1
|
Câmpean ȘI, Beșchea GA, Vuțoiu BG, Tăbăcaru MB, Năstase G. A comparison of raspberry freezing-damage during preservation in isochoric and isobaric conditions. Front Nutr 2024; 11:1439726. [PMID: 39135551 PMCID: PMC11317443 DOI: 10.3389/fnut.2024.1439726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Fruits are perishable, thus it's crucial to have an efficient preservation technique that can increase storage time while keeping physical quality and nutritional attributes in order to avoid wastage. The majority of methods for long-term storage require refrigeration. Methods In this investigation, we assess the viability of isochoric freezing as a different technique of raspberry (Rubus idaeus L.) preservation. Raspberries were subjected to different storage conditions: isochoric freezing at -4°C, conventional isobaric settings at +3°C (refrigerator), -21°C (freezer), and -4°C with a trehalose solution in a plastic bag. The study assessed changes in weight loss, visual appearance, color, hardness, °Brix values, and pH over a seven-day period. Results Key findings reveal that raspberries subjected to isochoric freezing below the freezing point of water experienced minimal weight loss after seven days. Visual appearance, color, hardness, °Brix values, and pH were comparable to fresh raspberries, indicating minimal alteration. Discussion These results suggest that isochoric freezing shows potential as a preservation method that maintains the physical and chemical properties of raspberries similar to fresh fruit. Implementing diverse preservation techniques tailored to raspberries may contribute to environmental sustainability by reducing food wastage and the associated environmental impact.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Năstase
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
2
|
Capriotti L, Molesini B, Pandolfini T, Jin H, Baraldi E, Cecchin M, Mezzetti B, Sabbadini S. RNA interference-based strategies to control Botrytis cinerea infection in cultivated strawberry. PLANT CELL REPORTS 2024; 43:201. [PMID: 39048858 PMCID: PMC11269516 DOI: 10.1007/s00299-024-03288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
KEY MESSAGE Gene silencing of BcDCL genes improves gray mold disease control in the cultivated strawberry. Gene silencing technology offers new opportunities to develop new formulations or new pathogen-resistant plants for reducing impacts of agricultural systems. Recent studies offered the proof of concept that the symptoms of gray mold can be reduced by downregulating Dicer-like 1 (DCL1) and 2 (DCL2) genes of Botrytis cinerea. In this study, we demonstrate that both solutions based on dsRNA topical treatment and in planta expression targeting BcDCL1 and BcDCL2 genes can be used to control the strawberry gray mold, the most harmful disease for different fruit crops. 50, 70 and 100 ng μL-1 of naked BcDCL1/2 dsRNA, sprayed on plants of Fragaria x ananassa cultivar Romina in the greenhouse, displayed significant reduction of susceptibility, compared to the negative controls, but to a lesser extent than the chemical fungicide. Three independent lines of Romina cultivar were confirmed for their stable expression of the hairpin gene construct that targets the Bc-DCL1 and 2 sequences (hp-Bc-DCL1/2), and for the production of hp construct-derived siRNAs, by qRT-PCR and Northern blot analyses. In vitro and in vivo detached leaves, and fruits from the hp-Bc-DCL1/2 lines showed significantly enhanced tolerance to this fungal pathogen compared to the control. This decreased susceptibility was correlated to the reduced fungal biomass and the downregulation of the Bc-DCL1 and 2 genes in B. cinerea. These results confirm the potential of both RNAi-based products and plants for protecting the cultivated strawberry from B. cinerea infection, reducing the impact of chemical pesticides on the environment and the health of consumers.
