1
|
Hu W, Zhang X, Shen Y, Meng X, Wu Y, Tong P, Li X, Chen H, Gao J. Quantifying allergenic proteins using antibody-based methods or liquid chromatography-mass spectrometry/mass spectrometry: A review about the influence of food matrix, extraction, and sample preparation. Compr Rev Food Sci Food Saf 2024; 23:e70029. [PMID: 39379311 DOI: 10.1111/1541-4337.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xuanyi Meng
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yong Wu
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
2
|
Bourdat AG, den Dulk R, Serrano B, Boizot F, Clarebout G, Mermet X, Charles R, Porcherot J, Keiser A, Alessio M, Laurent P, Sarrut N, Cubizolles M. An integrated microfluidic platform for on-site qPCR analysis: food allergen detection from sample to result. LAB ON A CHIP 2024. [PMID: 39397566 DOI: 10.1039/d4lc00570h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Improving food safety is crucial in the context of a "One Health" approach. To guarantee product quality and safety, the food industry, which has a very high turnover rate, needs short time-to-result analyses. Therefore, user-friendly systems at the point-of-need are necessary, presenting relevant analytical information and fulfilling the current regulations. To answer these challenges, a microfluidic platform integrating sample preparation and subsequent multiplex qPCR detection has been developed for on-site testing. The system consists of a fully automated instrument driving a microfluidic cartridge dedicated to the detection of multiple allergens in complex food matrices. The first part of the microfluidic cartridge contains pumps, reservoirs, valves and a filter to achieve DNA extraction, concentration and purification. Multiplex qPCR detection is carried out in the second part of the cartridge including a negative control chamber and five chambers for target analyte detection. The in-house developed instrument contains all functions to autonomously drive the microfluidic cartridge: pneumatic control for fluid actuation, thermal control for qPCR amplification and an optical system using three fluorescent wavelengths for multiplex detection of the target analytes and controls. We demonstrate the simultaneous detection of four different allergens - gluten, sesame, soy and hazelnut - from various complex food matrices. The turn-around-time from sample to result is close to two hours and controls in place validate the obtained results. For gluten, a direct comparison with ELISA shows that the regulatory threshold of 20 ppm is comfortably fulfilled. Moreover, all results are in agreement with external laboratory analyses performed in parallel on the same samples. Our findings confirm that the system can be used safely on-site without the risk of cross contamination between the various samples being analysed. In conclusion, our microfluidic platform offers a robust method for on-site allergen management.
Collapse
Affiliation(s)
| | - Remco den Dulk
- Univ. Grenoble Alpes, CEA Leti, F-38000 Grenoble, France.
| | | | | | | | - Xavier Mermet
- Univ. Grenoble Alpes, CEA Leti, F-38000 Grenoble, France.
| | | | - Jean Porcherot
- Univ. Grenoble Alpes, CEA Leti, F-38000 Grenoble, France.
| | - Armelle Keiser
- Univ. Grenoble Alpes, CEA Leti, F-38000 Grenoble, France.
| | - Manuel Alessio
- Univ. Grenoble Alpes, CEA Leti, F-38000 Grenoble, France.
| | | | - Nicolas Sarrut
- Univ. Grenoble Alpes, CEA Leti, F-38000 Grenoble, France.
| | | |
Collapse
|
3
|
Gong L, Lin Y. Microfluidics in smart food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:305-354. [PMID: 39103216 DOI: 10.1016/bs.afnr.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The evolution of food safety practices is crucial in addressing the challenges posed by a growing global population and increasingly complex food supply chains. Traditional methods are often labor-intensive, time-consuming, and susceptible to human error. This chapter explores the transformative potential of integrating microfluidics into smart food safety protocols. Microfluidics, involving the manipulation of small fluid volumes within microscale channels, offers a sophisticated platform for developing miniaturized devices capable of complex tasks. Combined with sensors, actuators, big data analytics, artificial intelligence, and the Internet of Things, smart microfluidic systems enable real-time data acquisition, analysis, and decision-making. These systems enhance control, automation, and adaptability, making them ideal for detecting contaminants, pathogens, and chemical residues in food products. The chapter covers the fundamentals of microfluidics, its integration with smart technologies, and its applications in food safety, addressing the challenges and future directions in this field.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States.
