1
|
Dhritlahre RK, Thakur N, Goel A, Patial V, Padwad Y, Saneja A. Self-Nanoemulsifying Formulation Improves Oral Bioavailability and Insulin Sensitizing Potency of Formononetin-Vitamin E Conjugate in Type 2 Diabetic Mice. Mol Pharm 2024. [PMID: 39699518 DOI: 10.1021/acs.molpharmaceut.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The escalating incidence of obesity, diabetes, and insulin resistance has become a significant global health concern. In this study, we have developed a self-nanoemulsifying delivery system (SNEDS) of formononetin-vitamin E conjugate (VESylated-FMN) for improving its oral bioavailability and improving insulin sensitivity and glycemic control. The developed SNEDS were characterized using dynamic light scattering and transmission electron microscopy. Thereafter, the loading capacity, in vitro release, thermodynamic, and gastrointestinal stability of the developed formulation were evaluated. The safety and oral bioavailability of VESylated-FMN-SNEDS were assessed in Sprague-Dawley rats, whereas insulin-sensitizing potency was assessed in high-fat diet-induced type 2 diabetic mice. The VESylated-FMN-SNEDS quickly emulsified on dilution (droplet size ∼79.17 nm) and showed remarkable thermodynamic and gastrointestinal stability. The developed formulation demonstrated enhanced oral bioavailability (∼1.3-fold higher AUC0-t) of VESylated-FMN without liver and kidney injury. Consequently, VESylated-FMN-SNEDS significantly improves insulin sensitivity and glycemic control in HFD-fed mice compared to VESylated-FMN by upregulating the transcript level of insulin-sensitizing genes. Therefore, the SNEDS formulation could be an effective strategy to augment the oral bioavailability and insulin-sensitizing potency of VESylated-FMN.
Collapse
Affiliation(s)
- Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Navneet Thakur
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Abhishek Goel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Vikram Patial
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Yogendra Padwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
2
|
Zhu H, Yang B, Niu Y, Huang Y. Design and In Vitro Evaluation of Fluorescent MOF-Core CaCO₃-PEI-FA Shell Nanoparticles for Targeted Therapy of Laryngeal Cancer Cells. J Fluoresc 2024:10.1007/s10895-024-04013-z. [PMID: 39441261 DOI: 10.1007/s10895-024-04013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Laryngeal cancer, a common malignant respiratory tumor, is primarily treated through surgery. However, challenges such as recurrence, metastasis, and drug resistance persist. In recent years, multifunctional drug delivery systems (DDS) based on nanoparticles have shown great potential in improving drug loading and release. We developed a biocompatible core-shell nanoparticle system with a zinc-based metal-organic framework (MOF) as the core, named CP1. The shell, composed of polyethyleneimine (PEI), folic acid, and calcium carbonate, forms a composite called CaCO3-PEI-FA. This system enhances biocompatibility and increases the efficacy of biomedical applications. Encapsulating CP1 within the CaCO3-PEI-FA shell allows for the targeted delivery of the anticancer drug doxorubicin (DOX) to laryngeal cancer cells (Hep-2), resulting in the CaCO3-PEI-FA@CP1@DOX system. The CaCO3-PEI-FA composite exhibits strong fluorescence with a peak around 350 nm, confirming successful synthesis and demonstrating its potential as a bioimaging probe. Importantly, the nanoparticle system without DOX showed low toxicity to normal human skin fibroblasts (HSF). In vitro cytology experiments revealed a 38% inhibition rate of Hep-2 cells after 24 h, highlighting the nanocomposite's significant potential in inhibiting laryngeal cancer cell proliferation and inducing apoptosis, underscoring its promise in targeted laryngeal cancer therapy.