Collapse
Affiliation(s)
- Luca Capriotti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Tiziana Pandolfini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Elena Baraldi
- Department of Agricultural and Food Science, DISTAL, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Michela Cecchin
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
3
|
Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ, Khanduri N, Kumar A, Pandey P, Gupta AK, Khan JM, Rustagi S. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024; 10:e30595. [PMID: 38726166 PMCID: PMC11079288 DOI: 10.1016/j.heliyon.2024.e30595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
- School of Agriculture, Graphic Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100, Helsinki, Finland
| | - Naresh Khanduri
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchur, 788011, Assam, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
4
|
Wang L, Wang L, Peng Z, Fei X, Wei H. Editorial: Molecular mechanisms of fruit quality formation in fruit trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1413866. [PMID: 38784061 PMCID: PMC11112109 DOI: 10.3389/fpls.2024.1413866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ze Peng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
5
|
Jiang F, Liang Y, Liu L, Zhang Y, Deng Y, Wei F, Xu C, Fu L, Lin B. One-pot co-crystallized hexanal-loaded ZIF-8/quaternized chitosan film for temperature-responsive ethylene inhibition and climacteric fruit preservation. Int J Biol Macromol 2024; 265:130798. [PMID: 38479674 DOI: 10.1016/j.ijbiomac.2024.130798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Controlling ethylene production and microbial infection are key factors to prolong the shelf life of climacteric fruit. Herein, a nanocomposite film, hexanal-loaded ZIF-8/CS (HZCF) with "nano-barrier" structure, was developed by a one-pot co-crystallized of ZIF-8 in situ growth on quaternized chitosan (CS) and encapsulation of hexanal into ZIF-8 via microporous adsorption. The resultant film realized the temperature responsive release of hexanal via the steric hindrance and hierarchical pore structure as "nano-barrier", which can inhibit ethylene production in climacteric fruit on demand. Based on this, the maximum ethylene inhibition rate of HZCF was up to 52.6 %. Meanwhile, the film exhibits excellent antibacterial, mechanical, UV resistance and water retention properties, by virtue of the functional synergy between ZIF-8 and CS. Contributed to the multifunctional features, HZCF prolonged the shelf life of banana and mango for at least 16 days, which is 8 days longer than that of control fruit. More strikingly, HZCF is washable and biodegradable, which is expected to replace non-degradable plastic film. Thus, this study provides a convenient novel approach to simplify the encapsulation of active molecule on metal-organic frameworks (MOFs), develops a packaging material for high-efficient freshness preservation, and helps to alleviate the survival crisis caused by food waste.
Collapse
Affiliation(s)
- Fengqiong Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Li Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Fuxiang Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Campa M, Miranda S, Licciardello C, Lashbrooke JG, Dalla Costa L, Guan Q, Spök A, Malnoy M. Application of new breeding techniques in fruit trees. PLANT PHYSIOLOGY 2024; 194:1304-1322. [PMID: 37394947 DOI: 10.1093/plphys/kiad374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.
Collapse
Affiliation(s)
- Manuela Campa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Simón Miranda
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | | | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Armin Spök
- Science, Technology and Society Unit, Graz University of Technology, Graz, Austria
| | - Mickael Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
7
|
Liu Y, Gao Y, Chen M, Jin Y, Qin Y, Hao G. GIFTdb: a useful gene database for plant fruit traits improving. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1030-1040. [PMID: 37856620 DOI: 10.1111/tpj.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Fruit traits are critical determinants of plant fitness, resource diversity, productive and quality. Gene regulatory networks in plants play an essential role in determining fruit traits, such as fruit size, yield, firmness, aroma and other important features. Many research studies have focused on elucidating the associated signaling pathways and gene interaction mechanism to better utilize gene resources for regulating fruit traits. However, the availability of specific database of genes related to fruit traits for use by the plant research community remains limited. To address this limitation, we developed the Gene Improvements for Fruit Trait Database (GIFTdb, http://giftdb.agroda.cn). GIFTdb contains 35 365 genes, including 896 derived from the FR database 1.0, 305 derived from 30 882 articles from 2014 to 2021, 236 derived from the Universal Protein Resource (UniProt) database, and 33 928 identified through homology analysis. The database supports several aided analysis tools, including signal transduction pathways, gene ontology terms, protein-protein interactions, DNAWorks, Basic Local Alignment Search Tool (BLAST), and Protein Subcellular Localization Prediction (WoLF PSORT). To provide information about genes currently unsupported in GIFTdb, potential fruit trait-related genes can be searched based on homology with the supported genes. GIFTdb can provide valuable assistance in determining the function of fruit trait-related genes, such as MYB306-like, by conducting a straightforward search. We believe that GIFTdb will be a valuable resource for researchers working on gene function annotation and molecular breeding to improve fruit traits.
Collapse
Affiliation(s)
- Yingwei Liu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, P.R. China
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yin Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yongbin Qin
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
| | - Gefei Hao
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| |
Collapse
|
8
|
Mancini M, Mazzoni L, Leoni E, Tonanni V, Gagliardi F, Qaderi R, Capocasa F, Toscano G, Mezzetti B. Application of Near Infrared Spectroscopy for the Rapid Assessment of Nutritional Quality of Different Strawberry Cultivars. Foods 2023; 12:3253. [PMID: 37685185 PMCID: PMC10486686 DOI: 10.3390/foods12173253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Strawberry is the most cultivated berry fruit globally and it is really appreciated by consumers because of its characteristics, mainly bioactive compounds with antioxidant properties. During the breeding process, it is important to assess the quality characteristics of the fruits for a better selection of the material, but the conventional approaches involve long and destructive lab techniques. Near infrared spectroscopy (NIR) could be considered a valid alternative for speeding up the breeding process and is not destructive. In this study, a total of 216 strawberry fruits belonging to four different cultivars have been collected and analyzed with conventional lab analysis and NIR spectroscopy. In detail, soluble solid content, acidity, vitamin C, anthocyanin, and phenolic acid have been determined. Partial least squares discriminant analysis (PLS-DA) models have been developed to classify strawberry fruits belonging to the four genotypes according to their quality and nutritional properties. NIR spectroscopy could be considered a valid non-destructive phenotyping method for monitoring the nutritional parameters of the fruit and ensuring the fruit quality, speeding up the breeding program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; (M.M.); (L.M.); (E.L.); (V.T.); (F.G.); (R.Q.); (F.C.); (G.T.)
