1
|
Yi L, Wu S, Ren G, Zhou Q, Li P, Wang Y, Tian X, He D, Pan Q. Glyphosate detection based on Eu coordination polymer through competitive coordination. Food Chem 2025; 463:141554. [PMID: 39388882 DOI: 10.1016/j.foodchem.2024.141554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Glyphosate is a widely used herbicide in agriculture, leading to residues in food and water environments. These residues have been associated with heart disease and neurotoxicity. Therefore, it is urgent to develop new types of sensors for the detection of glyphosate residues. Here, a new coordination polymer, named as HNU-89, is synthesized by the assembly of Eu3+ and coumarin-3-carboxylic acid (HCCA). Benefiting from the hydrophobic ligands, HNU-89 can maintain its structure at pH 2-11. In view of that phosphoric groups in glyphosate molecules can coordinate with Eu3+ and compete with the HCCA ligand, according to the competitive coordination, the interaction weakens the red fluorescence of HNU-89 simultaneously enhancing the blue fluorescence of HCCA, which achieves the ratio fluorescence response for glyphosate detection. The limit of detection (LOD) is 0.08 ppm, meeting the requirements as a sensor. Furthermore, HNU-89 was utilized to detect glyphosate in soybean, corn, rice and tap water.
Collapse
Affiliation(s)
- Linglong Yi
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shangzai Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Ping Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Yuan Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xudong Tian
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Danfeng He
- School of Science, Qiongtai Normal University, Haikou 571127, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Mo J, Xie P, Chen D, Chen Y, Yang L, Xing H. Single-phase dye-embedded triple-emitting EY&BPEA@Zr-MOFs for selective detection of inorganic ions in environmental water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125614. [PMID: 39721485 DOI: 10.1016/j.saa.2024.125614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence. The EY&BPEA@Zr-MOFs presented the ability to selectively detect Cr2O72- ions and Fe3+ ions in aqueous solution by means of fluorescence quenching and changes in color coordinates. Mechanistic studies revealed that the main mechanism for detecting Cr2O72- and Fe3+ ions involves a cooperative interplay between electron transfer and fluorescence resonance energy transfer between MOFs and analytes. The detection experiments conducted with real-world water samples and the portable fluorescence test papers, conclusively validated the practical applicability of EY&BPEA@Zr-MOFs.
Collapse
Affiliation(s)
- Jinfeng Mo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Peiyi Xie
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Yang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| | - Hongmei Xing
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China.
| |
Collapse
|
3
|
Huang S, Chen Z, Wang Y, Xie Y, Xu Z, Lei H, Li X. Post-synthetic modification fluorescence UiO-66-Eu immunochromatography for high-performance detection of sodium pentachlorophenoate. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135824. [PMID: 39270587 DOI: 10.1016/j.jhazmat.2024.135824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Sodium pentachlorophenate (PCP) is widely used as a herbicide, fungicide, or molluscicide. It is highly toxic, easily soluble in water, making it highly prone to diffusion and causing water and soil pollution. Through the food chain, it enters animal bodies and remains in food, causing toxicity to humans and animals. Therefore, establishing a rapid and simple detection method for PCP is crucial for human health and environmental protection. Herein, lanthanide metal Eu3+ was introduced into UiO-66-(COOH)2 by post-synthesis modification, and the nanomaterials prepared based on this method have the advantages of both UiO-66-(COOH)2 and Eu3+. The rigid skeleton structure of UiO-66-(COOH)2 can protect the activity of antibody, the detection environment pH tolerance range of UiO-66-Eu is 3-11. While Eu3+ has long fluorescence lifetime, high fluorescence intensity, high signal-to-noise ratio, and low photobleaching rate. UiO-66-Eu-based immunochromatography assay was successfully applied in PCP detection with the detection limits of 0.84, 0.98, and 0.37 μg/kg for pork, chicken, and shrimp, respectively, which was up to 10-fold more sensitive than the reported ICAs. The recoveries ranged from 79.7 %-113.1 %, with the coefficient of variation from 6.6 %-17.1 %. Parallel detection of 30 samples by LC-MS/MS showed a good correlation with that of our proposed method (R2 >0.98). This work not only provides a creative attempt for UiO-66-Eu based highly sensitive and strongly tolerant ICAs, but also guarantees human health and environmental protection.