| |
Collapse
|
4
|
Jiang W, Tang Q, Zhu Y, Gu X, Wu L, Qin Y. Research progress of microfluidics-based food safety detection. Food Chem 2024; 441:138319. [PMID: 38218144 DOI: 10.1016/j.foodchem.2023.138319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
High demands for food safety detection and analysis have been advocated with people's increasing living standards. Even though numerous analytical testing techniques have been proposed, their widespread adoption is still constrained by the high limit of detection, narrow detection ranges, and high implementation costs. Due to their advantages, such as reduced sample and reagent consumption, high sensitivity, automation, low cost, and portability, using microfluidic devices for food safety monitoring has generated significant interest. This review provides a comprehensive overview of the latest microfluidic detection platforms (published in recent 4 years) and their applications in food safety, aiming to provide references for developing efficient research strategies for food contaminant detection and facilitating the transition of these platforms from laboratory research to practical field use.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China; School of Life Science, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
5
|
Huang Y, Li R, Zhu W, Zhao J, Wang H, Zhang Z, Lin H, Li W, Li Z. Development of a fluorescent multiplexed lateral flow immunoassay for the simultaneous detection of crustacean allergen tropomyosin, sarcoplasmic calcium binding protein and egg allergen ovalbumin in different matrices and commercial foods. Food Chem 2024; 440:138275. [PMID: 38150909 DOI: 10.1016/j.foodchem.2023.138275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
A quantum dot (QD) based multiplexed lateral flow immunoassay (xLFIA) for the simultaneous detection of egg allergen ovalbumin, crustacean allergen tropomyosin (TM) and sarcoplasmic calcium binding protein (SCP) was developed in this study. QD-labeled rabbit anti-ovalbumin, SCP and TM antibodies were applied as fluorescent detection probes. The chromatography system was optimized to reduce the mutual interference of different test lines. Visual and instrumental detection limits of the xLFIA were 0.1 and 0.05 μg/mL for SCP, both 0.05 μg/mL for ovalbumin and both 0.5 μg/mL for TM. As low as 0.10 % crab powder, 0.01 % egg white powder and 0.05 % shrimp powder could be detected in all three model foods using xLFIA. Besides, the xLFIA detection results of 23 of 28 commercial foods were consistent with ingredient labels. These findings indicate that the developed xLFIA is a practical tool for point-of-care detection of egg and crustacean allergens in processed and commercial foods.
Collapse
Affiliation(s)
- Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Ranran Li
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Wenjie Li
- Clinical Laboratory, Qingdao Women & Children Hospital, No.6, Tongfu Road, Qingdao, Shandong Province 266034, PR China.
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China.
| |
Collapse
|
6
|
Zhu J, Luo J, Hua Z, Feng X, Cao X. SERS microfluidic chip integrated with double amplified signal off-on strategy for detection of microRNA in NSCLC. BIOMEDICAL OPTICS EXPRESS 2024; 15:594-607. [PMID: 38404336 PMCID: PMC10890848 DOI: 10.1364/boe.514425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
In this work, based on Fe3O4@AuNPs and double amplified signal Off-On strategy, a simple and sensitive SERS microfluidic chip was constructed to detect microRNA associated with non-small cell lung cancer (NSCLC). Fe3O4@AuNPs have two advantages of SERS enhanced and magnetic adsorption, the introduction of microfluidic chip can realize double amplification of SERS signal. First, the binding of complementary ssDNA and hpDNA moved the Raman signaling molecule away from Fe3O4@AuNPs, at which point the signal was turned off. Second, in the presence of the target microRNA, they were captured by complementary ssDNA and bound to them. HpDNA restored the hairpin conformation, the Raman signaling molecule moved closer to Fe3O4@AuNPs. At this time, the signal was turned on and strong Raman signal was generated. And last, through the magnetic component of SERS microfluidic chip, Fe3O4@AuNPs could be enriched to realize the secondary enhancement of SERS signal. In this way, the proposed SERS microfluidic chip can detect microRNA with high sensitivity and specificity. The corresponding detection of limit (LOD) for miR-21 versus miR-125b was 6.38 aM and 7.94 aM, respectively. This SERS microfluidic chip was promising in the field of early detection of NSCLC.