| |
Collapse
|
9
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Capriotti L, Ricci A, Molesini B, Mezzetti B, Pandolfini T, Piunti I, Sabbadini S. Efficient protocol of de novo shoot organogenesis from somatic embryos for grapevine genetic transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1172758. [PMID: 37324663 PMCID: PMC10264588 DOI: 10.3389/fpls.2023.1172758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Plant genetic transformation is a powerful tool that can facilitate breeding programs for disease tolerance, abiotic stress, fruit production, and quality by preserving the characteristics of fruit tree elite genotypes. However, most grapevine cultivars worldwide are considered recalcitrant, and most available genetic transformation protocols involve regeneration by somatic embryogenesis, which often requires the continuous production of new embryogenic calli. Cotyledons and hypocotyls derived from flower-induced somatic embryos of the Vitis vinifera cultivars Ancellotta and Lambrusco Salamino, in comparison with the model cultivar Thompson Seedless, are here validated for the first time as starting explants for in vitro regeneration and transformation trials. Explants were cultured on two different MS-based culture media, one having a combination of 4.4 µM BAP and 0.49 µM IBA (M1), and the other only supplemented with 13.2 µM BAP (M2). The competence to regenerate adventitious shoots was higher in cotyledons than in hypocotyls on both M1 and M2. M2 medium increased significantly the average number of shoots only in Thompson Seedless somatic embryo-derived explants. This efficient regeneration strategy, that proposes a combination of somatic embryogenesis and organogenesis, has been successfully exploited in genetic engineering experiments. Ancellotta and Lambrusco Salamino cotyledons and hypocotyls produced the highest number of calli expressing eGFP when cultured on M2 medium, while for Thompson Seedless both media tested were highly efficient. The regeneration of independent transgenic lines of Thompson Seedless was observed from cotyledons cultured on both M1 and M2 with a transformation efficiency of 12 and 14%, respectively, and from hypocotyls on M1 and M2 with a transformation efficiency of 6 and 12%, respectively. A single eGFP fluorescent adventitious shoot derived from cotyledons cultured on M2 was obtained for Ancellotta, while Lambrusco Salamino showed no regeneration of transformed shoots. In a second set of experiments, using Thompson Seedless as the model cultivar, we observed that the highest number of transformed shoots was obtained from cotyledons explants, followed by hypocotyls and meristematic bulk slices, confirming the high regeneration/transformation competences of somatic embryo-derived cotyledons. The independent transformed shoots obtained from the cultivars Thompson Seedless and Ancellotta were successfully acclimatized in the greenhouse and showed a true-to-type phenotype. The novel in vitro regeneration and genetic transformation protocols optimized in this study will be useful for the application of new and emerging modern biotechnologies also to other recalcitrant grapevine genotypes.
Collapse
Affiliation(s)
- Luca Capriotti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Angela Ricci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Irene Piunti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
11
|
Zhang X, Li Y, Hong T, Tegeltija S, Babić M, Wang X, Ostojić G, Stankovski S, Marinković D. Response Characteristics Study of Ethylene Sensor for Fruit Ripening under Temperature Control. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115203. [PMID: 37299927 DOI: 10.3390/s23115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Post-ripening fruits need to be ripened to reach edible conditions, as they are not yet mature enough when picked. Ripening technology is based mainly on temperature control and gas regulation, with the proportion of ethylene being one of the key gas regulation parameters. A sensor's time domain response characteristic curve was obtained through the ethylene monitoring system. The first experiment showed that the sensor has good response speed (maximum of first derivative: 2.01714; minimum of first derivative: -2.01714), stability (xg: 2.42%; trec: 2.05%; Dres: 3.28%), and repeatability (xg: 20.6; trec: 52.4; Dres: 2.31). The second experiment showed that optimal ripening parameters include color, hardness (Change Ⅰ: 88.53%, Change Ⅱ: 75.28%), adhesiveness (Change Ⅰ: 95.29%, Change Ⅱ: 74.72%), and chewiness (Change Ⅰ: 95.18%, Change Ⅱ: 74.25%), verifying the response characteristics of the sensor. This paper proves that the sensor was able to accurately monitor changes in concentration which reflect changes in fruit ripeness, and that the optimal parameters were the ethylene response parameter (Change Ⅰ: 27.78%, Change Ⅱ: 32.53%) and the first derivative parameter (Change Ⅰ: 202.38%, Change Ⅱ: -293.28%). Developing a gas-sensing technology suitable for fruit ripening is of great significance.
