; 466:141992. [PMID: 39612830 DOI: 10.1016/j.foodchem.2024.141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
The acidophilic and heat-resistant traits of Alicyclobacillus acidoterrestris (A. acidoterrestris) present a formidable challenge to fruit juices production safety. To address the limitations of conventional thermal sterilization, a novel bacterial capture device MPDEL has been developed. This innovative device utilizes dopamine-coated magnetic nanoparticles that are covalently linked with lysozyme, enabling efficient and rapid capture of A. acidoterrestris in acidic juices, followed by facile magnetic-controlled separation for subsequent removal. Lysozyme not only recognizes and directional anchors the bacterial surface, but facilitates the adhesion of polydopamine to the bacterial surface. Benefiting from the abundant binding sites and rapid adsorption kinetics, this un-thermal treatment completely removes 104 CFU/mL of A. acidoterrestris from the juice within a span of 20 min. The MPDEL exhibits high capture performance, negligible cytotoxicity and no discernable impact on juice quality, offering a novel option for the removal of A. acidoterrestris from fruit juices.
Collapse
Affiliation(s)
- Bingzhi Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Kun Cheng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Lunjie Huang
- College of Biomass Science and Engineering, Sichuan University, No. 24 Southern Yihuan, Chengdu 610065, Sichuan, China
| | - Pengyu Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qingqing Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Bangfeng Fu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Maojun Jin
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Li B, Cheng K, Chen P, Luo L, Zhang L, Du T, Zhang T, Li Q, Ma Y, Sun J, Jin M, Wang J, Chen Y. Unlocking dual-mode enzyme activities on bacterial surface: Directional recognition and swift capture of Alicyclobacillus acidoterrestris from fruit juices. Food Res Int 2025; 200:115480. [PMID: 39779128 DOI: 10.1016/j.foodres.2024.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The acidophilic and heat-resistant characteristics of Alicyclobacillus acidoterrestris (A. acidoterrestris) pose significant challenges to fruit juice production. Traditional thermal removal methods are often ineffective against this resilient bacterium. To address this issue, we developed a novel adsorbent, magnetic carbonation carbon-lysozyme nanohybrid (MCL), composed of magnetic nanoparticles with a thin carbon shell and covalently grafted lysozyme. The outer lysozyme facilitates binding to the bacterial surface through two modes: electrostatic attraction and chemical interaction, acting as a vital engine for bacterial adhesion. The ultrathin carbon coating enhances dispersion, reduces magnetic loss, provides more adsorption sites for lysozyme grafting, and ensures stable function in acidic environments. Benefiting from the large surface area of MCL and the specific peptidoglycan recognition structure of lysozyme, MCL exhibits rapid adsorption kinetics and can completely remove 104 CFU/mL of A. acidoterrestris from juice within 20 min. The MCL demonstrates excellent capture performance, negligible cytotoxicity, and no significant impact on juice quality, offering a promising non-thermal strategy to improve juice safety.
Collapse
Affiliation(s)
- Bingzhi Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Kun Cheng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Pengyu Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qingqing Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Maojun Jin
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Li J, Zhao Y, Zhang Y, Nardin C. Core-shell gelatin-chitosan nanoparticles with lysozyme responsiveness formed via pH-drive and transglutaminase cross-linking. Int J Biol Macromol 2024; 292:138802. [PMID: 39689799 DOI: 10.1016/j.ijbiomac.2024.138802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/16/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Lysozyme-responsive nanoparticles were fabricated using a hydrophilic protein (gelatin type A) as the core and a hydrophobic polysaccharide (chitosan) as the shell. In this study, curcumin was used as a model molecule for encapsulation and promoted the aggregation of gelatin nanoparticles. Transglutaminase catalyzed both intra-molecular cross-linking within gelatin and inter-molecular cross-linking between gelatin and chitosan. The formation mechanism of gelatin nanoparticles was investigated by molecular docking simulations, circular dichroism spectroscopy, UV-vis spectroscopy, turbidity analysis, and dynamic light scattering. Results indicated that pH-driven processes can induce molecular conformational changes of gelatin. However, these alone are insufficient to induce nanoparticle formation. Hydrogen bonding, Pi-alkyl interactions, Pi-Pi interactions, and van der Waals forces between gelatin and curcumin are crucial for the core formation. The coating mechanism of chitosan involved covalent bonds catalyzed by transglutaminase and electrostatic interactions, verified by dynamic light scattering and Fourier transform infrared spectroscopy. Physicochemical properties characterization revealed that the core-shell nanoparticles exhibited a maximum encapsulation efficiency of 97.2 ± 0.3 % and an average particle size of 120 ± 21 nm. The core-shell nanoparticles exhibited high thermal and pH stability, with curcumin retention rates exceeding 80 % under acidic, neutral, and weakly alkaline conditions, and detained thermal degradation up to 90 °C. Additionally, lysozyme responsiveness was evaluated by controlled curcumin release with varying lysozyme concentrations, through which enzymatic hydrolysis of chitosan by lysozyme triggered an increased release rate. In summary, core-shell nanoparticles synthesized from gelatin and chitosan may be effective target delivery systems for curcumin.
Collapse
Affiliation(s)
- Jilong Li
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64000, France
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64000, France.
| |
Collapse
|
4
|
Mukhametova LI, Zherdev DO, Eremin SA, Levashov PA, Siebert HC, Tsvetkov YE, Yudina ON, Krylov VB, Nifantiev NE. Application of the Chitooligosaccharides and Fluorescence Polarization Technique for the Assay of Active Lysozyme in Hen Egg White. Biomolecules 2024; 14:1589. [PMID: 39766297 PMCID: PMC11673759 DOI: 10.3390/biom14121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method detects both the formation of the enzyme-to-tracer complex (because of lectin-like, i.e., carbohydrate-binding action of lysozyme) and tracer splitting (because of chitinase activity of lysozyme). Evaluation of the fluorescence polarization dynamics enables simultaneous measurement of the chitinase and lectin activities of lysozyme, which is crucial for its detection in complex biological systems. Hen egg white lysozyme (HEWL), unlike human lysozyme (HL), formed a stable complex with the chitotriose tracer that underwent no further transformations. This fact allows for easy measurement of the carbohydrate-binding activity of the HEWL. The results of the lysozyme activity measurement for hen egg samples obtained through the FPA correlated with the results obtained using the traditional turbidimetry method. The FPA does not have the drawbacks of turbidimetry, which are associated with the need to use bacterial cells that cannot be precisely standardized. Additionally, FPA offers advantages such as rapid analysis, the use of compact equipment, and standardized reagents. Therefore, the new express technique for measuring the lysozyme activity is applicable for evaluating the complex biomaterial, including for the purposes of food product quality control.
Collapse
Affiliation(s)
- Liliya I. Mukhametova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Dmitry O. Zherdev
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Pavel A. Levashov
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Hans-Christian Siebert
- RI-B-NT—Research Institute of Bioinformatics and Nanotechnology, Schauenburger Str. 116, 24118 Kiel, Germany;
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (Y.E.T.); (O.N.Y.)
| | - Olga N. Yudina
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (Y.E.T.); (O.N.Y.)
| | - Vadim B. Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (Y.E.T.); (O.N.Y.)
| |
Collapse
|
5
|
Wang Y, Song M, Chang W. Antimicrobial peptides and proteins against drug-resistant pathogens. Cell Surf 2024; 12:100135. [PMID: 39687062 PMCID: PMC11646788 DOI: 10.1016/j.tcsw.2024.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The rise of drug-resistant pathogens, driven by the misuse and overuse of antibiotics, has created a formidable challenge for global public health. Antimicrobial peptides and proteins have garnered considerable attention as promising candidates for novel antimicrobial agents. These bioactive molecules, whether derived from natural sources, designed synthetically, or predicted using artificial intelligence, can induce lethal effects on pathogens by targeting key microbial structures or functional components, such as cell membranes, cell walls, biofilms, and intracellular components. Additionally, they may enhance overall immune defenses by modulating innate or adaptive immune responses in the host. Of course, development of antimicrobial peptides and proteins also face some limitations, including high toxicity, lack of selectivity, insufficient stability, and potential immunogenicity. Despite these challenges, they remain a valuable resource in the fight against drug-resistant pathogens. Future research should focus on overcoming these limitations to fully realize the therapeutic potential of antimicrobial peptides in the infection control.