Collapse
Affiliation(s)
- Jiashan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jinhua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhaolai Hua
- People's Hospital of Yangzhong City, Zhenjiang 212000, Jiangsu, China
| | - Xiang Feng
- People's Hospital of Yangzhong City, Zhenjiang 212000, Jiangsu, China
| | - Xiaowei Cao
- People's Hospital of Yangzhong City, Zhenjiang 212000, Jiangsu, China
| |
Collapse
|
7
|
Diep Trinh TN, Trinh KTL, Lee NY. Microfluidic advances in food safety control. Food Res Int 2024; 176:113799. [PMID: 38163712 DOI: 10.1016/j.foodres.2023.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Viet Nam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
8
|
Liang M, Zhang G, Song J, Tan M, Su W. Paper-Based Microfluidic Chips for Food Hazard Factor Detection: Fabrication, Modification, and Application. Foods 2023; 12:4107. [PMID: 38002165 PMCID: PMC10670051 DOI: 10.3390/foods12224107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Food safety and quality are paramount concerns for ensuring the preservation of human life and well-being. As the field of food processing continues to advance, there is a growing interest in the development of fast, instant, cost-effective, and convenient methods for detecting food safety issues. In this context, the utilization of paper-based microfluidic chips has emerged as a promising platform for enabling rapid detection, owing to their compact size, high throughput capabilities, affordability, and low resource consumption, among other advantages. To shed light on this topic, this review article focuses on the functionalization of paper-based microfluidic surfaces and provides an overview of the latest research and applications to colorimetric analysis, fluorescence analysis, surface-enhanced Raman spectroscopy, as well as their integration with paper-based microfluidic platforms for achieving swift and reliable food safety detection. Lastly, the article deliberates on the challenges these analytical methods and presents insights into their future development prospects in facilitating rapid food safety assessment.
Collapse
Affiliation(s)
- Meiqi Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Guozhi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Song
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (G.Z.); (J.S.); (M.T.)
- National Engineering Research Center of Seafood, Dalian 116034, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Lin F, Soko WC, Xie J, Bi H. On-Chip Discovery of Allergens from the Exudate of Large Yellow Croaker ( Larimichthys Crocea) Muscle Food by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13546-13553. [PMID: 37647599 DOI: 10.1021/acs.jafc.3c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
It is extremely crucial to establish facile, accurate, and fast methods for testing allergenic proteins (allergens) in seafood. The current study focuses on the evaluation of fish muscle exudate proteins in an effort to discover potential allergens in fish exudate for allergy tests. Large yellow croaker (Larimichthys crocea) was studied as a seafood model. Magnetic beads (MBs) modified with an IgE antibody were utilized to isolate allergens existing in the exudate sample. Immunoglobulin E (IgE) in blood is a class of antibodies that is mainly associated with allergic reactions. Potential allergens in the muscle exudate were fished by IgE-biofunctional MBs in microfluidic channels. The protein-attached MBs were isolated under a magnetic field, eluted, and collected. The collected eluent was digested and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to identify allergens. Eight allergens from large yellow croaker exudate were identified, i.e., parvalbumin beta, parvalbumin, protein S100, histone H4, cytochrome c, fatty acid binding protein 3 (FABP3), microsomal glutamate S-transfer 3 (MGST3), and C-C motif chemokine 21 (CCL21). The presently proposed microfluidic-magnetic-based allergen extraction protocol enables a facile and rapid test of potentials of seafood allergies, providing a solution to circumvent food safety issues, especially for allergic populations.
Collapse
Affiliation(s)
- Fang Lin
- College of Food Science and Technology, Shanghai Ocean University (SHOU), Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Winnie C Soko
- College of Food Science and Technology, Shanghai Ocean University (SHOU), Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University (SHOU), Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Hongyan Bi
- College of Food Science and Technology, Shanghai Ocean University (SHOU), Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| |
Collapse
|
10
|
Karamdoust S, Milani-Hosseini MR, Faridbod F. Simple detection of gluten in wheat-containing food samples of celiac diets with a novel fluorescent nanosensor made of folic acid-based carbon dots through molecularly imprinted technique. Food Chem 2023; 410:135383. [PMID: 36638629 DOI: 10.1016/j.foodchem.2022.135383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
A nanosensor is designed for rapid detection of the gluten content of wheat-containing samples. Gluten is a plant protein that causes allergy in individuals and leads to celiac disease. Since in a celiac diet trace amounts of gluten are able to prompt allergic reactions, a food-allergen label must be provided on foodstuffs and be seriously considered by food industries. Various analytical methods and commercial immunoassays are used for such analyses but prices per test, especially for low-income countries are high. Thus, a rapid, sensitive, simple, and inexpensive detecting tool seems essential. A solution can be designing a gluten optical nanosensor. The nanosensor is made of folic-acid-carbon dots and gluten molecularly templates embedded simultaneously in a silicate matrix. Adding gluten to the solution of this nanostructure and its adsorbing on the blank templated space on the nanostructure causes fluorescence enhancement. The concentration range of gluten detection was 0.36 to 2.20 µM.