Collapse
Affiliation(s)
- Siruo Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenyuan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanchao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Liu X, Hong D, Zhang Q, Jiang Y. Construction and Application of Copper Ion and Amino Acid Probe Based on Functionalized Metal-Organic Framework Probe. J Fluoresc 2024:10.1007/s10895-024-03908-1. [PMID: 39180574 DOI: 10.1007/s10895-024-03908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
The rapid development of fluorescence probe technology has promoted in-depth research in fields such as environment and life medicine. Traditional single channel fluorescent probes can achieve highly sensitive detection of targets, but they appear powerless in complex environments. In addition, in today's deteriorating resource environment, implementing multi target detection with one probe can effectively save preparation resources, which is in line with the development direction of fluorescent probes. To achieve this goal, designing and preparing multi-site probes is undoubtedly the first choice, but the complexity of their preparation is daunting. Herein, we propose the concept of cascade detection for the first time. After the probe completes the first target detection, the complex between the probe and the first target is achieved based on the characteristics of the first target to achieve subsequent target detection. Based on this, a metal-organic framework was used as a basic skeleton and the concept of serial reactions was applied. First, copper ions were detected through coordination. Then, the specificity of copper for sulfur-containing amino acids was utilized to detect the three types of amino acids, and the practical applications of the three probes were studied separately.
Collapse
Affiliation(s)
- Xinyi Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Dilong Hong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Qian Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China.
| |
Collapse
|
5
|
Li W, Liang Z, Wang P, Li Z, Ma Q. Dual-ligand Eu-MOF/CuS@Au Heterostructure Array-based ECL Sensor for MiRNA-128 Detection in Glioblastoma Tissues. Biosens Bioelectron 2024; 258:116356. [PMID: 38705073 DOI: 10.1016/j.bios.2024.116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Du X, Wu G, Dou X, Ding Z, Xie J. Alizarin complexone modified UiO-66-NH 2 as dual-mode colorimetric and fluorescence pH sensor for monitoring perishable food freshness. Food Chem 2024; 445:138700. [PMID: 38359567 DOI: 10.1016/j.foodchem.2024.138700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Food prone to spoilage has a huge food safety hazard, threatening people's health, so early detection of food spoilage is a continuous and urgent need. Herein, we developed a dual-mode response sensor, alizarin complexone@UiO-66-NH2, which can accurately detect pH. The sensor demonstrated significant changes in color from pale yellow to deep pink, while the fluorescence shifted from light blue to blue violet. Moreover, both UV absorption and fluorescence intensity showed a linear correlation with pH raging from 4.5 to 7.5. These results indicate that the sensor effectively responds to pH, making it suitable for detecting the freshness of perishable food. To put this into practice, we integrated the sensor with cellulose-based filter paper to determine the freshness of shrimp and beef, which was proved to be effective in assessing freshness. In the future, it can be combined with intelligent colorimetric and fluorescence instruments to achieve visual detection.
Collapse
Affiliation(s)
- Xiaoyu Du
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
7
|
Dhir R, Kaur M, Malik AK. Porphyrin Metal-organic Framework Sensors for Chemical and Biological Sensing. J Fluoresc 2024:10.1007/s10895-024-03674-0. [PMID: 38607529 DOI: 10.1007/s10895-024-03674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Porphyrins and porphyrin derivatives have been intensively explored for a number of applications such as sensing, catalysis, adsorption, and photocatalysis due to their outstanding photophysical properties. Their usage in sensing applications, however, is limited by intrinsic defects such as physiological instability and self-quenching. To reduce self-quenching susceptibility, researchers have developed porphyrin metal-organic frameworks (MOFs). Metal-organic frameworks (MOFs), a unique type of hybrid porous coordination polymers comprised of metal ions linked by organic linkers, are gaining popularity. Porphyrin molecules can be integrated into MOFs or employed as organic linkers in the production of MOFs. Porphyrin-based MOFs are a separate branch of the huge MOF family that combines the distinguishing qualities of porphyrins (e.g., fluorescent nature) and MOFs (e.g., high surface area, high porosity) to enable sensing applications with higher sensitivity, specificity, and extended target range. The key synthesis techniques for porphyrin-based MOFs, such as porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, are outlined in this review article. This review article focuses on current advances and breakthroughs in the field of porphyrin-based MOFs for detecting a variety of targets (for example, metal ions, anions, explosives, biomolecules, pH, and toxins). Finally, the issues and potential future uses of this class of emerging materials for sensing applications are reviewed.