Collapse
Affiliation(s)
- Xiaoshuan Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yuliang Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Tianyu Hong
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Srdjan Tegeltija
- Center for Identification Technology, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
| | - Mladen Babić
- Center for Identification Technology, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
| | - Xiang Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Gordana Ostojić
- Center for Identification Technology, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
| | - Stevan Stankovski
- Center for Identification Technology, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
| | - Dragan Marinković
- Faculty of Mechanical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia
- Faculty of Mechanical Engineering and Transport Systems, TU Berlin, Str. d. 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Li Z, Liu W, Chen Q, Zhang S, Mei Z, Yu L, Wang C, Mao Z, Chen Z, Chen X, Wang N. Mdm-miR858 targets MdMYB9 and MdMYBPA1 to participate anthocyanin biosynthesis in red-fleshed apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1295-1309. [PMID: 36651024 DOI: 10.1111/tpj.16111] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Anthocyanins are important secondary metabolites in plants. They are important for human health because of their antioxidant activities and because their dietary intake reduces the incidence of cardiovascular and cerebrovascular diseases and tumors. The biosynthesis of anthocyanins and its regulation in fruits and vegetables is a global research hotspot. Compared with cultivated apples, the red-fleshed apple is a relatively new and popular commodity in the market. Previous studies on red-fleshed apples have focused on the basis for the high anthocyanin content and the transcriptional regulation of anthocyanin synthesis. In the present study, we focused on the mechanism of microRNA-mediated post-transcriptional regulation of anthocyanin synthesis in red-fleshed apples. We identified a microRNA (miRNA), designated mdm-miR858, that is specifically expressed in the flesh of apple fruit. The expression level of miR858 was significantly lower in red-fleshed apples than in white-fleshed apples. The overexpression of mdm-miR858 significantly inhibited anthocyanin accumulation, whereas the silencing of mdm-miR858 promoted anthocyanin synthesis in STTM858 transgenic apple calli. Further analyses showed that mdm-miR858 targets the transcription factor genes MdMYB9 and MdMYBPA1 to participate anthocyanin accumulation in apple. Our results also show that MdHY5, a transcription factor in the light signaling pathway, can bind to the promoter of mdm-miR858 to inhibit its transcription, thereby regulating anthocyanin synthesis. Based on our results, we describe a novel HY5-miR858-MYB loop involved in the modulation of anthocyanin biosynthesis. These findings provide new information about how plant miRNAs regulate anthocyanin anabolism and provide a basis for breeding new anthocyanin-rich, red-fleshed apple varieties.
Collapse
Affiliation(s)
- Zhiqiang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Qiaojing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Zhuoxin Mei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| |
Collapse
|
13
|
Hussain T, Kalhoro DH, Yin Y. Identification of nutritional composition and antioxidant activities of fruit peels as a potential source of nutraceuticals. Front Nutr 2023; 9:1065698. [PMID: 36817065 PMCID: PMC9931757 DOI: 10.3389/fnut.2022.1065698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Fruit peels comprise several biologically active compounds, but their nutritional composition and antioxidant potential of different fruit varieties are limited. This study aimed to determine the nutritional composition and antioxidant properties of 12 peels of different fruit varieties such as apples, pomegranates, guavas, strawberries, grapes, and citrus fruits using a ultraviolet-visible (UV-Vis) spectrophotometer, an inductively-coupled plasma atomic emission spectroscopy (ICP-AES), and an amino acid analyzer. The highest values of TPC, TFC, lycopene, ascorbic acid [total carotenoids and total antioxidant capacity (TAC)], reducing sugars, non-reducing sugars, and total soluble proteins were reported in grapes (Black seedless) 54,501.00 ± 0.82 μM/g dry wt., guava (Gola) 198.19 ± 0.46 Rutin equivalent dry wt., strawberry (Candler) 7.23 ± 0.33 mg/g dry wt., citrus (Mausami) 646.25 ± 0.96 ug/g dry wt., apple (Kala kulu-Pak) 14.19 ± 0.38 mg/g dry wt. and 12.28 ± 0.39 μM/g dry wt., strawberry (Candler) 25.13 ± 0.40 mg/g dry wt., pomegranate (Badana) 9.80 ± 0.43 mg/g dry wt., apple (Kala kullu-Irani) 30.08 ± 0.11 mg/g dry wt., and guava (Gola) 638.18 ± 0.24 mg/g dry wt. compared with its opponent peels of fruits, respectively. All 12 peels of the fruit verities had 20 amino acids and presented as dry matter basis%. The highest trend of glutamic acid + glutamine, glycine, and aspartic acid + asparagine was observed in pomegranate (Badana) 1.20 DM basis%, guava (Surhai and Gola) 1.09 and 1.09 DM basis%, and strawberry (Desi/local and Candler) 1.15 and 1.60 DM basis% in response to other fruit peels, respectively. Regarding the mineral profile, the highest values of nitrogen (764.15 ± 0.86 mg/100 g), phosphorus (53.90 ± 0.14 mg/100 g), potassium (3,443.84 ± 0.82 mg/100 g), ferric (1.44 ± 0.00 mg/100 g), magnesium (1.31 ± 0.00 mg/100 g), and manganese (0.21 ± 0.00 mg/100 g) were found in pomegranate (Badana), grapes (Black seedless), apple (Kala kulu-Pak), and pomegranate (Badana), respectively, in context to other fruit peels' extract. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) were analyzed for determining the correlation among different peels of fruits. Significantly, high levels of variation were noticed among different variables of peels of fruit. Fruit variety and its peels have been distinctive variables in selecting genotypes. The dendrogram obtained from cluster analysis was distributed into two groups and consisted of eight varieties in the same group, and four fruit varieties were in second group. Overall, the results conclude that fruit peels have the abundant antioxidants and some minerals, which can effectively be utilized for nutraceuticals as well as for food security.