Collapse
Affiliation(s)
- Sanaz Karamdoust
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad-Reza Milani-Hosseini
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Point-of-care diagnostics for sepsis using clinical biomarkers and microfluidic technology. Biosens Bioelectron 2023; 227:115181. [PMID: 36867959 DOI: 10.1016/j.bios.2023.115181] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Sepsis is a life-threatening immune response which is caused by a wide variety of sources and is a leading cause of mortality globally. Rapid diagnosis and appropriate antibiotic treatment are critical for successful patient outcomes; however, current molecular diagnostic techniques are time-consuming, costly and require trained personnel. Additionally, there is a lack of rapid point-of-care (POC) devices available for sepsis detection despite the urgent requirements in emergency departments and low-resource areas. Recent advances have been made toward developing a POC test for early sepsis detection that will be more rapid and accurate compared to conventional techniques. Within this context, this review discusses the use of current and novel biomarkers for early sepsis diagnosis using microfluidics devices for POC testing.
Collapse
|
12
|
Chen X, Zhang D, Liu Q, Liu S, Li H, Li Z. Enzyme-Linked Immunosorbent Assay-Based Microarray on a Chip for Bioaerosol Sensing: Toward Sensitive and Multiplexed Profiling of Foodborne Allergens. Anal Chem 2023; 95:7354-7362. [PMID: 37098245 DOI: 10.1021/acs.analchem.3c00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Food allergy has become a growing health concern that may impair life quality and even cause life-threatening outcomes. Accidental and continuous exposure to allergenic bioaerosols has a substantially negative impact on the respiratory health of patients. Traditional analytical methodologies for food allergens are restricted by strong reliance on bulk instrumentation and skilled personnel, particularly in low-resource settings. In this study, a fluorescent sensor array based on the enzyme-linked immunosorbent assay performed on a herringbone-shaped microfluidic chip (ELISA-HB-chip) was designed for dynamically sensitive and multiplexed quantification of foodborne allergens in aerosols that originated from liquid food extracts. Due to the high surface area of aerosol particles and sufficient mixing of immunological reagents using a herringbone micromixer, the detection sensitivity was improved by over an order of magnitude compared to traditional allergen detection in the aqueous phase. Through fluorescence imaging of multiple regions on the ELISA-HB-chip, four important foodborne allergens, namely, ovalbumin, ovomucoid, lysozyme, and tropomyosin, could be simultaneously monitored without any cross-reactivity, and the limits of detection for these allergenic species were determined to be 7.8, 1.2, 4.2, and 0.31 ng/mL, respectively. Combining with a 3D printed and portable fluorescence microscope, this platform exhibited an excellent field-deployable capacity for quick and accurate determination of allergens in the aerosol state from spiked buffer solutions, thus displaying the practicality for food safety screening at cooking or food processing sites where patients are potentially under exposure to allergenic bioaerosols that escaped from food matrices or extracts.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dongdong Zhang
- Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qingmei Liu
- College of Ocean Food and Biologic Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Sihui Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Houlin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
13
|
Liu CC, Ko CH, Fu LM, Jhou YL. Light-shading reaction microfluidic PMMA/paper detection system for detection of cyclamate concentration in foods. Food Chem 2023; 400:134063. [DOI: 10.1016/j.foodchem.2022.134063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/15/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
|
14
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
15
|
Li R, Zhang Y, Zhao J, Wang Y, Wang H, Zhang Z, Lin H, Li Z. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Jadeja R, Teng XM, Mohan A, Duggirala K. Value-Added Utilization of Beef Byproducts and Low-Value Comminuted Beef: Challenges and Opportunities. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
19
|
Natsuhara D, Misawa S, Saito R, Shirai K, Okamoto S, Nagai M, Kitamura M, Shibata T. A microfluidic diagnostic device with air plug-in valves for the simultaneous genetic detection of various food allergens. Sci Rep 2022; 12:12852. [PMID: 35896785 PMCID: PMC9329328 DOI: 10.1038/s41598-022-16945-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/19/2022] [Indexed: 01/12/2023] Open
Abstract