Collapse
Affiliation(s)
- Hongmei Zhu
- Department of Otolaryngology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Bo Yang
- Department of Otolaryngology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yang Niu
- Department of Otolaryngology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yongjiu Huang
- Department of Otolaryngology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China.
| |
Collapse
|
3
|
Eid AM, Issa L, Arar K, Abu-Zant A, Makhloof M, Masarweh Y. Phytochemical screening, antioxidant, anti-diabetic, and anti-obesity activities, formulation, and characterization of a self-nanoemulsion system loaded with pomegranate (Punica granatum) seed oil. Sci Rep 2024; 14:18841. [PMID: 39138188 PMCID: PMC11322287 DOI: 10.1038/s41598-024-68476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Pomegranate (Punica granatum) is a tree of the Punicaceae family that is widespread all over the world and has several types and therapeutic uses. The current study aimed to investigate the phytochemical compounds by GC analysis and carried out physical characterization of the pomegranate seed oil and its self-nanoemulsifying system. Then antioxidant, anti-diabetic, and anti-lipase activities were investigated for both.The pomegranate seed oil was extracted, and its self-nanoemulsifying system was then prepared. Phytochemical compounds were analyzed by GC, and physical characterization was established of the pomegranate seed oil and its self-nanoemulsifying system. Then antioxidant, anti-diabetic, and anti-lipase activities were investigated for both.The GC-MS analysis revealed that punicic acid, β-eleosteric acid, catalpic acid, α-eleosteric acid, and oleic acid were the most predominant compounds in pomegranate seed oil. Other active compounds like linoleic acid, palmitic acid, stearic acid, and α-linolenic acid were detected in trace percentages. The self-nanoemulsifying system was prepared using various concentrations of surfactant (Tween 80), co-surfactant (Span 80), and pomegranate seed oil. The selected formulation had a PDI of 0.229 ± 0.09 and a droplet size of 189.44 ± 2.1 nm. The free radical scavenging activity of pomegranate seed oil, the self-emulsifying system, and Trolox was conducted using DPPH. The oil-self-nanoemulsifying system showed potent antioxidant activity compared to Trolox. Also, pomegranate oil inhibited α-amylase with a weak IC50 value of 354.81 ± 2.3 µg/ml. The oil self-nanoemulsifying system showed potent activity compared to acarbose and had a weaker IC50 value (616.59 ± 2.1 µg/ml) and a potent IC50 value (43.65 ± 1.9 µg/ml) compared to orlistat.Pomegranate seed oil self-nanoemulsifying system could be applied in the future for the preparation of possible oral medications for the prevention and treatment of oxidative stress, diabetes, and obesity due to its high activity against free radical, amylase, and lipase enzymes compared to pomegranate seed oil itself and the references used. This study reveals that self-nanoemulsion systems can enhance oil drug formulations by improving pharmacokinetics and pharmacodynamics, acting as drug reservoirs, and facilitating efficient oil release.
Collapse
Affiliation(s)
- Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Khalid Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ahmad Abu-Zant
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Mohammad Makhloof
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Yazan Masarweh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|
4
|
Ruchika, Khan N, Dogra SS, Saneja A. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic. Biotechnol Adv 2024; 73:108362. [PMID: 38615985 DOI: 10.1016/j.biotechadv.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Oral thin films (OTFs) are innovative dosage forms that have gained tremendous attention for the delivery of nutraceuticals. They are ultra-thin, flexible sheets that can be easily placed on the tongue, sublingual or buccal mucosa (inner lining of the cheek). These thin films possess several advantages for nutraceutical delivery including ease of administration, rapid disintegration, fast absorption, rapid onset of action, bypass first-pass hepatic metabolism, accurate dosing, enhanced stability, portability, discreetness, dose flexibility and most importantly consumer acceptance. This review highlights the utilization OTFs for nutraceutical delivery, their composition, criteria for excipient selection, methods of development and quality-based design (QbD) approach to achieve quality product. We have also provided recent case studies representing OTFs as promising platform in delivery of nutraceuticals (plant extracts, bioactive molecules, vitamins, minerals and protein/peptides) and probiotics. Finally, we provided advancement in technologies, recent patents, market analysis, challenges and future perspectives associated with this unique dosage form.