Collapse
Affiliation(s)
- Tarique Hussain
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Changsha, Hunan, China
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam, Sindh, Pakistan,*Correspondence: Dildar Hussain Kalhoro,
| | - Yulong Yin
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Changsha, Hunan, China,Yulong Yin,
| |
Collapse
|
14
|
Singla RK, De R, Efferth T, Mezzetti B, Sahab Uddin M, Ntie-Kang F, Wang D, Schultz F, Kharat KR, Devkota HP, Battino M, Sur D, Lordan R, Patnaik SS, Tsagkaris C, Sai CS, Tripathi SK, Găman MA, Ahmed MEO, González-Burgos E, Babiaka SB, Paswan SK, Odimegwu JI, Akram F, Simal-Gandara J, Urquiza MS, Tikhonov A, Mondal H, Singla S, Lonardo SD, Mulholland EJ, Cenanovic M, Maigoro AY, Giampieri F, Lee S, Tzvetkov NT, Louka AM, Verma P, Chopra H, Olea SP, Khan J, Alvarez Suarez JM, Zheng X, Tomczyk M, Sabnani MK, Medina CDV, Khalid GM, Boyina HK, Georgiev MI, Supuran CT, Sobarzo-Sánchez E, Fan TP, Pittala V, Sureda A, Braidy N, Russo GL, Vacca RA, Banach M, Lizard G, Zarrouk A, Hammami S, Orhan IE, Aggarwal BB, Perry G, Miller MJ, Heinrich M, Bishayee A, Kijjoa A, Arkells N, Bredt D, Wink M, Fiebich BL, Kiran G, Yeung AWK, Gupta GK, Santini A, Lucarini M, Durazzo A, El-Demerdash A, Dinkova-Kostova AT, Cifuentes A, Souto EB, Zubair MAM, Badhe P, Echeverría J, Horbańczuk JO, Horbanczuk OK, Sheridan H, Sheshe SM, Witkowska AM, Abu-Reidah IM, Riaz M, Ullah H, Oladipupo AR, Lopez V, Sethiya NK, Shrestha BG, Ravanan P, Gupta SC, Alzahrani QE, Dama Sreedhar P, Xiao J, Moosavi MA, Subramani PA, Singh AK, Chettupalli AK, Patra JK, Singh G, Karpiński TM, Al-Rimawi F, Abiri R, Ahmed AF, Barreca D, Vats S, Amrani S, Fimognari C, Mocan A, Hritcu L, Semwal P, Shiblur Rahaman M, Emerald M, Akinrinde AS, Singh A, Joshi A, Joshi T, Khan SY, Balla GOA, Lu A, Pai SR, Ghzaiel I, Acar N, Es-Safi NE, Zengin G, Kureshi AA, Sharma AK, Baral B, Rani N, Jeandet P, Gulati M, Kapoor B, Mohanta YK, Emam-Djomeh Z, Onuku R, Depew JR, Atrooz OM, Goh BH, Andrade JC, Konwar B, Shine VJ, Ferreira JMLD, Ahmad J, Chaturvedi VK, Skalicka-Woźniak K, Sharma R, Gautam RK, Granica S, Parisi S, Kumar R, Atanasov AG, Shen B. The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154520. [PMID: 36334386 DOI: 10.1016/j.phymed.2022.154520] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Ronita De
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata, West Bengal 700010, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences (D3A) Università Politecnica Delle Marche Ancona, IT, Italy
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Dongdong Wang
- Centre for Metabolism, Obesity, and Diabetes Research, Department of Medicine, McMaster University, HSC 4N71, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Fabien Schultz
- Technical University of Berlin, Institute of Biotechnology, Faculty III - Process Sciences, Gustav-Meyer-Allee 25, Berlin 13355, Germany; Neubrandenburg University of Applied Sciences, Department of Agriculture and Food Sciences, Brodaer Str. 2, Neubrandenburg 17033, Germany
| | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, Japan
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona 60131, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Daniel Sur
- Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Sourav S Patnaik
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | | | - Chandragiri Siva Sai
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Gomati Nagar, Lucknow, Uttar Pradesh 226010, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, National Institute of Technology Rourkela, Odisha-769008, India
| | - Mihnea-Alexandru Găman
- ″Carol Davila" University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, Bucharest, Romania; Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 258 Fundeni Road, Bucharest, Romania
| | - Mosa E O Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Al Neelain University, Khartoum, Sudan
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, University Complutense of Madrid, Spain
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | | | | | - Faizan Akram
- Bahawalpur College of Pharmacy (BCP), Bahawalpur Medical and Dental College (BMDC), Bahawalpur, Pakistan
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense E-32004, Spain
| | | | - Aleksei Tikhonov
- Translational Research Laboratory in Immunotherapy, Gustave Roussy, Villejuif, France
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Sara Di Lonardo
- Research Institute on Terrestrial Ecosystems-Italian National Research Council (IRET-CNR), Via Madonna del Piano 10, Sesto Fiorentino Fi 50019, Italy
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Somerville College, University of Oxford, Oxford, United Kingdom
| | | | | | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Soojin Lee
