1
|
Zhou Y, Yang S. Highly sensitive, reproducible, and stable core-shell MoN SERS substrate synthesized via sacrificial template method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125322. [PMID: 39486238 DOI: 10.1016/j.saa.2024.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Molybdenum nitride is a promising candidate for surface-enhanced Raman scattering (SERS) substrates due to its high conductivity, surface plasmon resonance, and chemical stability. Core-shell structures possess unique physical and chemical properties, such as high-volume ratio, low density, short diffusion length, and high load-bearing capacity, making them favorable for SERS applications. In this research, core-shell MoO3 is first synthesized as a precursor oxide using a sacrificial template method, and core-shell MoN microspheres are successfully prepared via subsequent nitriding. As a representative transition metal nitride, the obtained core-shell MoN nanospheres show strong localized surface plasmon resonance and SERS effects. Using these MoN microspheres as Raman substrates allows a range of highly targeted compounds to be accurately detected, and the detection limits for this non-precious-metal substrate morphology are exceptionally high, reaching 10-10 M. In addition, MoN nanospheres exhibit excellent resistance to acid-base corrosion, oxidation, and radiation, thus rendering them suitable for use as substrates in harsh environments.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Public Basic Education, Zhejiang Polytechnic University of Mechanical and Electrical Engineering, Hangzhou 310053, China; College of Science, China Jiliang University, Hangzhou 310018, China.
| | - Siyu Yang
- College of Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Yu H, Guo D, Chen X, Liang X, Yang Z, Han L, Xiao W. Feasibility of biomass-based flexible and transparent AuNPs-acetylcellulose membrane for multifarious surface-enhanced Raman spectroscopy detection. Anal Chim Acta 2024; 1327:343157. [PMID: 39266062 DOI: 10.1016/j.aca.2024.343157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Lignocellulosic biomass-based derivatives coupled with surface-enhanced Raman spectroscopy (SERS) technology have emerged as an appealing and indispensable tool in food safety and environmental monitoring for rapidly detecting trace contaminants like pesticide residues. The membrane material, serving as a substrate, ensures both sampling flexibility and test accuracy by directing the diffusion-adsorption process of the molecules. However, the existing membrane substrates, critical for the practical application of SERS, suffer from issues such as costly, intricate fabrication procedures, or restricted detection capabilities. RESULTS Herein, we present a flexible, transparent, and biodegradable cellulose acetate membrane with gold nanoparticles (AuNPs) uniformly embedded, fabricated using a simple scraping method. This membrane achieved a limit of detection (LOD) of thiram pesticide in water at 10-8 g mL-1. The unique optical transparency of the substrates allowed for in-situ detection on surfaces, with an LOD of thiram reaching 30 ng cm-2. SIGNIFICANCE Furthermore, SERS substrates made from corn stover-derived cellulose acetate enable the detection of various contaminants, highlighting their cost-effectiveness and eco-friendliness because of the abundance and low environmental impact of the raw materials.
Collapse
Affiliation(s)
- Haitao Yu
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China; College of Information Engineering, Jiangsu Vocational College of Agricultural and Forestry, Zhenjiang, Jiangsu, 212400, China
| | - Dongyi Guo
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Xueli Chen
- Laboratory of Renewable Resources Engineering (LORRE) and Department of Agricultural andBiological Engineering, Purdue University, West Lafayette, IN, 47907, United States
| | - Xueyan Liang
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Zengling Yang
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China.