Collapse
Affiliation(s)
- Rupy Dhir
- Department of Chemistry, G.S.S.D.G.S. Khalsa College, Patiala, Punjab, India
| | - Manpreet Kaur
- Department of Applied Sciences, Chandigarh Group of Colleges, Mohali, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
8
|
Li W, Liang Z, Wang P, Ma Q. The luminescent principle and sensing mechanism of metal-organic framework for bioanalysis and bioimaging. Biosens Bioelectron 2024; 249:116008. [PMID: 38245932 DOI: 10.1016/j.bios.2024.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) porous material have obtained more and more attention during the past decade. Among various MOFs materials, luminescent MOFs with specific chemical characteristics and excellent optical properties have been regarded as promising candidates in the research of cancer biomarkers detection and bioimaging. Therefore, the latest advances and the principal biosensing and imaging strategies based on the luminescent MOFs were discussed in this review. The effective synthesis methods of luminescent MOFs were emphasized firstly. Subsequently, the luminescent principle of MOFs has been summarized. Furthermore, the luminescent MOF-based sensing mechanisms have been highlighted to provide insights into the design of biosensors. The designability of LMOFs was suitable for different needs of biorecognition, detection, and imaging. Typical examples of luminescent MOF in the various cancer biomarkers detection and bioimaging were emphatically introduced. Finally, the future outlooks and challenges of luminescent MOF-based biosensing systems were proposed for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Yin SH, Lan BL, Yang YL, Tong YQ, Feng YF, Zhang Z. Multi-analyte fluorescence sensing based on a post-synthetically functionalized two-dimensional Zn-MOF nanosheets featuring excited-state proton transfer process. J Colloid Interface Sci 2024; 657:880-892. [PMID: 38091911 DOI: 10.1016/j.jcis.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024]
Abstract
Covalent post-synthetic modification of metal-organic frameworks (MOFs) represents an underexplored but promising avenue for allowing the addition of specific fluorescent recognition elements to produce the novel MOF-based sensory materials with multiple-analyte detection capability. Here, an excited-state proton transfer (ESPT) active sensor 2D-Zn-NS-P was designed and constructed by covalent post-synthetic incorporation of the excited-state tautomeric 2-hydroxypyridine moiety into the ultrasonically exfoliated amino-tagged 2D Zn-MOF nanosheets (2D-Zn-NS). The water-mediated ESPT process facilitates the highly accessible active sites incorporated on the surface of 2D-Zn-NS-P to specifically respond to the presence of water in common organic solvents via fluorescence turn-on behavior, and accurate quantification of trace amount of water in acetonitrile, acetone and ethanol was established using the as-synthesized nanosheet sensor with the detection sensitivity (<0.01% v/v) superior to the conventional Karl Fischer titration. Upon exposure to Fe3+ or Cr2O72-, the intense blue emission of the aqueous colloidal dispersion of 2D-Zn-NS-P was selectively quenched even in the coexistence of common inorganic interferents. The prohibition of the water-mediated ESPT process and local emission, induced by the coordination of ESPT fluorophore with Fe3+ or by Cr2O72- competitively absorbs the excitation energy, was proposed to responsible for the fluorescence turn-off sensing of the respective analytes. The present study offers the attractive prospect to develop the ESPT-based fluorescent MOF nanosheets by covalent post-synthetic modification strategy as multi-functional sensors for detection of target analytes.