Collapse
Affiliation(s)
- Yeji Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghui Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Yu Z, Liu G, Li S, Hong Y, Zhao S, Zhou M, Tan X. Effects of Fermented Pomegranate Peel Polyphenols on the Growth Performance, Immune Response, Hepatopancreatic Health, and Disease Resistance in White Shrimp ( Litopenaeus vannamei). AQUACULTURE NUTRITION 2024; 2024:9966772. [PMID: 39633958 PMCID: PMC11617047 DOI: 10.1155/anu/9966772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
This study evaluated the growth performance, immune response, hepatopancreatic health, and disease resistance in Litopenaeus vannamei fed diets supplemented with fermented pomegranate peel polyphenols (FPPP) for 45 days. Five diets were formulated to contain various levels of FPPP: FP0 (no FPPP), FPPP inclusion at 0.015% (FP1), 0.030% (FP2), 0.060% (FP3), and 0.120% (FP4). The results indicated there were no significant variations in weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR) of shrimp in all treatment groups (p > 0.05), but the survival (SR) of shrimp was significantly higher in all groups with the addition of FPPP (p < 0.05). Compared with FP0 group, the contents of total protein (TP) and globulin (GLB) in serum biochemical indexes of FP3 and FP4 groups were significantly increased, and the content of blood urea nitrogen (BUN) was significantly decreased (p < 0.05). Compared with FP0 group, the activities of superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (AKP), acid phosphatase (ACP), and lysozyme (LZM) in the hepatopancreas and serum of FP3 and FP4 groups were significantly increased (p < 0.05). Similarly, the activities of glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and phenoloxidase (PO) in the hepatopancreas and serum of FP2 group were significantly higher than those of FP0 group (p < 0.05). In addition, the content of malondialdehyde (MDA) in the hepatopancreas and serum of shrimp in FPPP-added groups was decreased (p < 0.05). Compared with FP0 group, the expression levels of SOD, CAT, glutathione S-transferase (GST), LZM, prophenoloxidase (ProPO), penaeidin-3 (Pen3), Crustin, immune deficiency (Imd), Toll, and Relish genes were significantly upregulated in the hepatopancreas of shrimp in FP3 and FP4 groups (p < 0.05). Additionally, increasing the addition level of FPPP resulted in a more compact hepatosomal arrangement of the shrimp's hepatopancreas, a more visible star-shaped lumen structure, and a significantly higher number of B cells. Finally, the cumulative SR of shrimp in FPPP groups was significantly higher than that in FP0 group after 7 days of infection with Vibrio alginolyticus (p < 0.05). In summary, dietary supplementation of FPPP can improve SR, immunity, and hepatopancreatic health and resistance to Vibrio alginolyticus of L. vannamei.
Collapse
Affiliation(s)
- Zhoulin Yu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guangye Liu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Sijie Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
7
|
Solarczyk P, Slósarz J, Gołębiewski M, Natalello A, Musati M, Luciano G, Priolo A, Puppel K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients 2024; 16:3634. [PMID: 39519466 PMCID: PMC11547650 DOI: 10.3390/nu16213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES In this study, the differences in protein and fat bioactive components between the milk from purebred Polish Holstein Friesian (PHF) cows and PHF cows crossbred with Swedish Red (SRB) were investigated. The objective was to assess the impact of genetic variation on the nutritional quality of their milk. METHODS This study was conducted at the Warsaw University of Life Sciences' (WULS) experimental dairy farm in Warsaw, Poland, and involved 60 primiparous cows divided into two groups: 30 PHF×SRB crossbred cows and 30 purebred PHF cows. All cows were housed in a free-stall system with an average lactation yield exceeding 10,000 kg/lactation. The milk composition analyses included total protein, casein, whey protein, fatty acid profiles, and vitamin content. RESULTS Milk from the PHF×SRB hybrids showed a significantly greater total protein content (3.53%) compared to that from the purebred PHF cows (3.28%). The casein content was higher in the hybrids' milk (2.90%) than the purebreds' milk (2.78%), while the whey protein levels were lower in the purebred milk (0.50%) than in the hybrid milk (0.63%). The hybrids exhibited higher concentrations of certain saturated fatty acids in their milk, while the purebreds' milk contained greater amounts of beneficial unsaturated fatty acids and fat-soluble vitamins-E, D, and K. CONCLUSIONS These results indicate that genetic selection through crossbreeding can enhance the nutritional quality of milk. The differences observed in protein, fatty-acid, and vitamin content underscore the role of the genotype in milk composition, suggesting that breeding strategies can optimize dairy products' health benefits.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Luciano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
8
|
Mazur-Kuśnirek M, Lipiński K, Antoszkiewicz Z, Śliżewska K. The Effect of Synbiotics and Probiotics on Ochratoxin Concentrations in Blood and Tissues, Health Status, and Gastrointestinal Function in Turkeys Fed Diets Contaminated with Ochratoxin A. Animals (Basel) 2024; 14:3024. [PMID: 39457953 PMCID: PMC11505059 DOI: 10.3390/ani14203024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to evaluate carcass quality and analyze gastrointestinal functional status, ochratoxin A (OTA) accumulation in tissues and organs, and the health status of turkeys fed diets contaminated with OTA and supplemented with synbiotic preparations in comparison with commercial probiotic feed additives. The research involved 120 female BIG 6 turkeys, divided into six treatment groups (five replicates, four birds per replicate). Wheat naturally contaminated with OTA (662.03 μg/kg) was used in turkey diets. Turkeys in group 1 received an OTA-contaminated diet without additives. Groups 2 and 3 received 0.4 g/kg of probiotic preparation BioPlus 2B or Cylactin. Groups 4, 5, and 6 received 0.5 g/kg of synbiotics S1, S2, or S3. The following parameters were monitored: growth performance, carcass quality, gastrointestinal tract structure and digesta pH, health status, and concentrations of OTA in the blood and tissues of turkeys. The study found no significant differences in the growth performance and carcass quality of turkey. However, the introduction of probiotics or synbiotics into OTA-contaminated feed mixtures resulted in a reduced pH of the digesta in certain sections of the turkey digestive tract (p < 0.05). Additionally, the tested synbiotic additives significantly reduced liver weight in turkeys at weeks 6 and 15 (p < 0.05). The addition of probiotic and synbiotic preparations based on lactic acid bacteria strains, inulin, and S. cerevisiae yeasts to OTA-contaminated diets in commercial turkey farming may improve health status (p < 0.05) and reduce mycotoxin accumulation in organs and tissues of poultry (p < 0.05).
Collapse
Affiliation(s)
- Magdalena Mazur-Kuśnirek
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Krzysztof Lipiński
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Łódź, Poland;
| |
Collapse
|
9
|
Xie Y, Liu Q, Ge Y, Liu Y, Yang R. Formation and Applications of Typical Basic Protein-Based Heteroprotein Complex Coacervations. Foods 2024; 13:3281. [PMID: 39456343 PMCID: PMC11508135 DOI: 10.3390/foods13203281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Lactoferrin, lysozyme, and gelatin are three common basic proteins known for their ability to interact with acidic proteins (lactoglobulin, ovalbumin, casein, etc.) and form various supramolecular structures. Their basic nature makes them highly promising for interaction with other acidic proteins to form heteroprotein complex coacervation (HPCC) with a wide range of applications. This review extensively examines the structure, properties, and preparation methods of these basic proteins and delves into the internal and external factors influencing the formation of HPCC, including pH, ionic strength, mixing ratio, total protein concentration, temperature, and inherent protein properties. The applications of different HPCCs based on these three basic proteins are discussed, including the encapsulation of bioactive molecules, emulsion stabilization, protein separation and extraction, nanogel formation, and the development of formulas for infants. Furthermore, the challenges and issues that are encountered in the formation of heteroprotein complexes are addressed and summarized, shedding light on the complexities and considerations involved in utilizing HPCC technology in practical applications. By harnessing the basic proteins to interact with other proteins and to form complex coacervates, new opportunities arise for the development of functional food products with enhanced nutritional profiles and functional attributes.