| |
Collapse
|
3
|
Antonio M, Alcaraz MR, Culzoni MJ. Advances on multiclass pesticide residue determination in citrus fruits and citrus-derived products - A critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50012-50035. [PMID: 39088175 DOI: 10.1007/s11356-024-34525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The application of agrochemicals in citrus fruits is widely used to improve the quality of crops, increase production yields, and prolong post-harvest life. However, these substances are potentially toxic for humans and the ecosystem due to their widespread use, high stability, and bioaccumulation. Conventional techniques for determining pesticide residues in citrus fruits are chromatographic methods coupled with different detectors. However, in recent years, the need for analytical strategies that are less polluting for the environment has encouraged the appearance of new alternatives, such as sensors and biosensors, which allow selective and sensitive detection of pesticide residues in real time. A comprehensive overview of the analytical platforms used to determine pesticide residues in citrus fruits and citrus-derived products is presented herein. The review focuses on the evolution of these methods since 2015, their limitations, and possible future perspectives for improving pesticide residue determination and reducing environmental contamination.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina.
| |
Collapse
|
4
|
Shao T, Xu J, Zhong H, Hu Y, Chen J. A stable and flexible Au@Ag NPs/PVA SERS platform for thiram residue detection on rough surface. Talanta 2024; 274:126008. [PMID: 38599117 DOI: 10.1016/j.talanta.2024.126008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates have gained great attention in analysis field as they offer a fast, non-destructive, and highly sensitive platform for in-situ detection. In this work, we present a facile one-pot strategy for synthesizing gold-cored silver shell nanoparticles (Au@Ag NPs) in the polyvinyl alcohol (PVA) colloid. With no other reducing agents, PVA can serve as both reducing and stabilizing agents for forming Au@Ag NPs. Besides, PVA acts as a scaffold to maintain SERS "hot-spots" by preventing nanoparticle aggregation. By using this flexible Au@Ag NPs/PVA colloid, the analytes can be extracted from rough surfaces for SERS measurements with excellent sensitivity, repeatability and stability. The SERS activity of the Au@Ag NPs/PVA remained at 89.8% even after 120 days of storage at room temperature in sealed air atmosphere. The selective detection of thiram residues on the surface of fruits and vegetables was successfully achieved. The limits of detection for thiram residues on apple and tomato surfaces were measured to be 0.58 and 0.56 ng cm-2, respectively, with recovery rate ranging from 91% to 107%. This work demonstrates the immense application potential of SERS colloid platform in the fields of food safety and environmental analysis.
Collapse
Affiliation(s)
- Tao Shao
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Jinsong Xu
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Hang Zhong
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Yi Hu
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China
| | - Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, PR China.
| |
Collapse
|
5
|
Yang J, Chen S, Pan M, Ding Y, Wang S. Plasmon AgNPs/MoS 2/ZnO nanorods array ternary heterojunctions enabling high-efficiency solar-light energy utilization for photocatalysis and recyclable SERS detection. Anal Chim Acta 2024; 1309:342668. [PMID: 38772655 DOI: 10.1016/j.aca.2024.342668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Surface-enhanced Raman scattering (SERS) has gained widespread use in molecule-level detection benefiting from its high sensitivity, nondestructive data acquisition, and capacity for providing molecular fingerprint information. However, the strong adhesion of target molecules to the substrate (known as the "memory effect") inherently hinders the reusability of SERS substrates. Research has shown that self-cleaning SERS substrates based on versatile semiconductor materials with SERS enhancement capabilities and solar photocatalytic properties offer an effective platform for the sensitive detection and degradation of harmful molecules. RESULTS In this research, a resuable SERS-active substrate was facilely fabricated by anchoring silver nanoparticles (AgNPs) to the edges of MoS2 nanosheet decorated on ZnO nanorod arrays (NRAs). This innovative design exhibited a remarkable SERS enhancement factor (EF) of 4.6 × 107 and demonstrated significant solar photocatalytic efficiency. Such superior characteristics of ternary plasma heterojunction were ascribable to the synergistic effect of the "Schottky barrier" and "hot spots" between MoS2 and AgNPs, the inherent chemical enhancement proficiency of the MoS2/ZnO NRAs heterojunction, as well as the ultrafast electron transfer within the ternary heterojunction. SIGNIFICANCE The developed ternary heterojunction substrate enabled highly sensitive SERS detection of trace amounts of organic molecules. Moreover, this SERS substrate exhibited self-cleaning and recyclability via solar-light-driven photocatalysis. This bifunctional recyclable SERS substrate proved capable of meeting various requirements for routine monitoring of environmental organic pollutants and provided a robust avenue for advancing energy utilization materials that serve as high-performance SERS sensors and catalysts.