The identification of accidental allergen contamination in processed foods is crucial for risk management strategies in the food processing industry to effectively prevent food allergy incidents. Here, we propose a newly designed passive stop valve with high pressure resistance performance termed an “air plug-in valve” to further improve microfluidic devices for the detection of target nucleic acids. By implementing the air plug-in valve as a permanent stop valve, a maximal allowable flow rate of 70 µL/min could be achieved for sequential liquid dispensing into an array of 10 microchambers, which is 14 times higher than that achieved with the previous valve arrangement using single-faced stop valves. Additionally, we demonstrate the simultaneous detection of multiple food allergens (wheat, buckwheat, and peanut) based on the colorimetric loop-mediated isothermal amplification assay using our diagnostic device with 10 microchambers compactly arranged in a 20-mm-diameter circle. After running the assays at 60 °C for 60 min, any combination of the three types of food allergens and tea plant, which were used as positive and negative control samples, respectively, yielded correct test results, without any cross-contamination among the microchambers. Thus, our diagnostic device will provide a rapid and easy sample-to-answer platform for ensuring food safety and security.
Collapse
Affiliation(s)
- Daigo Natsuhara
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| | - Sae Misawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan
| | - Ryogo Saito
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Koki Shirai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Shunya Okamoto
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Masashi Kitamura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
20
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
21
|
Nehra M, Kumar V, Kumar R, Dilbaghi N, Kumar S. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector. BIOSENSORS 2022; 12:489. [PMID: 35884292 PMCID: PMC9313409 DOI: 10.3390/bios12070489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 05/05/2023]
Abstract
Over the past-decade, agricultural products (such as vegetables and fruits) have been reported as the major vehicles for foodborne diseases, which are limiting food resources. The spread of infectious diseases due to foodborne pathogens poses a global threat to human health and the economy. The accurate and timely detection of infectious disease and of causative pathogens is crucial in the prevention and treatment of disease. Negligence in the detection of pathogenic substances can be catastrophic and lead to a pandemic. Despite the revolution in health diagnostics, much attention has been paid to the agro-food sector regarding the detection of food contaminants (such as pathogens). The conventional analytical techniques for pathogen detection are reliable and still in operation. However, laborious procedures and time-consuming detection via these approaches emphasize the need for simple, easy-to-use, and affordable detection techniques. The rapid detection of pathogens from food is essential to avoid the morbidity and mortality originating from the suboptimal nature of empiric pathogen treatment. This review critically discusses both the conventional and emerging bio-molecular approaches for pathogen detection in agro-food.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| |
Collapse
|
22
|
Su W, Zhang M, Wei W, Wang H, Zhang W, Li Z, Tan M, Chen Z. Microfluidics-assisted electrospinning of aligned nanofibers for modeling intestine barriers. PeerJ 2022; 10:e13513. [PMID: 35694381 PMCID: PMC9186328 DOI: 10.7717/peerj.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/08/2022] [Indexed: 01/17/2023] Open
Abstract
During electrospinning, the fibers deposited on the collector are usually randomly oriented in a disordered form. Researchers hope to generate periodic structures to expand the application of electrospinning, including improving the sensing properties of electronic and photonic devices, improving the mechanical properties of solid polymer composites and directional growth of human tissues. Here, we propose a technique to control the preparation of aligned foodborne nanofibers by placing dielectric polymers on microfluidic devices, which does not require the use of metal collectors. This study was conducted by introduced PEDOT:PSS polymer as a ground collector to prepare aligned foodborne nanofibers directly on the microfluidic platform. The fluidity of the electrolytic polymer collector makes it possible to shape the grounding collector according to the shape of the microcavity, thus forming a space adjustable nanofiber membrane with a controllable body. The simplicity of dismantling the collector also enables it extremely simple to obtain a complete electrospun fiber membrane without any additional steps. In addition, nanofibers can be easily stacked into a multi-layer structure with controllable hierarchical structures. The Caco-2 cells that grow on the device formed a compact intestinal epithelial layer that continuously expresses the tightly bound protein ZO-1. This intestinal barrier, which selectively filters small molecules, has a higher level of TEER, reproducing intestinal filtration functions similar to those of in vivo models. This method provides new opportunities for the design and manufacture of various tissue scaffolds, photonic and electronic sensors.