Collapse
Affiliation(s)
- Yufeng Xie
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingchen Liu
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yubo Ge
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yongqi Liu
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
11
|
Jia XY, Liu WY, Huang GQ, Xiao JX. Antibacterial activity of lysozyme after association with carboxymethyl konjac glucomannan. Food Chem 2024; 449:139229. [PMID: 38581793 DOI: 10.1016/j.foodchem.2024.139229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The unique high isoelectric point of lysozyme (LYZ) restricts its application in composite antibacterial coating due to the unfavorable liability to electrostatic interaction with other components. In this work, the antibacterial activity of a dispersible LYZ-carboxymethyl konjac glucomannan (CMKGM) polyelectrolyte complex was evaluated. Kinetic analysis revealed that, compared with free LYZ, the complexed enzyme exhibited decreased affinity (Km) but markedly increased Vmax against Micrococcus lysodeikticus, and QCM and dynamic light scattering analysis confirmed that the complex could bind with the substrate but in a much lower ratio. The complexation with CMKGM did not alter the antibacterial spectrum of LYZ, and the complex exerted antibacterial function by delaying the logarithmic growth phase and impairing the cell integrity of Staphylococcus aureus. Since the LYZ-CMKGM complex is dispersible in water and could be assembled easily, it has great potential as an edible coating in food preservation.
Collapse
Affiliation(s)
- Xin-Yue Jia
- College of Food Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen-Yu Liu
- College of Food Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Huang
- College of Food Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Xia Xiao
- College of Food Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Dong H, Xu Y, Zhang Q, Li H, Chen L. Activity and safety evaluation of natural preservatives. Food Res Int 2024; 190:114548. [PMID: 38945593 DOI: 10.1016/j.foodres.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024]
Abstract
Synthetic preservatives are widely used in the food industry to control spoilage and growth of pathogenic microorganisms, inhibit lipid oxidation processes and extend the shelf life of food. However, synthetic preservatives have some side effects that can lead to poisoning, cancer and other degenerative diseases. With the improvement of living standards, people are developing safer natural preservatives to replace synthetic preservatives, including plant derived preservatives (polyphenols, essential oils, flavonoids), animal derived preservatives (lysozyme, antimicrobial peptide, chitosan) and microorganism derived preservatives (nisin, natamycin, ε-polylysine, phage). These natural preservatives exert antibacterial effects by disrupting microbial cell wall/membrane structures, interfering with DNA/RNA replication and transcription, and affecting protein synthesis and metabolism. This review summarizes the natural bioactive compounds (polyphenols, flavonoids and terpenoids, etc.) in these preservatives, their antioxidant and antibacterial activities, and safety evaluation in various products.
Collapse
Affiliation(s)
- Huiying Dong
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Wang J, Shen Y, Zhuang Y, Wang J, Zhang Y. Multimodal Affinity-Modulated Efficient Separation of Lysozyme with a Hierarchical MXene@MOF Hybrid Framework. Anal Chem 2024; 96:12102-12111. [PMID: 39001808 DOI: 10.1021/acs.analchem.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The development of abiotic protein affinity adsorbents remains challenging for the accurate acquisition and analysis of specific protein species. Inspired by bacterial cell walls, a hierarchical hybrid framework is fabricated through the oriented growth of an Fe-based metal organic framework (MOF) on V2C MXene for the efficient separation of lysozyme (Lys). After directed evolution of adsorptive materials, the MXene@MOF composite rich in hydroxyl groups (termed as MX@MOF-DH) is found exerting exceptional affinity for Lys. Benefiting from hydrogen-bonding, coordination, and electrostatic interaction-mediated multimodal and multivalent affinity, MX@MOF-DH reveals rapid adsorption rate (5 min), superb enrichment factor (83.1), and favorable binding capacity (609.7 mg g-1), which outperforms other latest adsorbents. Moreover, femtomolar sensitivity is achieved even in the presence of high-abundant interfering proteins, as confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis. This work not only provides an efficient approach for selective enrichment of lysozyme but also paves an avenue to construct the protein affinity reagents for specific biological medicine and analysis applications.
Collapse
Affiliation(s)
- Jin Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yudan Shen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Ziai Y, Rinoldi C, Petronella F, Zakrzewska A, De Sio L, Pierini F. Lysozyme-sensitive plasmonic hydrogel nanocomposite for colorimetric dry-eye inflammation biosensing. NANOSCALE 2024; 16:13492-13502. [PMID: 38940682 DOI: 10.1039/d4nr01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Detection of lysozyme levels in ocular fluids is considered crucial for diagnosing and monitoring various health and eye conditions, including dry-eye syndrome. Hydrogel-based nanocomposites have been demonstrated to be one of the most promising platforms for fast and accurate sensing of different biomolecules. In this work, hydrogel, electrospun nanofibers, and plasmonic nanoparticles are combined to fabricate a sensitive and easy-to-use biosensor for lysozyme. Poly(L-lactide-co-caprolactone) (PLCL) nanofibers were covered with silver nanoplates (AgNPls), providing a stable plasmonic platform, where a poly(N-isopropylacrylamide)-based (PNIPAAm) hydrogel layer allows mobility and good integration of the biomolecules. By integrating these components, the platform can also exhibit a colorimetric response to the concentration of lysozyme, allowing for easy and non-invasive monitoring. Quantitative biosensing operates on the principle of localized surface plasmon resonance (LSPR) induced by plasmonic nanoparticles. Chemical, structural, thermal, and optical characterizations were performed on each platform layer, and the platform's ability to detect lysozyme at concentrations relevant to those found in tears of patients with dry-eye syndrome and other related diseases was investigated by colorimetry and UV-Vis spectroscopy. This biosensor's sensitivity and rapid response time, alongside the easy detection by the naked eye, make it a promising tool for early diagnosis and treatment monitoring of eye diseases.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
15
|
Yang ZH, Huang LF, Wang YS, Chang CC. Turn-off enzyme activity of histidine-rich peptides for the detection of lysozyme. Mikrochim Acta 2024; 191:307. [PMID: 38713296 DOI: 10.1007/s00604-024-06388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
An assay that integrates histidine-rich peptides (HisRPs) with high-affinity aptamers was developed enabling the specific and sensitive determination of the target lysozyme. The enzyme-like activity of HisRP is inhibited by its interaction with a target recognized by an aptamer. In the presence of the target, lysozyme molecules progressively assemble on the surface of HisRP in a concentration-dependent manner, resulting in the gradual suppression of enzyme-like activity. This inhibition of HisRP's enzyme-like activity can be visually observed through color changes in the reaction product or quantified using UV-visible absorption spectroscopy. Under optimal conditions, the proposed colorimetric assay for lysozyme had a detection limit as low as 1 nM and exhibited excellent selectivity against other nonspecific interferents. Furthermore, subsequent research validated the practical applicability of the developed colorimetric approach to saliva samples, indicating that the assay holds significant potential for the detection of lysozymes in samples derived from humans.
Collapse
Affiliation(s)
- Zu-Han Yang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ling-Fang Huang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Shan Wang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chia-Chen Chang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 333, Taiwan.