Collapse
Affiliation(s)
- Shu-Hui Yin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Bi-Liu Lan
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ya-Li Yang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Fang Feng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China; College of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
10
|
Geng L, Wang H, Liu M, Huang J, Wang G, Guo Z, Guo Y, Sun X. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168832. [PMID: 38036131 DOI: 10.1016/j.scitotenv.2023.168832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
11
|
Su Q, Su W, Xing S, Tan M. Enhanced stability of anthocyanins by cyclodextrin-metal organic frameworks: Encapsulation mechanism and application as protecting agent for grape preservation. Carbohydr Polym 2024; 326:121645. [PMID: 38142106 DOI: 10.1016/j.carbpol.2023.121645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
Anthocyanins are promising naturally occurring food preservatives for enhancing the quality of food products due to their excellent antioxidant properties. However, their low stability hinders their food packaging application. Here, we propose a facile strategy to achieve the improved stability of anthocyanins encapsulated in γ-cyclodextrin metal-organic frameworks (CD-MOFs) with an in-depth exploration of their structure-property relationships. The adsorbed anthocyanins in CD-MOFs are stabilized by multiple cooperative non-covalent interactions including hydrogen bonding and van der Waals (vdW) interactions as demonstrated by density functional theory (DFT) calculations and spectroscopy analysis. Particularly, by ion-exchange of acetate ions into the pores of CD-MOFs, the resulting CD-MOFs (CD-MOF_OAc) shows a higher anthocyanins adsorption rate with a maximum loading capacity of 83.7 % at 1 min. Besides, CD-MOF_OAc possesses the more effective protecting effect on anthocyanins with at least two-fold enhancement of stability in comparison of free anthocyanins under heating and light irradiation. The anthocyanins encapsulated CD-MOFs films for fruit freshness was validated by the Kyoho experiment. This novel encapsulation system provides a new possibility for the potential use of CD-MOFs as the encapsulating material for anthocyanins in fruit preservation.
Collapse
Affiliation(s)
- Qimeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shanghua Xing
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Kayani KF, Mohammad NN, Kader DA, Mohammed SJ, Shukur DA, Alshatteri AH, Al‐Jaf SH, Abdalkarim KA, Hassan HQ. Ratiometric Lanthanide Metal‐Organic Frameworks (MOFs) for Smartphone‐Assisted Visual Detection of Food Contaminants and Water: A Review. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2025]
Abstract
AbstractDeveloping a reliable portable biosensor is crucial for ensuring food safety and human health. This involves accurately detecting contaminants in food and water at their source. Smartphone cameras have recently become useful for capturing color or fluorescence changes that occur when a probe interacts with specific molecules on paper or in a chemical solution. Ratiometric designs, which self‐calibrate and minimize the impact of environmental changes, are gaining popularity. These designs rely on color changes or fluorescence shifts, which are easily assessable with smartphones. This overview highlights advances in ratiometric optical sensing using Metal‐organic frameworks (MOFs) with lanthanide components coupled with smartphones. These advancements allow contaminants in food and water to be visually identified. The article explains the principles, properties, and applications of color changes for visual detection in food safety. Using lanthanide metal‐organic frameworks with smartphones offers a potent method to detect contaminants, enhancing food safety and safeguarding human health.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Nian N. Mohammad
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Department of Medical Laboratory Science College of Science Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Dana A. Kader
- Department of Chemistry College of Education University of Sulaimani Old Campus 46001 Kurdistan Region Iraq E-mail: address
| | - Sewara J. Mohammed
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Anesthesia Department College of Health Sciences Cihan University Sulaimaniya Sulaimani 46001 Kurdistan Region Iraq
| | - Dana A. Shukur
- Department of Nanoscience and Applied Chemistry College of Science Charmo University Peshawa Street Chamchamal Sulaymaniyah 46023 Iraq
| | - Azad H. Alshatteri