Collapse
Affiliation(s)
- Ruchika
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabab Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shagun Sanjivv Dogra
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ankit Saneja
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Fernandes FA, Carocho M, Prieto MA, Barros L, Ferreira ICFR, Heleno SA. Nutraceuticals and dietary supplements: balancing out the pros and cons. Food Funct 2024; 15:6289-6303. [PMID: 38805010 DOI: 10.1039/d4fo01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While the market is full of different dietary supplements, in most countries, legislation is clear and strict towards these products, with severe limitations on their health claims. Overall, the claims cannot go beyond the consumption of a said supplement will contribute to a healthy diet. Thus, the supplement industry has been reacting and changing their approach to consumers. One change is the considerable growth of the nutraceutical market, which provides naturally produced products, with low processing and close to no claims on the label. The marketing of this industry shifts from claiming several benefits on the label (dietary supplements) to relying on the knowledge of consumers towards the benefits of minimally processed foods filled with natural products (nutraceuticals). This review focuses on the difference between these two products, their consumption patterns, forms of presentation, explaining what makes them different, their changes through time, and their most notable ingredients, basically balancing out their pros and cons.
Collapse
Affiliation(s)
- Filipa A Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
6
|
Ramírez-Guzmán N, Torres-León C, Aguillón-Gutiérrez D, Aguirre-Joya JA. Insects, Plants, and Microorganisms from Dry Lands as Novel Sources of Proteins and Peptides for Human Consumption. Foods 2023; 12:4284. [PMID: 38231705 DOI: 10.3390/foods12234284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Protein malnutrition is present in developing countries but also in developed ones due to actual eating habits involving insufficient protein intake. In addition to this, it is estimated by the Food and Agricultural Organization of the United Nations that the world's population will increase to 9.1 billion people in less than 30 years. This poses a significant challenge in terms of nourishing the population. Different strategies have been proposed to address this challenge, including exploring novel protein sources such as plants. For instance, Prosopis alba pods have an 85.5% protein content. Other examples are microorganisms, such as Halobacillus adaensis which produces 571 U/mL of protease, and insects such as those belonging to the Orthoptera order, like grasshoppers, which have a protein content of 65.96%. These sources have been found in dry lands and are being explored to address this challenge.
Collapse
Affiliation(s)
- Nathiely Ramírez-Guzmán
- Center for Interdisciplinary Studies and Research (CEII-UAdeC), Universidad Autónoma de Coahuila, Saltillo 25280, Mexico
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autónoma de Coahuila, Viesca 27480, Mexico
| | - David Aguillón-Gutiérrez
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autónoma de Coahuila, Viesca 27480, Mexico
| | | |
Collapse
|
7
|
Banov D, Liu Y, Ip K, Shan A, Vu C, Zdoryk O, Bassani AS, Carvalho M. Analysis of the Physical Characteristics of an Anhydrous Vehicle for Compounded Pediatric Oral Liquids. Pharmaceutics 2023; 15:2642. [PMID: 38004620 PMCID: PMC10674891 DOI: 10.3390/pharmaceutics15112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The paucity of suitable drug formulations for pediatric patients generates a need for customized, compounded medications. This research study was set out to comprehensively analyze the physical properties of the new, proprietary anhydrous oral vehicle SuspendIt® Anhydrous, which was designed for compounding pediatric oral liquids. A wide range of tests was used, including sedimentation volume, viscosity, droplet size after dispersion in simulated gastric fluid, microscopic examination and content uniformity measurements to evaluate the properties of the anhydrous vehicle. The results showed that the vehicle exhibited consistent physical properties under varying conditions and maintained stability over time. This can be attributed to the unique blend of excipients in its formulation, which not only maintain its viscosity but also confer thixotropic behavior. The unique combination of viscous, thixotropic and self-emulsifying properties allows for rapid redispersibility, sedimentation stability, accurate dosing, potential drug solubility, dispersion and promotion of enhanced gastrointestinal distribution and absorption. Furthermore, the vehicle demonstrated long-term sedimentation stability and content uniformity for a list of 13 anhydrous suspensions. These results suggest that the anhydrous oral vehicle could serve as a versatile base for pediatric formulation, potentially filling an important gap in pediatric drug delivery. Future studies can further investigate its compatibility, stability and performance with other drugs and in different clinical scenarios.