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| |
Collapse
|
16
|
Nazarova A, Shiabiev I, Shibaeva K, Mostovaya O, Mukhametzyanov T, Khannanov A, Evtugyn V, Zelenikhin P, Shi X, Shen M, Padnya P, Stoikov I. Thiacalixarene Carboxylic Acid Derivatives as Inhibitors of Lysozyme Fibrillation. Int J Mol Sci 2024; 25:4721. [PMID: 38731940 PMCID: PMC11083589 DOI: 10.3390/ijms25094721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Shiabiev
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ksenia Shibaeva
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Olga Mostovaya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Timur Mukhametzyanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Arthur Khannanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
17
|
Xu K, Ma C, Wu C, Wu D. The molecular modification, expression, and the antibacterial effects studies of human lysozyme. Biosci Biotechnol Biochem 2024; 88:546-554. [PMID: 38409797 DOI: 10.1093/bbb/zbae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Human lysozyme (hLYZ) has attracted considerable research attention due to its natural and efficient antibacterial abilities and widespread uses. In this study, hLYZ was modified to enhance its enzyme activity and expressed in a Pichia pastoris expression system. A combination mutant HZM(2R-K)-N88D/V110S demonstrated the highest enzyme activity (6213 ± 164 U/mL) in shake flasks, which was 4.07-fold higher when compared with the original strain. Moreover, the recombinant P. pastoris was inducted in a 3 L bioreactor plus methanol/sorbitol co-feeding. After 120 h induction, the antibacterial activity of hLYZ reached 2.23 ± 0.12 × 105 U/mL, with the specific activity increasing to 1.89 × 105 U/mg, which is currently the highest specific activity obtained through recombinant expression of hLYZ. Also, hLYZ supernatants showed 2-fold inhibitory effects toward Staphylococcus aureus and Micrococcus lysodeikticus when compared with HZM(2R-K). Our research generated a hLYZ mutant with high antibacterial capabilities and provided a method for screening of high-quality enzymes.
Collapse
Affiliation(s)
- Kewei Xu
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi, Jiangsu, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu, China
| | - Chuanyuan Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Changyun Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Zhang Q, Zhao Y, Yao Y, Wu N, Chen S, Xu L, Tu Y. Characteristics of hen egg white lysozyme, strategies to break through antibacterial limitation, and its application in food preservation: A review. Food Res Int 2024; 181:114114. [PMID: 38448098 DOI: 10.1016/j.foodres.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Hen egg white lysozyme (HEWL) is used as a food additive in China due to its outstanding antibacterial properties. It is listed as GRAS grade (generally recognized as safe) by the United States Food and Drug Administration (FDA, US) and has been extensively researched and used in food preservation. And the industrial production of HEWL already been realized. Given the complex food system that can affect the antibacterial activity of HEWL, and the limitations of HEWL itself on Gram-negative bacteria. Based on the structure and main biological characteristics of HEWL, this paper focuses on reviewing methods to enhance the stability and antibacterial properties of HEWL. Immobilization tactics such as chemically driven self-assembly, embedding and adsorption address the restriction of poor HEWL antibacterial activity effected by external factors. Both intermolecular and intramolecular modification strategies break the bactericidal deficiencies of HEWL itself. It also comprehensively analyzes the current application status and future prospects of HEWL in the food preservation. There was limited research on the biological methods in modifying HEWL. If the HEWL is genetically engineered, it can broaden its antimicrobial spectrum, improve its other biological activities, so as to further expand its application in the food industry. At present, research on HEWL mainly focused on its antibacterial properties, whereas its application in anti-inflammatory and antioxidant effects also presented great potential.
Collapse
Affiliation(s)
- Qingqing Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
19
|
Naveed M, Wen S, Chan MWH, Wang F, Aslam S, Yin X, Xu B, Ullah A. Expression of BSN314 lysozyme genes in Escherichia coli BL21: a study to demonstrate microbicidal and disintegarting potential of the cloned lysozyme. Braz J Microbiol 2024; 55:215-233. [PMID: 38146050 PMCID: PMC10920529 DOI: 10.1007/s42770-023-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 μg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 μg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 μg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 μg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Sai Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sadar Aslam
- Department of Zoology, University of Baltistan, Skardu, Pakistan
| | - Xian Yin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Baocai Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Asad Ullah
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, 75280, Pakistan
| |
Collapse
|
20
|
Dawood MAO, Abdo SE, El-Kassas S, El-Naggar K, Al Wakeel RA, Moustafa EM, Abou Asa S. Chicken egg lysozyme enhanced the growth performance, feed utilization, upregulated immune-related genes, and mitigated the impacts of Aeromonas hydrophila infection in Nile tilapia (Oreochromisniloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109377. [PMID: 38228249 DOI: 10.1016/j.fsi.2024.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Functional supplements, including lysozyme, are highly approved as immunostimulant and antibacterial agents with a high potential for use in aquaculture. In this regard, Nile tilapia was treated with lysozyme at 0, 0.5, 1, 1.5, and 3 g/kg for 60 days, then challenged with Aeromonas hydrophila. Fish were stocked in 15 glass aquaria (70 L each) with an equal initial weight of 10.72 ± 0.71 g per fish and 15 fish per aquarium. The regression analysis revealed that dietary lysozyme supplementation at 1.83-2 g/kg enhanced the growth performance, protein efficiency ratio, and protein productive value while reducing the feed conversion ratio of tilapia. Markedly, tilapia treated with lysozyme had a low mortality rate (30-50 %) compared to the control, which recorded a 70 % mortality rate after 15 days of challenge with A. hydrophila. The regression analysis also revealed that the highest lysozyme activity of tilapia-fed lysozyme for 60 days is achieved by 2.05 g/kg lysozyme. The expression of Nf-κb, IL-1β, and IL-8 genes is upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. The expression of GPX and CAT genes was higher in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. Before infection, the relative transcription of the lysozyme and C3 was upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg. However, lysozyme gene expression in tilapia treated with 0.5 g/kg lysozyme had no significant differences from those fed 0 g/kg lysozyme. After infection, the relative transcription of the lysozyme gene was upregulated in tilapia fed 1 and 1.5 g/kg, while tilapia fed 1 g/kg lysozyme had the highest C3 gene transcription. After infection, the hepatocytes in the livers of fish fed 0 g/kg lysozyme exhibited a noticeable fatty alteration, along with congestion, a light infiltration of inflammatory cells, and the start of necrosed cell regeneration. However, the livers of fish that received lysozyme were normal except for infiltrations of perivascular and interstitial mononuclear cells, depending on the supplementation dose. In conclusion, dietary lysozyme is recommended at 1.83-2.05 g/kg to gain high growth performance, immune response, and high resistance to A. hydrophila in Nile tilapia.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt.
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, 22758, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Eman M Moustafa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt
| | - Samah Abou Asa
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
21
|
Mezzina L, Nicosia A, Barone L, Vento F, Mineo PG. Water-Soluble Star Polymer as a Potential Photoactivated Nanotool for Lysozyme Degradation. Polymers (Basel) 2024; 16:301. [PMID: 38276709 PMCID: PMC10819795 DOI: 10.3390/polym16020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to form stable complexes with amino acids and to generate reactive oxygen species when irradiated by light of appropriate wavelengths. The issues of hydrophobic behavior and aggregation in aqueous environments of porphyrins can be solved by using its PEGylated derivatives. This work proposes the design of an artificial photo-protease agent based on a PEGylated mercury porphyrin, able to form a stable complex with l-Tryptophan, an amino acid present also in the lysozyme structure (a well-known protein model). The sensing and photodegradation features of PEGylated mercury porphyrin were exploited to detect and degrade both l-Trp and lysozyme using ROS, generated under green (532 nm) and red (650 nm) light lasers. The obtained system (Star3600_Hg) and its behavior as a photo-protease agent were studied by means of several spectroscopies (UV-Vis, fluorescence and circular dichroism), and MALDI-TOF mass spectrometry, showing the cleavage of lysozyme and the appearance of several short-chain residues. The approach of this study paves the way for potential applications in theranostics and targeted bio-medical therapies.
Collapse
Affiliation(s)
- Lidia Mezzina
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Angelo Nicosia
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Laura Barone
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Fabiana Vento
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
| | - Placido Giuseppe Mineo
- Department of Chemical Sciences and INSTM UdR of Catania, University of Catania, V.le A. Doria 6, I-95125 Catania, Italy; (L.M.); (L.B.); (F.V.)