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Sabah H. Al‐Jaf
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Karzan A. Abdalkarim
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Hanar Q. Hassan
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| |
Collapse
|
13
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
14
|
Yue X, Fu L, Wu C, Xu S, Bai Y. Rapid Trace Detection of Sulfite Residue in White Wine Using a Multichannel Colorimetric Nanozyme Sensor. Foods 2023; 12:3581. [PMID: 37835234 PMCID: PMC10572540 DOI: 10.3390/foods12193581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
As a commonly used food additive, sulfite (SO32-) is popular with food manufacturers due to the functions of bleaching, sterilizing, and oxidation resistance. However, excess sulfites can pose a threat to human health. Therefore, it is particularly important to achieve rapid and sensitive detection of SO32-. Herein, a colorimetric sensor was invented for visual, meticulous, and rapid detection of SO32- based on MIL-53(Fe/Mn). Bimetallic nanozyme MIL-53(Fe/Mn) was prepared by a one-pot hydrothermal reaction. The prepared MIL-53(Fe/Mn) can effectively catalyze the oxidation of colorless TMB to a blue oxidation product (oxTMB). The introduction of SO32- causes significant discoloration of the reaction system, gradually transitioning from a visible blue color to colorless. Hence, a sensitive colorimetric sensor for SO32- detection was developed based on the decolorization degree of the detection system. Further, the discoloration was ascribed to the inactivation of nanozyme and the strong reducing ability of SO32-. Under the optimal experimental conditions, there was a good linear relationship between the absorbance at 652 nm and SO32- concentration in the linear range of 0.5-6 μg mL-1 with a limit of detection (LOD) of 0.05 μg mL-1. The developed method was successfully applied to the detection of actual samples of white wine with good accuracy and recovery. Compared to traditional methods, this colorimetric sensor produces similar detection results but significantly reduces the detection time. Compared to traditional methods, this colorimetric sensor can not only reduce the detection costs effectively but also help the food industry maintain quality standards. Strong anti-interference capability, simple operation, and low detection limits ensure the excellent performance of the colorimetric sensor in detecting SO32- in white wine. The combination of a smartphone and a colorimetric analysis application has also greatly facilitated the semi-quantitative, visual on-site detection of SO32-, which has opened up an application prospect of an MIL-53(Fe/Mn)-based detection platform. Our work has indicated a new direction for the detection of SO32- and provided important assurance for food safety.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Long Fu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
| | - Chaoyun Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
| | - Sheng Xu
- College of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.Y.); (L.F.); (C.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
15
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
16
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
17
|
Xu Z, Song C, Chen Z, Zeng C, Lv T, Wang L, Liu B. A portable paper-based testing device for fast and on-site determination of nitroxynil in food. Anal Chim Acta 2023; 1260:341201. [PMID: 37121652 DOI: 10.1016/j.aca.2023.341201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
Nitroxynil (NTX) is a common anthelmintic veterinary drug for the management of fascioliasis in food-producing sheep and cattle. Since excessive NTX residue in food can lead to several adverse side effects, such as allergic skin reaction and respiratory irritation, it is of great importance to develop an efficient analytical method for NTX determination. Herein, we report a simple fluorescent detection method based on a novel supramolecular probe capable of detecting NTX with a fast response (5 s), high sensitivity (107 nM), high selectivity, and acceptable anti-interference property. Moreover, the portable paper-based test strips were facilely prepared and successfully realized on-site determination of NTX in real edible animal products simply with the aid of a smartphone. To the best of our knowledge, this is the very first report on the portable detection of NTX. This study also provides a promising strategy for the fast and portable detection of analyte based on the host-guest system, which will lead to improved fluorescent probe design for food analysis.