Collapse
Affiliation(s)
- Wentao Su
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China,Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Miao Zhang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China,Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wei Zhang
- Research Center for Clinical Pharmacology, Southern Medical University, Guangzhou, China
| | | | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China,Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China,Research Center for Clinical Pharmacology, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Yang Q, Yang H, Yuan N, Zuo S, Zhang Y, Zhang W. Closed-tube saltatory rolling circle amplification with hydroxynaphthol blue for visual on-site detection of peanut as an allergenic food. Food Chem 2022; 393:133408. [DOI: 10.1016/j.foodchem.2022.133408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023]
|
24
|
dos Santos DM, Cardoso RM, Migliorini FL, Facure MH, Mercante LA, Mattoso LH, Correa DS. Advances in 3D printed sensors for food analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
A spotlight on analytical prospects in food allergens: From emerging allergens and novel foods to bioplastics and plant-based sustainable food contact materials. Food Chem 2022; 388:132951. [PMID: 35447585 DOI: 10.1016/j.foodchem.2022.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
The present review throws a spotlight on new and emerging food safety concerns in view of a well-established food allergen risk arising from global socio-economic changes, international trade, circular economy, environmental sustainability, and upcycling. Food culture globalization needs harmonization of regulations, technical specifications, and reference materials towards mutually recognised results. In parallel, routine laboratories require high-throughput reliable analytical strategies, even in-situ testing devices, to test both food products and food contact surfaces for residual allergens. Finally, the currently neglected safety issues associated to possible allergen exposure due to the newly proposed bio- and plant-based sustainable food contact materials require an in-depth investigation.
Collapse
|
26
|
Wang L, Bi H. On-chip immunomagnetic separation of allergens from myofibrillar proteins of seafoods for rapid allergy tests. Analyst 2022; 147:4063-4072. [DOI: 10.1039/d2an00813k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An on-chip strategy to analyze the allergens existing in myofibrillar proteins of seafood matrices using anti-human IgE-functionalized magnetic beads (MBs) has the potential to be applied in blood tests for food allergies with a single drop of blood.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China
| |
Collapse
|
27
|
Choe SW, Kim B, Kim M. Progress of Microfluidic Continuous Separation Techniques for Micro-/Nanoscale Bioparticles. BIOSENSORS 2021; 11:464. [PMID: 34821680 PMCID: PMC8615634 DOI: 10.3390/bios11110464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 05/03/2023]
Abstract
Separation of micro- and nano-sized biological particles, such as cells, proteins, and nucleotides, is at the heart of most biochemical sensing/analysis, including in vitro biosensing, diagnostics, drug development, proteomics, and genomics. However, most of the conventional particle separation techniques are based on membrane filtration techniques, whose efficiency is limited by membrane characteristics, such as pore size, porosity, surface charge density, or biocompatibility, which results in a reduction in the separation efficiency of bioparticles of various sizes and types. In addition, since other conventional separation methods, such as centrifugation, chromatography, and precipitation, are difficult to perform in a continuous manner, requiring multiple preparation steps with a relatively large minimum sample volume is necessary for stable bioprocessing. Recently, microfluidic engineering enables more efficient separation in a continuous flow with rapid processing of small volumes of rare biological samples, such as DNA, proteins, viruses, exosomes, and even cells. In this paper, we present a comprehensive review of the recent advances in microfluidic separation of micro-/nano-sized bioparticles by summarizing the physical principles behind the separation system and practical examples of biomedical applications.
Collapse
Affiliation(s)
- Se-woon Choe
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea;
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| | - Bumjoo Kim
- Department of Mechanical Engineering and Automotive Engineering, Kongju National University, Cheonan 1223-24, Korea;
- Department of Future Convergence Engineering, Kongju National University, Cheonan 1223-24, Korea
| | - Minseok Kim
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|