- Institute for Chemical and Physical Processes, National Research Council (IPCF-CNR), Viale F. Stagno d’Alcontres 37, I-98158 Messina, Italy
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via P. Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
22
|
Shao X, Sun H, Wang X, Zhou R. Synergistic effects of EDTA and lysozyme on the properties of hydroxypropyl starch nano antibacterial films. Curr Res Food Sci 2023; 8:100657. [PMID: 38204880 PMCID: PMC10777376 DOI: 10.1016/j.crfs.2023.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Hydroxypropyl starch (HPS) nano antibacterial films incorporating Ethylene Diamine Tetraacetic Acid (EDTA) and lysozyme (LY) were fabricated via solvent casting method. The synergistic effects of EDTA and LY on the microstructure, component interactions, color, optical, mechanical, barrier and antibacterial properties of HPS nano antibacterial films were evaluated. The results indicated that EDTA and LY were well dispersed in the matrix of the HPS nano antibacterial films, the film-forming substrates have good compatibility, resulting in a dense multi-layer structure of the HPS nano antibacterial films. The addition of EDTA and LY increased the color parameters (L*, a*, b* and △E*) of the HPS nano antibacterial films. The synergistic effects of EDTA and LY significantly decreased the light transmission of the HPS nano antibacterial films. The presence of EDTA and LY increased the tensile strength (TS) and the elongation at break (EAB) of the HPS nano antibacterial films. The TS and EAB of E2.5L1 reached the highest values of 6.329 MPa and 50.24 %, respectively. The incorporation of EDTA and LY had positive effects on the improvement of water vapor permeability (WVP) and oxygen permeability (OP). The WVP and OP of E2.5L1 reached the highest values of 0.9350 × 10-12 g cm/cm2•s•Pa and 0.297 × 10 -2 g m/m2 •d, respectively. In addition, EDTA and LY had significant synergistic effects on the antibacterial activity against S. aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria). E2.5L1 exhibited the highest antibacterial activity and the inhibition zone diameters of S. aureus and E. coli were 3.69 mm and 4.28 mm, respectively. The HPS nano antibacterial films incorporating EDTA and LY are potential functional packaging materials.
Collapse
Affiliation(s)
- Xinru Shao
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Haitao Sun
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Ximing Wang
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Ran Zhou
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
- College of Food Science and Engineering, Changchun University, No. 6543 Weixing Road, Changchun, 130022, Jilin, PR China
| |
Collapse
|
23
|
Sarkar S, Saikia A, Kundu S. Transparent and Superhydrophilic Flexible Protein Films with Antifogging and Self-Cleaning Attributes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56397-56412. [PMID: 38011283 DOI: 10.1021/acsami.3c11100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cyanoglycoside-modified flexible protein films, exhibiting a high level of transparency of ≈46 to 83%, were successfully prepared from lysozyme and glycerol with varying amounts of amygdalin (20, 40, and 60%) using water as a solvent. The increasing percentage of amygdalin leads to a drastic improvement of the hydrophilicity of the surface with a decrease in the water contact angle to 5.6°, resulting in superhydrophilicity. The increasing percentage of amygdalin led to a significant improvement in the surface's hydrophilicity, resulting in a reduced water contact angle of 5.6° and achieving superhydrophilicity. This superhydrophilic characteristic is particularly relevant to the excellent antifogging and self-cleaning properties of the resulting protein films. In addition to enhanced flexibility, the films also exhibited considerably improved thermal stability with a 40% loading of amygdalin in the protein solution. The superior mechanical, optical, and thermal properties of amygdalin-modified films are due to the strong hydrogen bonding with the peptides of lysozyme, as evidenced by the disappearance of amide bands in the cured protein films. Therefore, these transparent protein films, with their antifogging and enhanced thermal stability properties, can be potentially used for different packaging and coating applications.
Collapse
Affiliation(s)
- Sanu Sarkar
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Aditi Saikia
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| |
Collapse
|
24
|
Lu N, Wang B, Zhu X. Soft Sensor Modeling Method for the Marine Lysozyme Fermentation Process Based on ISOA-GPR Weighted Ensemble Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:9119. [PMID: 38005505 PMCID: PMC10675238 DOI: 10.3390/s23229119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Due to the highly nonlinear, multi-stage, and time-varying characteristics of the marine lysozyme fermentation process, the global soft sensor models established using traditional single modeling methods cannot describe the dynamic characteristics of the entire fermentation process. Therefore, this study proposes a weighted ensemble learning soft sensor modeling method based on an improved seagull optimization algorithm (ISOA) and Gaussian process regression (GPR). First, an improved density peak clustering algorithm (ADPC) was used to divide the sample dataset into multiple local sample subsets. Second, an improved seagull optimization algorithm was used to optimize and transform the Gaussian process regression model, and a sub-prediction model was established. Finally, the fusion strategy was determined according to the connectivity between the test samples and local sample subsets. The proposed soft sensor model was applied to the prediction of key biochemical parameters of the marine lysozyme fermentation process. The simulation results show that the proposed soft sensor model can effectively predict the key biochemical parameters with relatively small prediction errors in the case of limited training data. According to the results, this model can be expanded to the soft sensor prediction applications in general nonlinear systems.
Collapse
Affiliation(s)
| | - Bo Wang
- Key Laboratory of Agricultural Measurement and Control Technology and Equipment for Mechanical Industrial Facilities, School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (N.L.); (X.Z.)
| | | |
Collapse
|
25
|
Álvarez S, Mullen AM, Álvarez C, Hamill RM, O'Neill E, Gagaoua M. Impact of sampling location and aging on the Longissimus thoracis et lumborum muscle proteome of dry-aged beef. Meat Sci 2023; 205:109315. [PMID: 37625354 DOI: 10.1016/j.meatsci.2023.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
This study aimed to explore the differences in the proteome and molecular pathways between two sampling locations (external, internal) of bovine Longissimus thoracis et lumborum (LTL) muscles at 0, 21, and 28 days of dry-aging (i.e. 3, 24, and 31 days post-mortem). It further assessed the impact of post-mortem aging on the meat proteome changes and the biological processes at interplay. Proteins related to defence response to bacterium and regulation of viral entry into host cell were identified to be more abundant on the external location before dry-aging, which may be associated to the oxidative conditions and microbial activity to which post-mortem muscle is exposed during dressing, chilling, and/or quartering of the carcasses. This highlights the relevance of sampling from interior tissues when searching for meat quality biomarkers. As dry-aging progressed, the meat proteome and related biological processes changed differently between sampling locations; proteins related to cell-cell adhesion and ATP metabolic processes pathways were revealed in the external location at 21 and 28 days, respectively. On the other hand, the impact of aging on the proteome of the interior meat samples, evidenced that muscle contraction and structure together with energy metabolism were the major pathways driving dry-aging. Additionally, aging impacted other pathways in the interior tissues, such as regulation of calcium import, neutrophil activation, and regeneration. Overall, the differences in the proteome allowed discriminating the three dry-aging times, regardless of the sampling location. Several proteins were proposed for validation as robust biomarkers to monitor the aging process (tenderization) of dry-aged beef: TTN, GRM4, EEF1A1, LDB3, CILP2, TNNT3, GAPDH, SERPINI1, and OMD.
Collapse
Affiliation(s)
- Sara Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland; School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | - Anne Maria Mullen
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Carlos Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Ruth M Hamill
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | | |
Collapse
|
26
|
Tomczyk Ł, Leśnierowski G, Cegielska-Radziejewska R. Lysozyme Modification Using Proteolytic Enzymes. Molecules 2023; 28:6260. [PMID: 37687089 PMCID: PMC10488540 DOI: 10.3390/molecules28176260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The lysozyme in the chicken egg white consists of various bioactive amino acids. However, these compounds are inactive when they are in the sequence of parent proteins. They become active only when isolated from these proteins. The aim of this study was to modify lysozyme with proteolytic enzymes under specific conditions of the reaction environment so as to obtain active biopeptides. The physicochemical properties of the resulting preparations were also assessed. Our study showed that the modification of lysozyme with hydrolytic enzymes (pepsin and trypsin) under strictly specified conditions resulted in obtaining biopeptide preparations with new and valuable properties, as compared with native lysozyme. After the enzymatic modification of lysozyme, two structural fractions were distinguished in the composition of the resulting preparations-the monomeric fraction and the peptide fraction. The modified lysozyme exhibited high surface hydrophobicity and high total antibacterial activity despite the decrease in the hydrolytic activity. Modification of lysozyme with hydrolytic enzymes, especially pepsin, resulted in preparations with very good antioxidative properties.