Collapse
Affiliation(s)
- Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Chao Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zihao Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Conghui Zeng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW, 2006, Australia
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
18
|
Wang A, Feng X, He G, Xiao Y, Zhong T, Yu X. Recent advances in digital microfluidic chips for food safety analysis: Preparation, mechanism and application. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
19
|
Li Z, Hou S, Zhang H, Song Q, Wang S, Guo H. Recent advances in fluorescent and colorimetric sensing for volatile organic amines and biogenic amines in food. ADVANCED AGROCHEM 2023; 2:79-87. [DOI: 10.1016/j.aac.2023.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Wang S, Du T, Liu S, Li Y, Wang Y, Zhang L, Zhang D, Sun J, Zhu M, Wang J. Dyestuff chemistry auxiliary instant immune-network label strategy for immunochromatographic detection of chloramphenicol. Food Chem 2023; 401:134140. [DOI: 10.1016/j.foodchem.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
21
|
Huang L, Sun DW, Pu H, Zhang C, Zhang D. Nanocellulose-based polymeric nanozyme as bioinspired spray coating for fruit preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Mohan B, Singh G, Pombeiro AJL, Solovev AA, Sharma PK, Chen Q. Metal-organic frameworks (MOFs) for milk safety and contaminants monitoring. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
ZIF-8 base-aptamer "gate-lock" probes enable the visualization of a cascade response between deoxynivalenol and cytochrome c inside living cells. Mikrochim Acta 2022; 190:39. [PMID: 36585487 DOI: 10.1007/s00604-022-05619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022]
Abstract
Zeolitic imidazolate framework (ZIF-8) base-aptamer "gate-lock" biomaterial probes have been synthesized for monitoring intracellular deoxynivalenol (DON) and cytochrome c (cyt c) levels. The aptamer and organic fluorescent dye were regarded as a recognition element and a sensing element, respectively. In the presence of DON, the aptamers of DON and cyt c were specifically bound with the DON and induced cyt c, leading to the dissociation of aptamers from the porous surface of the probes. The gate was subsequently opened to release methylene blue (MB) and Rhodamine 6G (Rh6G), and their fluorescence (emission of MB at 700 nm and Rh6G at 550 nm) significantly recovered within 6 h. Cell imaging successfully monitored the exposure of DON and the biological process of cyt c discharge triggered by the activation of the DON-induced apoptosis pathway. In addition, the response between DON and cyt c was observed during the apoptosis process, which is of high significance for the comprehensive and systematic development of mycotoxins cytotoxicity.
Collapse
|
24
|
Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. ENVIRONMENTAL RESEARCH 2022; 214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The applications of conventional sensors are limited by the long response time, high cost, large detection limit, low sensitivity, complicated usage and low selectivity. These sensors are nowadays replaced by Nanocomposite-based modalities and nanomaterials which are known for their high selectivity and physical and chemical properties. These nanosensors effectively detect heavy metal contaminants in the environment as the discharge of heavy metals into natural water as a result of human activity has become a global epidemic. Exposure to these toxic metals might induce many health-related complications, including kidney failure, brain injury, immune disorders, muscle paleness, cardiac damage, nervous system impairment and limb paralysis. Therefore, designing and developing novel sensing systems for the detection and recognition of these harmful metals in various environmental matrices, particularly water, is of extremely important. Emerging nanotechnological approaches in the past two decades have played a key role in overcoming environmentally-related problems. Nanomaterial-based fabrication of chemical nanosensors has widely been applied as a powerful analytical tool for sensing heavy metals. Portability, high sensitivity, on-site detection capability, better device performance and selectivity are all advantages of these nanosensors. The detection and selectivity have been improved using molecular recognition probes for selective binding on different nanostructures. This study aims to evaluate the sensing properties of various nanomaterials such as metal-organic frameworks, fluorescent materials, metal-based nanoparticles, carbon-based nanomaterials and quantum dots and graphene-based nanomaterials and quantum dots for heavy metal ions recognition. All these nano-architectures are frequently served as effective fluorescence probes to directly (or by modification with some large or small biomolecules) sense heavy metal ions for improved selectivity. However, efforts are still needed for the simultaneous designing of multiple metal ion-based detection systems, exclusively in colorimetric or optical fluorescence nanosensors for heavy metal cations.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
25
|
Li X, Zhao Y, Hao X, Wang X, Luan F, Tian C, Zhang Z, Yu S, Zhuang X. Self-luminescent europium based metal organic frameworks nanorods as a novel electrochemiluminescence chromophore for sensitive ulinastatin detection in biological samples. Talanta 2022; 250:123726. [PMID: 35820336 DOI: 10.1016/j.talanta.2022.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