- Department of Bioscience and Biotechnology, Chungnam National University, Republic of Korea
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Bulgaria
| | | | - Pritt Verma
- Department of Pharmacology, CSIR-NBRI, Lucknow, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - José M Alvarez Suarez
- Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador
| | - Xiaonan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, Białystok 15-230, Poland
| | - Manoj Kumar Sabnani
- The University of Texas at Arlington, United States; Alloy Therapeutics, United States
| | | | - Garba M Khalid
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University, Belfast BT9, United Kingdom
| | - Hemanth Kumar Boyina
- School of Pharmacy, Department of Pharmacology, Anurag University, Venkatapur, Medchal, Hyderabad, Telangana 500088, India
| | - Milen I Georgiev
- Laboratory of Metabolomics, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Tai-Ping Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Valeria Pittala
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, Health Research Institute of Balearic Islands (IdISBa), and CIBEROBN (Physiopathology of Obesity and Nutrition), Palma, Balearic Islands E-07122, Spain
| | - Nady Braidy
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino 83100, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari 70126, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Gérard Lizard
- Université de Bourgogne / Inserm, Laboratoire Bio-PeroxIL, Faculté des Sciences Gabriel, 6 Boulevard Gabriel, Dijon 21000 France
| | - Amira Zarrouk
- University of Monastir (Tunisia), Faculty of Medicine, LR-NAFS 'Nutrition - Functional Food & Vascular Health', Tunisia
| | - Sonia Hammami
- University of Monastir (Tunisia), Faculty of Medicine, LR-NAFS 'Nutrition - Functional Food & Vascular Health', Tunisia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | | | - George Perry
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas, United States
| | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States
| | - Anake Kijjoa
- Instituto de Ciências Biomédicas Abel Salazar e CIIMAR, Universidade do Porto, Portugal
| | - Nicolas Arkells
- International Natural Product Sciences Taskforce (INSPT), United States
| | | | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg 69120, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab, India
| | - Antonello Santini
- University of Napoli Federico II, Department of Pharmacy. Via D Montesano 49, Napoli 80131, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546 00178 Rome, Italy
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546 00178 Rome, Italy
| | - Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | | | - Pravin Badhe
- Swalife Foundation, India; Swalife Biotech Ltd, Ireland; Sinhgad College of Pharmacy, Vadgaon (BK) Pune Maharashtra India
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec 05-552, Poland
| | - Olaf K Horbanczuk
- Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW) 159c Nowoursynowska, Warsaw 02-776, Poland
| | - Helen Sheridan
- The NatPro Centre. Trinity College Dublin. Dublin 2, Ireland
| | | | | | - Ibrahim M Abu-Reidah
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook A2H 5G4, Canada
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Akolade R Oladipupo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Nigeria; Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Víctor Lopez
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain
| | | | | | - Palaniyandi Ravanan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India
| | - Qushmua E Alzahrani
- Department of Pharmacy/Nursing Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) Brazil, Sana Catarina, Joinville, Brazil
| | | | | | - Mohammad Amin Moosavi
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetics Engineering and Biotechnology, Tehran P.O. Box: 14965/161, Iran
| | - Parasuraman Aiya Subramani
- Independent Researcher, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India - 600048. formerly, Pallavaram, Chennai 600117, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002 India
| | | | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Gopal Singh
- Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, Poznań 61-712, Poland
| | | | - Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Università degli Studi di Messina, Messina, Italy
| | - Sharad Vats
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Said Amrani
- Laboratoire de Biologie et de Physiologie des Organismes, Faculté des Sciences Biologiques, USTHB, Bab Ezzouar, Alger, Algeria
| | | | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, Iasi 700506, Romania
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Mila Emerald