Collapse
Affiliation(s)
- Łukasz Tomczyk
- Department of Food Quality and Safety Management, Poznan University of Life Sciences, 60-624 Poznan, Poland; (G.L.); (R.C.-R.)
| | | | | |
Collapse
|
27
|
Pu J, Zhao B, Liu X, Li S, Wang B, Wu D, Wang J, Geng F. Quantitative proteomic analysis of chicken egg white and its components. Food Res Int 2023; 170:113019. [PMID: 37316084 DOI: 10.1016/j.foodres.2023.113019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The protein profiles and properties of chicken egg white and its three components (thick egg white, TKEW; thin egg white, TNEW; and chalaza, CLZ) were comprehensively compared. The proteomes of TNEW and TKEW are relatively similar, but the abundance of mucin-5B and mucin-6 (the two subunits of ovomucin) is significantly higher in TKEW than in TNEW (42.97% and 870.04%, respectively), while the lysozymes in TKEW are 32.57% higher (p < 0.05) than those in TNEW. Meanwhile, the properties (including the spectroscopy, viscosity, and turbidity) of TKEW and TNEW are significantly different. Comprehensively, it is speculated that the electrostatic interactions between lysozyme and ovomucin are the main reason for the high viscosity and turbidity of TKEW. Compared with egg white sample (EW), CLZ has a higher abundance of insoluble proteins (mucin-5B, 4.23-fold; mucin-6, 6.89-fold) and a lower abundance of soluble proteins (ovalbumin-related protein X, 89.35% lower than EW; ovalbumin-related protein Y, 78.51% lower; ovoinhibitor, 62.08% lower; riboflavin-binding protein, 93.67% lower). These compositional differences should explain the insolubility of CLZ. These findings are important references for deepening the research and development of egg white in the future, such as the thinning of egg white, the molecular basis of changes in egg white properties, and the differential application of TKEW and TNEW.
Collapse
Affiliation(s)
- Jing Pu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Bingye Zhao
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xin Liu
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shugang Li
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
28
|
Guo D, Hou Y, Liang H, Han L, Li B, Zhou B. Mechanism of Reduced Glutathione Induced Lysozyme Defolding and Molecular Self-Assembly. Foods 2023; 12:foods12101931. [PMID: 37238749 DOI: 10.3390/foods12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The distinctive assembly behaviors of lysozyme (Lys) feature prominently in food, materials, biomedicine, and other fields and have intrigued many scholars. Although our previous work suggested that reduced glutathione (GSH) could induce lysozyme to form interfacial films at the air/water interface, the underlying mechanism is still obscure. In the present study, the effects of GSH on the disulfide bond and protein conformation of lysozyme were investigated by fluorescence spectroscopy, circular dichroism spectroscopy, and infrared spectroscopy. The findings demonstrated that GSH was able to break the disulfide bond in lysozyme molecules through the sulfhydryl/disulfide bond exchange reaction, thereby unraveling the lysozyme. The β-sheet structure of lysozyme expanded significantly, while the contents of α-helix and β-turn decreased. Furthermore, the interfacial tension and morphology analysis supported that the unfolded lysozyme tended to arrange macroscopic interfacial films at the air/water interface. It was found that pH and GSH concentrations had an impact on the aforementioned processes, with higher pH or GSH levels having a positive effect. This paper on the exploration of the mechanism of GSH-induced lysozyme interface assembly and the development of lysozyme-based green coatings has better instructive significance.
Collapse
Affiliation(s)
- Dashan Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Yuwei Hou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
29
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
30
|
Trivedi SP, Dwivedi S, Singh S, Khan AA, Kumar M, Shukla A, Dwivedi S, Kumar V, Yadav KK, Tiwari V. Evaluation of immunostimulatory attributes of Asparagus racemosus and Withania somnifera supplemented diets in fish, Channa punctatus (Bloch, 1793). Vet Immunol Immunopathol 2023; 258:110561. [PMID: 36801726 DOI: 10.1016/j.vetimm.2023.110561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
With the progression of aquaculture industry, there has been a spurt in dietary supplementation with economically viable medicinal herbs having enough immunostimulatory potential. This also aids in avoidance of environmentally undesirable therapeutics that are almost inevitable to safeguard fish against an array of diseases in aquaculture practices. The study aims to determine the optimal dose of herbs that can stimulate substantial immune response in fish for reclamation of aquaculture. Immunostimulatory potential of the two medicinal herbs- Asparagus racemosus (Shatavari), Withania somnifera (Ashwagandha), individually, and in combination, with a basal diet was screened up to 60 days in Channa punctatus. 300 laboratory acclimatized healthy fish (14 ± 1 g; 11 ± 1 cm) were divided into ten groups- C, S1, S2, S3, A1, A2, A3, AS1, AS2, and AS3, based on the composition of dietary supplementation, in triplicates, with 10 specimens per group. The hematological index, total protein and lysozyme enzyme activity were performed after 30 and 60 days, while qRT-PCR analysis of lysozyme expression was done after 60 days of the feeding trial. The significant (P < 0.05) increments in hematological indices- (TEC, TLC, DLC, Hb, Hct, MCV, MCH and MCHC), total protein content and serum lysozyme activity, after 30 and 60 days; whereas upregulation of lysozyme transcript levels, both in liver and muscle tissues after 60 days of the feeding trial were recorded in groups- AS1, AS2, and AS3. The maximal increment in lysozyme expression was recorded in AS3, both in liver and muscle tissues, with 3.75 ± 0.13 and 3.21 ± 0.18-folds, respectively. However, increments were non-significant (P > 0.05) for MCV in AS2 and AS3 after 30 days; and for MCHC in AS1 for both the durations; whereas in AS2 and AS3, after 60 days of the feeding trial. A positive correlation (P < 0.05) among lysozyme expression, MCH, lymphocytes, neutrophils, total protein content, and serum lysozyme activity in AS3, after 60 days, conclusively, evinces that a 3% dietary supplementation with both A. racemosus and W. somnifera enhances immunity and health profile of the fish, C. punctatus. The study, thus finds ample scope in augmentation of aquaculture production and also paves the way for more researches for biological screenings of potential immunostimulatory medicinal herbs that can be appropriately incorporated in the fish diet.
Collapse
Affiliation(s)
- Sunil P Trivedi
- Centre of Excellence in Fish Nutrigenomics, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shikha Dwivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shefalee Singh
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Adeel Ahmad Khan
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Anubha Shukla
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shraddha Dwivedi
- Department of Zoology, Government Degree College, Haripur Nihastha, Raebareli 229208, India.
| | - Vivek Kumar
- Department of Zoology, Isabella Thoburn PG College, Lucknow 226007, India.
| | - Kamlesh K Yadav
- Department of Zoology, Government Degree College, Bakkha Kheda, Unnao 209801, India.