Collapse
Affiliation(s)
- Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Sixuan Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Yumei Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Wang X, Jiang S, Liu Z, Sun X, Zhang Z, Quan X, Zhang T, Kong W, Yang X, Li Y. Integrated surface-enhanced Raman spectroscopy and convolutional neural network for quantitative and qualitative analysis of pesticide residues on pericarp. Food Chem 2024; 440:138214. [PMID: 38150903 DOI: 10.1016/j.foodchem.2023.138214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Pesticide residue poses a significant global public health concern, necessitating improved detection methods. Here, a novel platform was introduced based on surface-enhanced Raman spectroscopy (SERS) to detect ten distinct types of pesticides. Notably, the sensitivity of this approach is exemplified by detecting trace amounts of 50 pM (10 ppt) thiabendazole. The correlation between the characteristic peak intensity of coexisting pesticides and their concentrations displays an exceptional linear relationship (R2 = 0.9999), underscoring its utility for quantitative mixed pesticide detection. Additionally, qualitative analysis of five mixed pesticides was conducted leveraging distinctive peak labeling. Harnessing machine learning techniques, a model for classifying and predicting pesticides on pericarps was developed. Remarkably, the convolutional neural network achieved classification accuracy of 100 % and prediction accuracy of 99.62 %. This innovative approach accurately identifies and quantifies diverse pesticides, thus offering a feasible scheme for in-situ detection of pesticide residues. Ultimately, this strategy contributes to ensuring food safety and public health.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Shen Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Zhehan Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang 150081, China
| | - Xiaomeng Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Zhe Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Xubin Quan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China
| | - Tian Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang 150081, China
| | - Weikang Kong
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang 150081, China
| | - Xiaotong Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang 150081, China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Baojian Road No. 157, Harbin 150081, Heilongjiang, China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, 90220 Oulu, Finland; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
7
|
Sun X, Zhao Y, Liu L, Qiao Y, Yang C, Wang X, Li Q, Li Y. Visual whole-process monitoring of pesticide residues: An environmental perspective using surface-enhanced Raman spectroscopy with dynamic borohydride-reduced silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133338. [PMID: 38150762 DOI: 10.1016/j.jhazmat.2023.133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Environmental monitoring of pesticide residues in crops is essential for both food safety and environmental protection. Traditional methodologies face challenges due to the interference of endogenous compounds in peel and pulp tissues, often being invasive, labor-intensive, and inadequate for real-time observation of hazardous substance distribution. In this study, dynamic borohydride-reduced nanoparticles were employed as enhanced substrates. For the first time, surface-enhanced Raman spectroscopy (SERS) imaging was harnessed to enable whole-process visual detection of pesticide residues. The developed method is both stable and sensitive, boasting a detection lower limit below 1 pg/mL, coupled with robust quantitative analytical capabilities. This technique was successfully employed to detect residue signals across various crops and fruit juices. Furthermore, SERS imaging was utilized to map the distribution of pesticide residues from the exterior to the interior of fruits and vegetables. Vertex component analysis further refined the process by mitigating interference from plant autofluorescence. Collectively, this innovative strategy facilitates comprehensive pesticide residue monitoring, offering a potent tool for controlling hazardous substances in crops. Its potential applications extend beyond food safety, holding significant promise for sustainable agricultural production and enhanced environmental safeguarding.