In this work, we developed a novel electrochemiluminescence (ECL) biosensor for ulinastatin (UTI) detection based on self-luminescent metal-organic framework (L-MOF) nanomaterials. The L-MOFs could be simply prepared by one-pot methods using Eu3+ and 4,4',4″-s-triazine-1,3,5-triyltri-m-aminobenzoic acid (H3TATAB) as the metallic center and organic ligand, respectively. The Eu-TATAB exhibited high efficiency and stable ECL performance when using K2S2O8 as coreactant. For the established biosensor, Eu-TATAB was both used as the ECL chromophore and protein carrier due to its outstanding biocompatibility and large superficial area, which could load sufficient antibodies to link with antigen in the biosensor for subsequent detection. The established sandwich ECL biosensor showed a wide linear range of 0.1 ng mL-1 - 105 ng mL-1 and a low limit of detection of 9.7 pg mL-1 for UTI detection. In addition, the developed ECL biosensor could also be successfully applied to the real UTI sample determination in serum. The reported biosensor strategy could provide a guide for developing more other novel and promising high-performance ECL nanomaterials, and also be used as a potential method for ultrasensitive UTI detection in disease research.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yuqing Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xiaowen Hao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xiaobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhiyang Zhang
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Shunyang Yu
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
26
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
27
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
28
|
Yang Z, Zhong Y, Zhou X, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for nitrite detection: a short review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01270-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Yan X, Lei J, Li YP, Zhang P, Wang Y, Li SN, Zhai QG. Modulating fluorescence sensing properties of excited-state intramolecular proton transfer (ESIPT)-based metal organic frameworks (MOFs) by metal polarization. CrystEngComm 2022. [DOI: 10.1039/d2ce00047d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MIL-53-Al/Ga/In fluorescent probes are constructed by adjusting the influence of metal centers on the ESIPT process in MOFs and experimental results indicate that the weaker the metal polarization, the stronger the sensor sensitivity.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Jiao Lei
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Yong-Peng Li
- School of Chemistry and Chemical Engineering, Institute of Applied Catalysis, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
30
|
Sultana A, Kathuria A, Gaikwad KK. Metal-organic frameworks for active food packaging. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1479-1495. [PMID: 35035339 PMCID: PMC8748186 DOI: 10.1007/s10311-022-01387-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 05/07/2023]
Abstract
Food wastage is a major concern for sustainable health and agriculture. To reduce food waste, classical preservation techniques such as drying, pasteurization, freeze-drying, fermentation, and microwave are available. Nonetheless, these techniques display shortcomings such as alteration of food and taste. Such shortcomings may be solved by active food packaging, which involves the incorporation of active agents into the packaging material. Recently, metal-organic frameworks, a class of porous hybrid supramolecular materials, have been developed as an active agent to extend food shelf life and maintain safety. Here, we review metal-organic frameworks in active packaging as oxygen scavengers, antimicrobials, moisture absorbers, and ethylene scavengers. We present methods of incorporation of metal-organic frameworks into packaging materials and their applications.
Collapse
Affiliation(s)
- Afreen Sultana
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Ajay Kathuria
- Industrial of Technology and Packaging, California Polytechnic State University, San Luis Obispo, CA 93407 USA
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
31
|
Wu KJ, Wu C, Fang M, Ding B, Liu PP, Zhou MX, Gong ZY, Ma DL, Leung CH. Application of metal–organic framework for the adsorption and detection of food contamination. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture. NANOMATERIALS 2021; 11:nano11082068. [PMID: 34443899 PMCID: PMC8398611 DOI: 10.3390/nano11082068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
Intensive conventional agriculture and climate change have induced severe ecological damages and threatened global food security, claiming a reorientation of agricultural management and public policies towards a more sustainable development model. In this context, nanomaterials promise to support this transition by promoting mitigation, enhancing productivity, and reducing contamination. This review gathers recent research innovations on smart nanoformulations and delivery systems improving crop protection and plant nutrition, nanoremediation strategies for contaminated soils, nanosensors for plant health and food quality and safety monitoring, and nanomaterials as smart food-packaging. It also highlights the impact of engineered nanomaterials on soil microbial communities, and potential environmental risks, along with future research directions. Although large-scale production and in-field testing of nano-agrochemicals are still ongoing, the collected information indicates improvements in uptake, use efficiency, targeted delivery of the active ingredients, and reduction of leaching and pollution. Nanoremediation seems to have a low negative impact on microbial communities while promoting biodiversity. Nanosensors enable high-resolution crop monitoring and sustainable management of the resources, while nano-packaging confers catalytic, antimicrobial, and barrier properties, preserving food safety and preventing food waste. Though, the application of nanomaterials to the agri-food sector requires a specific risk assessment supporting proper regulations and public acceptance.
Collapse
|