| | - Vidyanand Tiwari
- Institute of Food Processing and Technology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
31
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|
32
|
Zhao D, Li X, Xu M, Jiao Y, Liu H, Xiao X, Zhao H. Preparations of antibacterial yellow-green-fluorescent carbon dots and carbon dots-lysozyme complex and their applications in bacterial imaging and bacteria/biofilm inhibition/clearance. Int J Biol Macromol 2023; 231:123303. [PMID: 36657551 DOI: 10.1016/j.ijbiomac.2023.123303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The preparation of functional long-wavelength-emitting nanomaterials and the researches on their applications in antibacterial and antibiofilm fields have important significance. This paper reports the preparation of yellow-green-fluorescent and high- quantum yield carbon dots (4-ACDs) with 4-aminosalicylic acid and polyethylene imine as raw materials through one-step route, and the impacts of raw material structure and the reaction conditions upon the optical properties of the products have been investigated. 4-ACDs exhibit excellent broad-spectrum antibacterial activity, and their good biocompatibility ensures them as ideal fluorescent nano-probe for cell imaging. However, 4-ACDs could not effectively eliminate the biofilm of Staphylococcus aureus (S. aureus). CDs-LZM complex was prepared through the coupling between 4-ACDs and lysozyme (LZM) and the complex showed strong antibacterial activity against Gram-positive bacteria, particularly with MIC against S. aureus at 5 μg mL-1. Besides, CDs-LZM showed excellent ability against the biofilm of S. aureus. At the concentration of 60 μg mL-1, its inhibition rate against the growth of biofilm was 86 %, and elimination rate against biofilm reached 76 %. CDs-LZM exhibited obvious antibiofilm ability through removing extracellular matrix of biofilm, greatly reducing the thickness of biofilm under confocal microscopy. The application of novel long-wavelength-emitting nanomaterial in eliminating pathogenic bacteria is of great significance.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| | - Xiaoyun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Yan Jiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| |
Collapse
|
33
|
Song J, Yu C, Ma F, Lin R, Gao L, Yan Y, Wu Y. Design of molecularly imprinted nanocomposite membrane for selective separation of lysozyme based on double-faced self-assembly strategy. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Biesek J, Wlaźlak S, Adamski M. The biological value of hatching eggs of broiler chicken in the early-mid incubation period based on physicochemical and morphological features. Poult Sci 2023; 102:102689. [PMID: 37116284 PMCID: PMC10160584 DOI: 10.1016/j.psj.2023.102689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The study aimed to assess various quality characteristics (physical, morphologic, mechanical) of hatching eggs during the early-mid incubation period. Hatching eggs (1,200) were bought from a broiler Ross 308 breeder flock. Before incubation, 20 eggs were analyzed for dimensions and morphologic composition. Eggs (1,176) were incubated for 21 d. Hatchability was analyzed. On d 1, 2, 4, 6, 8, 10, and 12, eggs were collected (n = 20). The eggshell surface temperature and water loss were measured. The eggshell strength and thickness and the vitelline membrane strength were analyzed. The pH of thick albumen, amniotic fluid, and yolk were determined. The viscosity and lysozyme activity were studied for the thick albumen and amniotic fluid. Water loss was proportional and significantly different between incubation days. The yolk vitelline membrane strength highly depended on incubation days, decreasing steadily within the first 2 d (R2 = 0.9643). The albumen pH decreased from d 4 till d 12 of incubation, whereas the yolk pH first increased from d 0 to d 2 before a decline on d 4. Albumen viscosity was highest on d 6. There was a strong dependence of viscosity decrease with increasing shear rate (R2 = 0.7976). On the first day of incubation, the highest lysozyme hydrolytic activity was demonstrated (33,790 U/mL) compared to the activity from the amniotic fluid (8-12 d). From d 6, lysozyme activity decreased to 70 U/mL (d 10). On d 12, amniotic fluid lysozyme activity increased by over 6,000 U/mL compared to d 10. The lysozyme hydrolytic activity was lower in the amniotic fluid (d 8-12) compared to the thick albumen (0-6 d) (P < 0.001). The embryo's protective barriers are changed, and the fractions are hydrated during incubation. It could be concluded that the lysozyme is transferred from the albumen to the amniotic fluid due to its activity.
Collapse
|
35
|
Zhong M, Ma L, Liu X, Liu Y, Wei S, Gao Y, Wang Z, Chu S, Dong S, Yang Y, Gao S, Li S. Exploring the influence of ultrasound on the antibacterial emulsification stability of lysozyme-oregano essential oil. ULTRASONICS SONOCHEMISTRY 2023; 94:106348. [PMID: 36871524 PMCID: PMC9988396 DOI: 10.1016/j.ultsonch.2023.106348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.
Collapse
Affiliation(s)
- Mengzhen Zhong
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xin Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shuaishuai Wei
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhan Wang
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shang Chu
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shijian Dong
- Anhui Rongda Food Co., Ltd., Xuancheng 242000, China
| | - Yuping Yang
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
36
|
Xu X, Xie Y, Guo P, Shi Y, Sun M, Zhou J, Wang C, Han C, Liu J, Li T. Facile synthesis of novel helical imprinted fibers based on zucchini-derived microcoils for efficient recognition of target protein in biological sample. Food Chem 2023; 404:134645. [DOI: 10.1016/j.foodchem.2022.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
37
|
Abdelhameed SAM, de Azambuja F, Vasović T, Savić ND, Ćirković Veličković T, Parac-Vogt TN. Regioselective protein oxidative cleavage enabled by enzyme-like recognition of an inorganic metal oxo cluster ligand. Nat Commun 2023; 14:486. [PMID: 36717594 PMCID: PMC9887005 DOI: 10.1038/s41467-023-36085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Oxidative modifications of proteins are key to many applications in biotechnology. Metal-catalyzed oxidation reactions efficiently oxidize proteins but with low selectivity, and are highly dependent on the protein surface residues to direct the reaction. Herein, we demonstrate that discrete inorganic ligands such as polyoxometalates enable an efficient and selective protein oxidative cleavage. In the presence of ascorbate (1 mM), the Cu-substituted polyoxometalate K8[Cu2+(H2O)(α2-P2W17O61)], (CuIIWD, 0.05 mM) selectively cleave hen egg white lysozyme under physiological conditions (pH =7.5, 37 °C) producing only four bands in the gel electropherogram (12.7, 11, 10, and 5 kDa). Liquid chromatography/mass spectrometry analysis reveals a regioselective cleavage in the vicinity of crystallographic CuIIWD/lysozyme interaction sites. Mechanistically, polyoxometalate is critical to position the Cu at the protein surface and limit the generation of oxidative species to the proximity of binding sites. Ultimately, this study outlines the potential of discrete, designable metal oxo clusters as catalysts for the selective modification of proteins through radical mechanisms under non-denaturing conditions.
Collapse
Affiliation(s)
| | | | - Tamara Vasović
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Nada D Savić
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia.,Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Tatjana N Parac-Vogt
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
38
|
Xia M, Zhao Q, Isobe K, Handa A, Cai Z, Huang X. Lysozyme impacts gel properties of egg white protein via electrostatic interactions, polarity differences, local pH regulation, or as a filler. Int J Biol Macromol 2022; 223:1727-1736. [PMID: 36252621 DOI: 10.1016/j.ijbiomac.2022.10.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
The effects of lysozyme on egg white gel properties and their underlying causes were investigated under comparison between lysozyme removed with ion exchange resin and three levels of commercial lysozyme powder (1/2, 2/2, 3/2 the natural concentration in egg white) re-added in the lysozyme-removed system. Results showed that a lysozyme-removed gel obtained the best water holding capacity (61.61 %), lowest cooking loss (11.85 %), and enhanced textural properties (hardness, 638.04 g; resilience, 0.57; and gumminess), which was attributed to lysozyme promoting protein aggregation and weakening electrostatic repulsion by charge neutralization and competition for water, and this could be eliminated by removing lysozyme. Besides, the stronger intermolecular interactions (enhanced ionic bonds, hydrogen bonds and inhibited hydrophobic interactions), the shorter transverse relaxation time (T21 and T22), as well as more uniform microstructure formed in the lysozyme-removed gel, allowing the gels to bind more water molecules. With return of lysozyme, the gel properties were weakened to varying degrees, which was also ascribed to the filling of lysozyme in gel matrix narrowed interspace for binding and storage of water. In sum, adjustment on the content of lysozyme can regulate the gel properties of egg white, so as to obtain gels with regulable gel quality and processing characteristics.