Collapse
Affiliation(s)
- Daniel Banov
- Professional Compounding Centers of America (PCCA), Houston 77099, TX, USA
| | - Yi Liu
- Professional Compounding Centers of America (PCCA), Houston 77099, TX, USA
| | - Kendice Ip
- Professional Compounding Centers of America (PCCA), Houston 77099, TX, USA
| | - Ashley Shan
- Professional Compounding Centers of America (PCCA), Houston 77099, TX, USA
| | - Christine Vu
- Professional Compounding Centers of America (PCCA), Houston 77099, TX, USA
| | - Oleksandr Zdoryk
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences und Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Department of Pharmaceutical Technologies and Medicines Quality Assurance, Institute of the Professional Skills Improvement in the Field of Pharmacy, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - August S. Bassani
- Professional Compounding Centers of America (PCCA), Houston 77099, TX, USA
| | - Maria Carvalho
- Professional Compounding Centers of America (PCCA), Houston 77099, TX, USA
| |
Collapse
|
8
|
van Staden D, Haynes RK, Viljoen JM. The Science of Selecting Excipients for Dermal Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041293. [PMID: 37111778 PMCID: PMC10145052 DOI: 10.3390/pharmaceutics15041293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Self-emulsification is considered a formulation technique that has proven capacity to improve oral drug delivery of poorly soluble drugs by advancing both solubility and bioavailability. The capacity of these formulations to produce emulsions after moderate agitation and dilution by means of water phase addition provides a simplified method to improve delivery of lipophilic drugs, where prolonged drug dissolution in the aqueous environment of the gastro-intestinal (GI) tract is known as the rate-limiting step rendering decreased drug absorption. Additionally, spontaneous emulsification has been reported as an innovative topical drug delivery system that enables successful crossing of mucus membranes as well as skin. The ease of formulation generated by the spontaneous emulsification technique itself is intriguing due to the simplified production procedure and unlimited upscaling possibilities. However, spontaneous emulsification depends solely on selecting excipients that complement each other in order to create a vehicle aimed at optimizing drug delivery. If excipients are not compatible or unable to spontaneously transpire into emulsions once exposed to mild agitation, no self-emulsification will be achieved. Therefore, the generalized view of excipients as inert bystanders facilitating delivery of an active compound cannot be accepted when selecting excipients needed to produce self-emulsifying drug delivery systems (SEDDSs). Hence, this review describes the excipients needed to generate dermal SEDDSs as well as self-double-emulsifying drug delivery systems (SDEDDSs); how to consider combinations that complement the incorporated drug(s); and an overview of using natural excipients as thickening agents and skin penetration enhancers.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| | - Richard K Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| | - Joe M Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| |
Collapse
|
9
|
Deciphering the interactions of genistein with β-cyclodextrin derivatives through experimental and microsecond timescale umbrella sampling simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
11
|
Pratiwi G, Ramadhiani AR, Shiyan S. Understanding the combination of fractional factorial design and chemometrics analysis for screening super-saturable quercetin-self nano emulsifying components. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e80594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quercetin is formulated in a super saturable - self-nano emulsifying (SS-SNE) to increase its stability and bioavailability. This study focuses on the screening design for SS-SNE components with a fractional factorial design (FrFD) approach and chemometric analysis. The FrFD method was chosen because it provides comprehensive benefits. The oil components used are canola and grape seed oil. Croduret 50-SS was selected as a surfactant and PEG 400 as a co-surfactant. The interaction of SNE components was evaluated using FTIR-ATR instrumentation. SNE droplet morphology was observed using a transmission electron microscope (TEM). The selected formulas were grape seed oil as oil phase at 19.6%, croduret at 60%, and PEG 400 as co-surfactant with a concentration of 16.6%. The selected formula has a droplet size of 133.27 nm, PDI of 0.181, the zeta potential of 17.00 mV, electrophoretic mobility of 1.332 µmcm/Vs, emulsification time of 10.05 seconds, a viscosity of 370.147 mPa.s, and a drug load of 31.70 mg/mL. The components of grape seed oil, croduret, and PEG 400 resulted in a quercetin carrier SNE formula that met the criteria. FrFD design and chemometric analysis in the screening process can help determine the selected formula very effectively and efficiently.
Collapse
|