Collapse
Affiliation(s)
- Xiaomeng Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yue Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yuxin Qiao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Chunjuan Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qian Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland.
| |
Collapse
|
8
|
Song Y, Qiu H, Huang Y, Wang X, Lai K. Rapid detection of thiabendazole residues in apple juice by surface-enhanced Raman scattering coupled with silver coated gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123189. [PMID: 37506455 DOI: 10.1016/j.saa.2023.123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
In recent years, the excessive use of pesticides has posed significant hazards to the ecological environment and human health in the pursuit of high crop yields. In this work, we developed a simple, sensitive, and eco-friendly approach for rapid detection of thiabendazole in apple juice using surface-enhanced Raman scattering (SERS) coupled with silver-coated gold nanoparticles (Au@Ag NPs). The developed Au@Ag NPs exhibited excellent sensitivity, allowing for the detection of thiabendazole in standard solutions at a minimum concentration of 50 ng/mL. Furthermore, two sample preparation methods were compared for detecting thiabendazole in apple juice. As the direct detection method for SERS analysis failed to detect thiabendazole at levels below the maximum residue limit based on the Chinese standard (3000 ng/mL), the effects of main matrix components in apple juice on the detection of thiabendazole were further investigated. The results revealed that both sugars and organic acids in apple juice interfered with the SERS measurement to varying degrees. Consequently, we optimized the QuEChERS method for sample preparation and achieved a higher sensitivity with a minimum detectable concentration of 250 ng/mL, a limit of detection of 0.06 mg/L and the recoveries of spiked samples were ranged from 80.2 % to 108.6 %. This study demonstrated the feasibility of proposed SERS method for pesticide residue analysis, addressing the need for food safety monitoring.
Collapse
Affiliation(s)
- Yuying Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huixin Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Hunan 410076, China
| | - Xiaohui Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China.
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China.
| |
Collapse
|
9
|
Sahu B, Kurrey R, Deb MK, Khalkho BR, Manikpuri S. Recognition of malathion pesticides in agricultural samples by using α-CD functionalized gold nanoparticles as a colorimetric sensor. Talanta 2023; 259:124526. [PMID: 37054619 DOI: 10.1016/j.talanta.2023.124526] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Herein, a rapid, precise alpha-cyclodextrin (α-CD) based gold nanoparticles (AuNPs) for selective detection of malathion pesticides has been reported. These are organophosphorus pesticides (OPPs), that can cause a neurological disease by inhibiting the activity of acetylcholinesterase (AChE). It is important to exploit a quick and sensitive approach for monitoring OPPs. Hence in the present work, a colorimetric assay for the detection of malathion has been developed as a model of OPPs from the environmental sample matrices. The physical and chemical properties of synthesized alpha-cyclodextrin stabilized gold nanoparticles (AuNPs/α-CD) were studied with various characterization techniques, including UV-visible spectroscopy, TEM, DLS and FTIR. The designed sensing system displayed linearity in the broad range of malathion concentrations, 10-600 ng mL-1 with a limit of detection and the limit of quantification values 4.03 ng mL-1 and 12.96 ng mL-1, respectively. The application of the designed chemical sensor was extended to the malathion pesticide determination in real samples such as vegetables, which resulted in almost 100% recovery rates in all the spiked samples. Thus, due to these advantages, the present study established a selective, facile and sensitive colorimetric platform for the direct detection of malathion within a very short time (5 min) with a low detection limit. The practicality of the constructed platform was further executed by the detection of the pesticide in vegetable samples.
Collapse
Affiliation(s)
- Bhuneshwari Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG-492010, India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG-492010, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG-492010, India.