Collapse
Affiliation(s)
- Minquan Xia
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China.
| | - Qiannan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China
| | | | - Akihiro Handa
- Division of Life Science, School of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Zhaoxia Cai
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
39
|
Wang SW, Wang TY. Study on Antibacterial Activity and Structure of Chemically Modified Lysozyme. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010095. [PMID: 36615291 PMCID: PMC9822296 DOI: 10.3390/molecules28010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Lysozyme is a natural protein with a good bacteriostatic effect, but its poor inhibition of Gram-negative bacteria limits its development potential as a natural preservative. Therefore, the modification of natural lysozyme to expand the antimicrobial spectrum become the focus of lysozyme study. Egg white lysozyme has low cost, rich content in nature, is easy to obtain, strong stability, and high enzyme activity, so it can be applied in the modification of lysozyme. Egg white lysozyme was modified by chemical methods using organic acids. Caffeic acid and p-coumaric acid in organic acids were used as modifiers, and 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy succinimide were used as dehydration condensation agents during modification. A certain degree of modified lysozyme was obtained through appropriate modification conditions. The antibacterial properties and structure of the obtained two organic acid-modified lysozymes were compared with natural enzymes. The results showed that compared with the native enzyme, the activity of modified lysozyme decreased, but the inhibitory effect on Gram-negative bacteria was enhanced. The minimum inhibitory concentrations of caffeic acid-modified enzyme and p-coumaric acid-modified enzyme on Escherichia coli and Pseudomonas aeruginosa were 0.5 mg/mL and 0.75 mg/mL, respectively. However, the antibacterial ability of modified lysozyme to Gram-positive bacteria was lower than that of the natural enzyme. The minimum inhibitory concentration of caffeic acid-modified enzyme and p-coumaric acid-modified enzyme to Staphylococcus aureus and Bacillus subtilis was 1.25 mg/mL. The peak fitting results of the amide-I band absorption peak in the infrared spectroscopy showed that the content of the secondary structure of the two modified enzymes obtained after modification was different from that of natural enzymes. In the study, two organic acids were used to modify egg white lysozyme, which enhanced the enzyme's inhibition of Gram-negative bacteria, and analyzed the mechanisms for the change in the enzyme's antibacterial ability from the perspective of the structural change of the modified enzyme, providing a new idea for lysozyme modification.
Collapse
|
40
|
Maurizzi E, Bigi F, Quartieri A, De Leo R, Volpelli LA, Pulvirenti A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers (Basel) 2022; 14:polym14204257. [PMID: 36297835 PMCID: PMC9610407 DOI: 10.3390/polym14204257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging. This review provides a schematic overview about polymers and blends of them, which are emerging as promising alternatives to conventional plastics. Focus was dedicated to biopolymers from renewable sources and their applications to produce sustainable, active packaging with antimicrobial and antioxidant properties. In particular, the incorporation of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active packaging with enhanced technical performances was investigated. According to recent studies, bio-based active packaging enriched with natural-based compounds has the potential to replace petroleum-derived materials. Based on molecular composition, the natural compounds can diversely interact with the native structure of the packaging materials, modulating their barriers, optical and mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall, the recent academic findings could lead to a breakthrough in the field of food packaging, opening the gates to a new generation of packaging solutions which will be sustainable, customised, and green.
Collapse
Affiliation(s)
- Enrico Maurizzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Francesco Bigi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo De Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Antonella Volpelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| |
Collapse
|
41
|
Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules 2022; 27:molecules27196305. [PMID: 36234848 PMCID: PMC9572377 DOI: 10.3390/molecules27196305] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lysozymes are hydrolytic enzymes characterized by their ability to cleave the β-(1,4)-glycosidic bonds in peptidoglycan, a major structural component of the bacterial cell wall. This hydrolysis action compromises the integrity of the cell wall, causing the lysis of bacteria. For more than 80 years, its role of antibacterial defense in animals has been renowned, and it is also used as a preservative in foods and pharmaceuticals. In order to improve the antimicrobial efficacy of lysozyme, extensive research has been intended for its modifications. This manuscript reviews the natural antibiotic compound lysozyme with reference to its catalytic and non-catalytic mode of antibacterial action, lysozyme types, susceptibility and resistance of bacteria, modification of lysozyme molecules, and its applications in the food industry.
Collapse
|
42
|
Antibacterial activity of lysozyme-loaded cream against MRSA and promotion of scalded wound healing. Int J Pharm 2022; 627:122200. [PMID: 36155893 DOI: 10.1016/j.ijpharm.2022.122200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus (S. aureus) infection, especially its drug-resistant bacterial infection, is a great challenge often faced by clinicians and patients, and it is also one of the most important threats to public health. Finding a safe and effective antibacterial agent is of great significance for the prevention and treatment of S. aureus infection. Lysozyme is known to have antibacterial effects against Gram-positive bacteria including S. aureus. Here, high-quality lysozyme with a purity of more than 99% and an activity of more than 60, 000 U/mg was prepared from egg white, which showed excellent antibacterial activity against three strains of S. aureus, especially against MRSA. Furthermore, an antibacterial cream loaded with lysozyme was prepared and tested in scald wound healing. The lysozyme-loaded cream exhibited the effect of preventing wound infection and promoting wound healing on scalds, and no toxicity was found in animal organs. Overall, lysozyme showed great application potential in the prevention and treatment of infections caused by S. aureus and scalded wound healing. The most remarkable discovery in this work is the unexpectedly powerful inhibitory effect of lysozyme on the drug-resistant bacterial, especially MRSA, which is usually very difficult to deal with using normal antibacterial drugs.
Collapse
|
43
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
44
|
Functional Properties and Extraction Techniques of Chicken Egg White Proteins. Foods 2022; 11:foods11162434. [PMID: 36010434 PMCID: PMC9407204 DOI: 10.3390/foods11162434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chicken egg whites contain hundreds of proteins, and are widely used in the food, biological and pharmaceutical industries. It is highly significant to study the separation and purification of egg white proteins. This review first describes the structures and functional properties of several major active proteins in egg whites, including ovalbumin, ovotransferrin, ovomucoid, lysozyme, ovomucin, ovomacroglobulin and avidin. Then, the common techniques (including precipitation, chromatography and membrane separation) and some novel approaches (including electrophoresis, membrane chromatography, aqueous two-phase system and molecular imprinting technology) for the separation and purification of egg white proteins broadly reported in the current research are introduced. In addition, several co-purification methods for simultaneous separation of multiple proteins from egg whites have been developed to improve raw material utilization and reduce costs. In this paper, the reported techniques in the last decade for the separation and purification of chicken egg white proteins are reviewed, discussed and prospected, aiming to provide a reference for further research on egg proteins in the future.
Collapse
|
45
|
Ruipérez V, Fernández-Fernández E, Vila-Crespo J, Rodríguez-Nogales JM. Continuous malolactic fermentation of red wine in a reactor using silica-alginate encapsulated Oenococcus oeni. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Xu W, Sun H, Li H, Li Z, Zheng S, Luo D, Ning Y, Wang Y, Shah BR. Preparation and characterization of tea oil powder with high water solubility using Pickering emulsion template and vacuum freeze-drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Hadj Saadoun J, Sogari G, Bernini V, Camorali C, Rossi F, Neviani E, Lazzi C. A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Wang Q, Chen W, Zhu W, McClements DJ, Liu X, Liu F. A review of multilayer and composite films and coatings for active biodegradable packaging. NPJ Sci Food 2022; 6:18. [PMID: 35277514 PMCID: PMC8917176 DOI: 10.1038/s41538-022-00132-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/09/2022] [Indexed: 01/14/2023] Open
Abstract
Active biodegradable packaging are being developed from biodegradable biopolymers which may solve the environmental problems caused by petroleum-based materials (plastics), as well as improving the shelf life, quality, nutritional profile, and safety of packaged food. The functional performance of active ingredients in biodegradable packaging can be extended by controlling their release profiles. This can be achieved by incorporating active ingredients in sandwich-structured packaging including multilayer and composite packaging. In multilayer materials, the release profile can be controlled by altering the type, structure, and thickness of the different layers. In composite materials, the release profile can be manipulated by altering the interactions of active ingredients with the surrounding biopolymer matrix. This article reviews the preparation, properties, and applications of multilayer and composite packaging for controlling the release of active ingredients. Besides, the basic theory of controlled release is also elaborated, including diffusion, swelling, and biodegradation. Mathematical models are presented to describe and predict the controlled release of active ingredients from thin films, which may help researchers design packaging materials with improved functional performance.
Collapse
Affiliation(s)
- Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, PR China.
| |
Collapse
|
49
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|
50
|
Zhang W, Rhim JW. Functional edible films/coatings integrated with lactoperoxidase and lysozyme and their application in food preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|