- PHYTOCEUTICALS International™ & NOVOTEK Global Solutions™, Canada
| | - Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ashima Joshi
- Sardar Bhagwan Singh University, Balawala, Dehradun, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), India
| | - Shafaat Yar Khan
- Research Lab III, Hematology & Vascular Biology, Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Gareeballah Osman Adam Balla
- Department of Pharmacology, College of Veterinary Medicine, Sudan University of Science and Technology, Hilat Kuku, Khartoum North P.O. Box No. 204, Sudan
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, HongKong, China
| | - Sandeep Ramchandra Pai
- Department of Botany, Rayat Shikshan Sanstha's, Dada Patil Mahavidyalaya, Karjat, Maharashtra, India
| | - Imen Ghzaiel
- Université de Bourgogne, Inserm, Laboratoire Bio - PeroxIL, Faculté des Sciences Gabriel, 6 Boulevard Gabriel, Dijon 21000 France; University Tunis El Manar, Tunis, Tunisia
| | | | - Nour Eddine Es-Safi
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Azazahemad A Kureshi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | | | - Neeraj Rani
- Department of Pharmaceutical Sciences, Chaudhary Bansilal University, Bhiwani, Haryana, India
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection, USC INRAe 1488, Reims, France
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH 1) Phagwara, Punjab 144411 India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH 1) Phagwara, Punjab 144411 India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Kling Road, Baridua, Ri-Bhoi, Meghalaya 793101, India
| | | | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nigeria
| | | | - Omar M Atrooz
- Department of Biological Sciences, Mutah University, Jordan
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jose Carlos Andrade
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, Gandra, Portugal
| | | | - V J Shine
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rupesh K Gautam
- Deparment of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Rau-Indore-453331, India
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Poland
| | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Kerala State, India
| | - Rishabh Kumar
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria; Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, Vienna 1090, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Magdalenka 05-552, Poland.
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Jia Z, Zhang B, Sharma A, Kim NS, Purohit SM, Green MM, Roche MR, Holliday E, Chen H. Revelation of the sciences of traditional foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Senger E, Osorio S, Olbricht K, Shaw P, Denoyes B, Davik J, Predieri S, Karhu S, Raubach S, Lippi N, Höfer M, Cockerton H, Pradal C, Kafkas E, Litthauer S, Amaya I, Usadel B, Mezzetti B. Towards smart and sustainable development of modern berry cultivars in Europe. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1238-1251. [PMID: 35751152 DOI: 10.1111/tpj.15876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Fresh berries are a popular and important component of the human diet. The demand for high-quality berries and sustainable production methods is increasing globally, challenging breeders to develop modern berry cultivars that fulfill all desired characteristics. Since 1994, research projects have characterized genetic resources, developed modern tools for high-throughput screening, and published data in publicly available repositories. However, the key findings of different disciplines are rarely linked together, and only a limited range of traits and genotypes has been investigated. The Horizon2020 project BreedingValue will address these challenges by studying a broader panel of strawberry, raspberry and blueberry genotypes in detail, in order to recover the lost genetic diversity that has limited the aroma and flavor intensity of recent cultivars. We will combine metabolic analysis with sensory panel tests and surveys to identify the key components of taste, flavor and aroma in berries across Europe, leading to a high-resolution map of quality requirements for future berry cultivars. Traits linked to berry yields and the effect of environmental stress will be investigated using modern image analysis methods and modeling. We will also use genetic analysis to determine the genetic basis of complex traits for the development and optimization of modern breeding technologies, such as molecular marker arrays, genomic selection and genome-wide association studies. Finally, the results, raw data and metadata will be made publicly available on the open platform Germinate in order to meet FAIR data principles and provide the basis for sustainable research in the future.