| | - Beeta Rani Khalkho
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG-492010, India
| | - Suryakant Manikpuri
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG-492010, India
| |
Collapse
|
10
|
Wang SY, Herrera-Balandrano DD, Jiang YH, Shi XC, Chen X, Liu FQ, Laborda P. Application of chitosan nanoparticles in quality and preservation of postharvest fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:1722-1762. [PMID: 36856034 DOI: 10.1111/1541-4337.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Chitosan is an interesting alternative material for packaging development due to its biodegradability. However, its poor mechanical properties and low permeability limit its actual applications. Chitosan nanoparticles (CHNPs) have emerged as a suitable solution to overcome these intrinsic limitations. In this review, all studies regarding the use of CHNPs to extend the shelf life and improve the quality of postharvest products are covered. The characteristics of CHNPs and their combinations with essential oils and metals, along with their effects on postharvest products, are compared and discussed throughout the manuscript. CHNPs enhanced postharvest antioxidant capacity, extended shelf life, increased nutritional quality, and promoted tolerance to chilling stress. Additionally, the CHNPs reduced the incidence of postharvest phytopathogens. In most instances, smaller CHNPs (<150 nm) conferred higher benefits than larger ones (>150 nm). This was likely a result of the greater plant tissue penetrability and surface area of the smaller CHNPs. The CHNPs were either applied after preparing an emulsion or incorporated into a film, with the latter often exhibiting greater antioxidant and antimicrobial activities. CHNPs were used to encapsulate essential oils, which could be released over time and may enhance the antioxidant and antimicrobial properties of the CHNPs. Even though most applications were performed after harvest, preharvest application had longer lasting effects.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
11
|
Castro RC, Ribeiro DSM, Santos JLM, Nunes C, Reis S, N M J Páscoa R. Chemometric-assisted surface-enhanced Raman spectroscopy for metformin determination using gold nanoparticles as substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122118. [PMID: 36401918 DOI: 10.1016/j.saa.2022.122118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
A fast, simple, and reliable method for determination of metformin was developed by coupling surface-enhanced Raman spectroscopy (SERS) with chemometric methods. This relayed on the utilization of a portable Raman spectrometer and of citrate stabilized gold nanoparticles (AuNPs) as substrate, to carry out the measurement of SERS scattering signals, thus assuring improved sensitivity. The obtained datasets were analysed using principal component analysis (PCA) and partial least squares (PLS) regression. Upon optimization of the PLS model, in terms of latent variables, spectral region and pre-processing techniques, RMSECV and R2CV values of 0.42 mg/L and 0.94, respectively, were obtained. The optimized PLS regression model was further validated with the projection of commercial pharmaceutical samples, providing good results in terms of R2P (0.97), RE (4.54 %) and analytical sensitivity (2.13 mg/L).
Collapse
Affiliation(s)
- Rafael C Castro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n ° 228, 4050-313 Porto, Portugal
| | - David S M Ribeiro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n ° 228, 4050-313 Porto, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n ° 228, 4050-313 Porto, Portugal.
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n ° 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n ° 228, 4050-313 Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n ° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Liu M, Li X, Han L, Wang Q, Kong X, Xu M, Wang K, Xu H, Shen Y, Gao G, Nie J. Determination and risk assessment of 31 pesticide residues in apples from China's major production regions. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Wang P, Li X, Sun Y, Wang L, Xu Y, Li G. Rapid and reliable detection and quantification of organophosphorus pesticides using SERS combined with dispersive liquid-liquid microextraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4680-4689. [PMID: 36349883 DOI: 10.1039/d2ay01321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid and reliable detection and quantification of pesticide residues in complex matrices by surface enhanced Raman spectroscopy (SERS) remain challenging due to the low level of target molecules and the interference of nontarget components. In this study, SERS was combined with dispersive liquid-liquid microextraction (DLLME) to develop a rapid and reliable method for the detection of organophosphorus pesticides (OPPs). In this method, DLLME was used to extract and enrich two representative OPPs (triazophos and parathion-methyl) from a liquid sample, and a portable Raman spectrometer was used to analyze the separated sediment using homemade gold nanoparticles colloids as enhancing substrates. The results showed that the developed method displayed good sensitivity and stability for the detection and quantification of triazophos and parathion-methyl with R2 ≥ 0.98. The calculated limits of detection (LODs) in the simultaneous detection of triazophos and parathion-methyl were 2.17 × 10-9 M (0.679 ppb) and 2.28 × 10-8 M (5.998 ppb), and the calculated limits of quantification (LOQs) were 7.23 × 10-9 M (2.26 ppb) and 7.62 × 10-8 M (19.098 ppb), respectively. Furthermore, the developed SERS method was successfully applied to the detection of triazophos and parathion-methyl in apple juice with recoveries between 78.07% and 110.87% and relative standard deviations (RSDs) ≤ 2.06%. Therefore, the developed DLLME facilitated liquid SERS method exhibited good sensitivity and stability for the rapid detection and quantification of OPPs and had the potential to be applied to the rapid detection of OPPs in complex matrices.
Collapse
Affiliation(s)
- Panxue Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Xiang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Yan Sun
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Li Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Ying Xu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
14
|
Chen Y, Zhao W, Si J, Zheng Y, Tan H, Meng F, Yang G, Gu Y, Qu L. Highly selective SERS detection of acetylcholinesterase in human blood based on catalytic reaction. Anal Chim Acta 2022; 1232:340495. [DOI: 10.1016/j.aca.2022.340495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
|
15
|
Inhibition to dual enzyme-like activities of Ag/CeO2 nanozymes for the detection of thiourea. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Rapid detection of thiabendazole in food using SERS coupled with flower-like AgNPs and PSL-based variable selection algorithms. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Budetić M, Samardžić M, Bubnjar K, Dandić A, Živković P, Széchenyi A, Kiss L. A new sensor for direct potentiometric determination of thiabendazole in fruit peels using the Gran method. Food Chem 2022; 392:133290. [PMID: 35660977 DOI: 10.1016/j.foodchem.2022.133290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
A new sensor for direct potentiometric determination of thiabendazole (TBZ) was prepared. The ionic pair of TBZ cation and the 5-sulfosalicylate anion was used as the new sensor material incorporated in liquid type of ion-selective electrode membrane for TBZ determination. For optimization of the membrane of the sensor for TBZ determination, six different plasticizers and the content of the sensor material in the membrane were varied. The chosen sensor with dibutyl sebacate (DS) as plasticizer and 1% of sensor material in the membrane was characterized with Nernstian response towards TBZ (62.2 mV/decade of activity), a wide working range (8.6∙10-7-1.0∙10-3 M), and a low limit of detection (3.2·10-7 M). Also, it proved to be an accurate and reliable sensor for TBZ determination in pure and real samples (peel of oranges, lemons and bananas) where it was determined using direct potentiometry and Gran method.
Collapse
Affiliation(s)
- Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Karlo Bubnjar
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Andrea Dandić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Pavo Živković
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - László Kiss
- Department of Organic and Pharmacological Chemistry, University of Pécs, Honvéd street 1, H-7624 Pécs, Hungary; János Szentágothai Research Center, Ifjúság street 20, H-7624 Pécs, Hungary.
| |
Collapse
|
18
|
Liu C, Xu D, Dong X, Huang Q. A review: Research progress of SERS-based sensors for agricultural applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Luo Y, Wu N, Wang L, Song Y, Du Y, Ma G. Biosensor Based on Covalent Organic Framework Immobilized Acetylcholinesterase for Ratiometric Detection of Carbaryl. BIOSENSORS 2022; 12:bios12080625. [PMID: 36005021 PMCID: PMC9405660 DOI: 10.3390/bios12080625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/03/2023]
Abstract
A ratiometric electrochemical biosensor based on a covalent organic framework (COFThi-TFPB) loaded with acetylcholinesterase (AChE) was developed. First, an electroactive COFThi-TFPB with a two-dimensional sheet structure, positive charge and a pair of inert redox peaks was synthesized via a dehydration condensation reaction between positively charged thionine (Thi) and 1,3,5-triformylphenylbenzene (TFPB). The immobilization of AChE on the positively charged electrode surface was beneficial for maintaining its bioactivity and achieving the best catalytic effect; therefore, the positively charged COFThi-TFPB was an appropriate support material for AChE. Furthermore, the COFThi-TFPB provided a stable internal reference signal for the constructed AChE inhibition-based electrochemical biosensor to eliminate various effects which were unrelated to the detection of carbaryl. The sensor had a linear range of 2.2–60 μM with a detection limit of 0.22 μM, and exhibited satisfactory reproducibility, stability and anti-interference ability for the detection of carbaryl. This work offers a possibility for the application of COF-based materials in the detection of low-level pesticide residues.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangran Ma