Collapse
Affiliation(s)
- Elisa Senger
- Institute of Bio- and Geosciences, IBG-4 Bioinformatics, BioSC, CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | | | - Paul Shaw
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, Scotland, UK
| | - Béatrice Denoyes
- Université de Bordeaux, UMR BFP, INRAE, Villenave d'Ornon, France
| | - Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Stefano Predieri
- Bio-Agrofood Department, Institute for Bioeconomy, IBE-CNR, Italian National Research Council, Bologna, Italy
| | - Saila Karhu
- Natural Resources Institute Finland (Luke), Turku, Finland
| | - Sebastian Raubach
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, Scotland, UK
| | - Nico Lippi
- Bio-Agrofood Department, Institute for Bioeconomy, IBE-CNR, Italian National Research Council, Bologna, Italy
| | - Monika Höfer
- Institute of Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants (JKI), Dresden, Germany
| | - Helen Cockerton
- Genetics, Genomics and Breeding Department, NIAB, East Malling, UK
| | - Christophe Pradal
- CIRAD and UMR AGAP Institute, Montpellier, France
- INRIA and LIRMM, University Montpellier, CNRS, Montpellier, France
| | - Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Balcalı, Adana, Turkey
| | | | - Iraida Amaya
- Unidad Asociada deI + D + i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Laboratorio de Genómica y Biotecnología, Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Málaga, Spain
| | - Björn Usadel
- Institute of Bio- and Geosciences, IBG-4 Bioinformatics, BioSC, CEPLAS, Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Data Science, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
17
|
Mezzetti B, Arpaia S, Baraldi E, Dietz-Pfeilstetter A, Smagghe G, Ventura V, Sweet JB. Editorial: Advances and Challenges of RNAi Based Technologies for Plants-Volume 2. FRONTIERS IN PLANT SCIENCE 2022; 13:930851. [PMID: 35898218 PMCID: PMC9309804 DOI: 10.3389/fpls.2022.930851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Salvatore Arpaia
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA) Research Centre Trisaia - Division Bioenergy, Biorefinery and Green Chemistry, Rotondella, Italy
| | - Elena Baraldi
- DISTAL-Department of Agricultural and Food Science, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antje Dietz-Pfeilstetter
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Braunschweig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Vera Ventura
- Department of Civil Engineering, Architecture, Land, Environment and of Mathematics, University of Brescia, Brescia, Italy
| | - Jeremy B. Sweet
- Sweet Environmental Consultant (SEC), Cambridge, United Kingdom
| |
Collapse
|
18
|
Mazzoni L, Medori I, Balducci F, Marcellini M, Acciarri P, Mezzetti B, Capocasa F. Branch Numbers and Crop Load Combination Effects on Production and Fruit Quality of Flat Peach Cultivars ( Prunus persica (L.) Batsch) Trained as Catalonian Vase. PLANTS (BASEL, SWITZERLAND) 2022; 11:308. [PMID: 35161288 PMCID: PMC8839559 DOI: 10.3390/plants11030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and fruit quality of four different flat peach cultivars, trained as Catalonian vase in 2017-2018 in Italy. Productive (average fruit weight, plant total production, and fruit circumference), qualitative (fruit firmness and overcolor, Soluble Solids Content, and Titratable Acidity), and nutritional (Total Antioxidant Capacity, and Total Phenol Content) parameters were evaluated. For productive parameters, a high crop load level led to a decrease in fruit weight and circumference, while a high crop load resulted in higher plant yield. Regarding the qualitative parameters, fruit SSC significantly increased with the diminution of the crop load level in both years of study, while TA was not influenced by crop load and number of branches. Both the total antioxidant capacity and the polyphenol content decreased with an increase in branches number. The findings derived from this study will help growers to select the most suitable combination among genotypes and plant management, to obtain the desired productive or qualitative goals.
Collapse
Affiliation(s)
- Luca Mazzoni
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; (L.M.); (I.M.); (F.B.); (M.M.); (B.M.)
| | - Irene Medori
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; (L.M.); (I.M.); (F.B.); (M.M.); (B.M.)
| | - Francesca Balducci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; (L.M.); (I.M.); (F.B.); (M.M.); (B.M.)
| | - Micol Marcellini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; (L.M.); (I.M.); (F.B.); (M.M.); (B.M.)
| | - Paolo Acciarri
- Acciarri Società Agricola s.r.l., Via Aso 55, 63851 Ortezzano, Italy;
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; (L.M.); (I.M.); (F.B.); (M.M.); (B.M.)
| | - Franco Capocasa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; (L.M.); (I.M.); (F.B.); (M.M.); (B.M.)
| |
Collapse
|
19
|
Plant-based bioactive compounds: Healthy promoters and protective agents. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Giudice G, Moffa L, Varotto S, Cardone MF, Bergamini C, De Lorenzis G, Velasco R, Nerva L, Chitarra W. Novel and emerging biotechnological crop protection approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1495-1510. [PMID: 33945200 PMCID: PMC8384607 DOI: 10.1111/pbi.13605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 05/05/2023]
Abstract
Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.
Collapse
Affiliation(s)
- Gaetano Giudice
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Loredana Moffa
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A)University of UdineUdineItaly
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE)University of PadovaLegnaroPDItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Riccardo Velasco
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| |
Collapse
|
21
|
RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. PLANTS 2021; 10:plants10040650. [PMID: 33805521 PMCID: PMC8067263 DOI: 10.3390/plants10040650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.
Collapse
|