- Correspondence: or ; Tel.: +86-0791-88120861
| |
Collapse
|
20
|
Li H, Merkl P, Sommertune J, Thersleff T, Sotiriou GA. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201133. [PMID: 35670133 PMCID: PMC9353460 DOI: 10.1002/advs.202201133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Indexed: 06/01/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful sensing technique. However, the employment of SERS sensors in practical applications is hindered by high fabrication costs from processes with limited scalability, poor batch-to-batch reproducibility, substrate stability, and uniformity. Here, highly scalable and reproducible flame aerosol technology is employed to rapidly self-assemble uniform SERS sensing films. Plasmonic Ag nanoparticles are deposited on substrates as nanoaggregates with fine control of their interparticle distance. The interparticle distance is tuned by adding a dielectric spacer during nanoparticle synthesis that separates the individual Ag nanoparticles within each nanoaggregate. The dielectric spacer thickness dictates the plasmonic coupling extinction of the deposited nanoaggregates and finely tunes the Raman hotspots. By systematically studying the optical and morphological properties of the developed SERS surfaces, structure-performance relationships are established and the optimal hot-spots occur for interparticle distance of 1 to 1.5 nm among the individual Ag nanoparticles, as also validated by computational modeling, are identified for the highest signal enhancement of a molecular Raman reporter. Finally, the superior stability and batch-to-batch reproducibility of the developed SERS sensors are demonstrated and their potential with a proof-of-concept practical application in food-safety diagnostics for pesticide detection on fruit surfaces is explored.
Collapse
Affiliation(s)
- Haipeng Li
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | | | - Thomas Thersleff
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| |
Collapse
|
21
|
Identification of milk quality and adulteration by surface-enhanced infrared absorption spectroscopy coupled to artificial neural networks using citrate-capped silver nanoislands. Mikrochim Acta 2022; 189:301. [PMID: 35906496 PMCID: PMC9338147 DOI: 10.1007/s00604-022-05393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
Milk is one of the most important multicomponent superfoods owing to its rich macronutrient composition. It requires quality control at all the production stages from the farm to the finished products. A localized surface plasmon resonance optical sensor based on a citrate-capped silver nanoparticle (Cit-AgNP)–coated glass substrate was developed. The fabrication of such sensors involved a single-step synthesis of Cit-AgNPs followed by surface modification of glass slides to be coated with the nanoparticles. The scanning electron microscope micrographs demonstrated that the nanoparticles formed monolayer islands on glass slides. The developed surface-enhanced infrared absorption spectroscopy (SEIRA) sensor was coupled to artificial neural networking (ANN) for the qualitative differentiation between cow, camel, goat, buffalo, and infants’ formula powdered milk types. Moreover, it can be used for the quantitative determination of the main milk components such as fat, casein, urea, and lactose in each milk type. The qualitative results showed that the obtained FTIR spectra of cow and buffalo milk have high similarity, whereas camel milk resembled infant formula powdered milk. The most difference in FTIR characteristics was evidenced in the case of goat milk. The developed sensor adds several advantages over the traditional techniques of milk analysis using MilkoScan™ such as less generated waste, elimination of pre-treatment steps, minimal sample volume, low operation time, and on-site analysis.
Collapse
|
22
|
A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor. SENSORS 2022; 22:s22103785. [PMID: 35632191 PMCID: PMC9147095 DOI: 10.3390/s22103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Direct potentiometric measurements using solid-state sensors have a great potential for thiabendazole (TBZ) determination, considering simplicity, accuracy, and low cost. Modifying the sensing material of the sensor with multi-walled carbon nanotubes (MWCNTs) leads to improved analytical properties of the sensor. In this study, a new potentiometric solid-state sensor for TBZ determination, based on MWCNTs modified with a sulfate group, and TBZ ion as sensing material was developed. The sensor exhibited a Nernstian response for TBZ (60.4 mV/decade of activity) in a working range between 8.6 × 10−7 and 1.0 × 10−3 M. The detection limit for TBZ was 6.2 × 10−7 M. The response time of the sensor for TBZ was 8 s, and its signal drift was only 1.7 mV/h. The new sensor is applicable for direct potentiometric determination of TBZ in complex real samples, such as fruit peel. The accuracy of TBZ determination is confirmed using the standard addition method.
Collapse
|
23
|
Wu B, Niu Y, Bi X, Wang X, Jia L, Jing X. Rapid analysis of triazine herbicides in fruit juices using evaporation-assisted dispersive liquid-liquid microextraction with solidification of floating organic droplets and HPLC-DAD. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1329-1334. [PMID: 35285844 DOI: 10.1039/d1ay02130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A rapid and convenient analytical procedure (evaporation-assisted dispersive liquid-liquid microextraction with solidification of floating organic droplets) is advanced for determining the concentrations of triazine herbicide residues (e.g. simazine and atrazine) in fruit juices via HPLC-DAD. The technique involves adding 1-dodecanol (low density) and dichloromethane (high density) to the test solution to act as the extraction and volatile solvents, respectively. Calcium oxide is added to generate heat to accelerate the evaporation of dichloromethane, whereupon the 1-dodecanol quickly disperses into small droplets to complete the microextraction process. Thus, there is no need to use a dispersive solvent and heating equipment is also not required. The floating 1-dodecanol is subsequently frozen using an ice bath to facilitate its separation from the sample. Under optimal conditions (250 μL of 1-dodecanol (extraction solvent), 150 μL of CH2Cl2 (volatile solvent), 1250 mg of CaO, and an extraction time of 60 s) the detection procedure is linear over the range 0.05-5 μg mL-1 (with R > 0.99). The limits of detection (LOD) and quantification (LOQ) were determined to be 0.0022-0.0034 μg mL-1 and 0.0073-0.0113 μg mL-1, respectively. The recovery of simazine and atrazine in three fruit juices ranged between 78.5% and 96.4% with a relative standard deviation <8.2%. Therefore, the proposed approach can be effectively adopted to analyze the triazine herbicide content in fruit juices. The method has been proved to be simple, reliable, and remarkably efficient.
Collapse
Affiliation(s)
- Beiqi Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Yu Niu
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Xinyuan Bi
- Agricultural Economics and Management College, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
24
|
MA X, LUO H, ZHANG F, GAO F. A bibliometric and visual analysis of fruit quality detection research. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.72322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xueting MA
- Tarim University, China; Tarim University, China
| | - Huaping LUO
- Tarim University, China; Tarim University, China
| | - Fei ZHANG
- Tarim University, China; Tarim University, China
| | - Feng GAO
- Tarim University, China; Tarim University, China
| |
Collapse
|
25
|
Zhang J, Zhu X, Chen M, Chen T, Liu Z, Huang J, Fu F, Lin Z, Dong Y. Hybridizing aggregated gold nanoparticles with a hydrogel to prepare a flexible SERS chip for detecting organophosphorus pesticides. Analyst 2022; 147:2802-2808. [DOI: 10.1039/d2an00541g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple method has been developed to hybridize aggregated gold nanoparticles with a hydrogel for novel hydrogel SERS chips with high sensitivity, good repeatability, long-term stability, and strong anti-interference ability.
Collapse
Affiliation(s)
- Jiaxin Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Xiajun Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Tianwen Chen
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, China
| | - Zhihong Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jianli Huang
- Institute of Grain and Oil Quality Supervision and Test of Fujian, Fuzhou, 350012, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|