1
|
Mermela A, Bołt M, Mrzygłód A, Żak P. Organocatalytic synthetic route to esters and their application in hydrosilylation process. Sci Rep 2024; 14:19108. [PMID: 39154105 PMCID: PMC11330490 DOI: 10.1038/s41598-024-70036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
A facile esterification of α,β-unsaturated aldehydes with alcohols has been developed for the synthesis of esters by using bulky N-heterocyclic (NHC) carbene as a metal-free and eco-friendly organocatalyst. This new protocol has been proved to be effective with a wide substrate scope, giving selective esters in yields greater than 84% under mild conditions. Moreover, proposed synthetic strategy enables modification of various types of silsesquioxanes (SQ) which cannot or are technically difficult to be carried out with known protocols. For the first time, a one-pot sequential esterification/hydrosilylation has been successfully carried out.
Collapse
Affiliation(s)
- Aleksandra Mermela
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Małgorzata Bołt
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Aleksandra Mrzygłód
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Centre for Advanced Technologies, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Patrycja Żak
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
3
|
Tripathi J, Gupta S, Mishra BB. Synthesis of guar gum maleate under dry conditions: Reaction kinetics and characterization. Int J Biol Macromol 2024; 267:131591. [PMID: 38621574 DOI: 10.1016/j.ijbiomac.2024.131591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
In the present study, a novel environment friendly dry method for preparation of guar gum maleate (GGM) with varying degrees of substitution (DS; 0.02-1.04) was optimized. GGM with a maximum DS of 1.04 was successfully synthesized using guar gum (GG) and maleic anhydride (MA) in proportion of 1: 1 at 80 °C with 4 h of reaction time. The activation energy for the reaction was determined to be 36.91 ± 3.61 kJ mol-1 with pre-exponential factor of 1392 min-1. Esterification of GG was confirmed by FT-IR and 13C NMR. Analysis using size exclusion chromatography (SEC) indicated a decrease in weight average molecular weight (Mw) of the polymer with an increase in polydispersity index (PDI) due to esterification. In comparison with GG, GGM displayed increased hydrophobicity and reduced thermal stability, as analysed by differential scanning calorimetry (DSC). Rheological studies of GGM revealed that initial apparent viscosity decreased with increasing DS. For the first time, the study offered valuable insights on GGM synthesis under dry solvent-less reaction conditions enabling simpler and scalable synthesis process.
Collapse
Affiliation(s)
- J Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Trombay, Mumbai 400094, India.
| | - S Gupta
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Trombay, Mumbai 400094, India.
| | - B B Mishra
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Trombay, Mumbai 400094, India.
| |
Collapse
|
4
|
Tsochatzis ED, Vidal NP, Bai W, Diamantidou D, Theodoridis G, Martinez MM. Untargeted screening and in silico toxicity assessment of semi- and non-volatile compounds migrating from polysaccharide-based food contact materials. Food Chem 2023; 425:136499. [PMID: 37285625 DOI: 10.1016/j.foodchem.2023.136499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The chemical safety of representative polysaccharide films made with pea starch, organocatalytic acetylated pea starch and pectin was investigated at different migration conditions (20 °C/10 days, 70 °C/2 h) using two official simulants signifying hydrophilic (simulant A, 10% ethanol) or lipophilic (simulant D1, 50% ethanol) foods. Migrating semi-volatile and non-volatile compounds were identified and semi-quantified by ultra-high performance liquid chromatography-trap ion mobility time-of-flight mass spectrometry (UHPLC-TIMS-TOF-MS/MS), whereas their toxicity was evaluated by in silico models based on qualitative structure activity (QSAR). Physicochemical analysis revealed polymer wash-off into the simulants. Migration testing at 70 °C for 2 h using simulant D1 resulted in detectable concentrations of glycerol (≤72.1 mg/kg), monoacetylated maltose (≤6.5 mg/kg), and dibutyl phthalate (DBP) (≤0.5 mg/kg, compliant with the existing legislative migration limits) in samples containing acetylated starch. Migrating 3-β-galactopyranosyl glucose (≤8.9 mg/kg) and 2,5-diketo-d-gluconic acid (≤4.9 mg/kg) were detected at 20 °C/10 days. In-silico toxicity emphasized no significant toxicity and categorized organocatalytic acetylated pea starch of no safety concern.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Natalia P Vidal
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Wenqiang Bai
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, Thessaloniki, Greece
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
5
|
Jumina J, Kurniawan YS, Lubis AB, Larasati EI, Purwono B, Triono S. Utilization of vanillin to prepare sulfated Calix[4]resorcinarene as efficient organocatalyst for biodiesel production based on methylation of palmitic acid and oleic acid. Heliyon 2023; 9:e16100. [PMID: 37251819 PMCID: PMC10208922 DOI: 10.1016/j.heliyon.2023.e16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Recently, biodiesel production from palm oils has been thoroughly investigated to substitute crude oil due to its scarcity. However, the biodiesel production process is time-consuming due to its slow kinetics; thus, concentrated sulfuric acid has been used to fasten the reaction process in some industries. Unfortunately, sulfuric acid is a toxic, corrosive, and non-environmentally friendly catalyst. In this study, we prepared sulfated Calix[4]resorcinarene derived from vanillin as an efficient organocatalyst to replace sulfuric acid. The catalytic activity of sulfated Calix[4]resorcinarenes was evaluated through the methylation of palmitic acid and oleic acid as model compounds due to their abundant amounts in palm oil. The Calix[4]resorcinarene and sulfated Calix[4]resorcinarenes have been obtained through a one-pot reaction in 71.8-98.3% yield. Their chemical structures were confirmed by using FTIR, NMR and HRMS spectrometry analyses. The results showed that the sulfated Calix[4]resorcinarene exhibited high catalytic activity for methyl palmitate and methyl oleate productions in 94.8 ± 1.8 and 97.3 ± 2.1% yield, respectively, which was comparable to sulfuric acid (96.3 ± 1.8 and 95.9 ± 2.5%). The optimum condition was achieved by using 0.020 wt equivalent of organocatalyst for 6 h reaction process at 338 K. The methylation of palmitic acid and oleic acid fits well with the first-order kinetic model (R2 = 0.9940-0.9999) with a reaction rate constant of 0.6055 and 1.1403 h-1, respectively. Further investigation reveals that the hydroxyl group of vanillin plays a pivotal role in the organocatalytic activity of sulfated Calix[4]resorcinarene.
Collapse
|
6
|
Hernandez-Hernandez O, Julio-Gonzalez LC, Doyagüez EG, Gutiérrez TJ. Potentially Health-Promoting Spaghetti-Type Pastas Based on Doubly Modified Corn Starch: Starch Oxidation via Wet Chemistry Followed by Organocatalytic Butyrylation Using Reactive Extrusion. Polymers (Basel) 2023; 15:polym15071704. [PMID: 37050319 PMCID: PMC10097208 DOI: 10.3390/polym15071704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Extruded spaghetti-type pasta systems were obtained separately either from native or oxidized starch prepared via wet chemistry with the aim of evaluating the effect of oxidation modification of starch. In addition to this, the butyrylation reaction (butyrate (Bu) esterification-short-chain fatty acid) using native or oxidized starch was analyzed under reactive extrusion (REx) conditions with and without the addition of a green food-grade organocatalyst (l(+)-tartaric acid) with the purpose of developing potentially health-promoting spaghetti-type pasta systems in terms of increasing its resistant starch (RS) values. These would be due to obtaining organocatalytic butyrylated starch or not, or the manufacture of a doubly modified starch (oxidized-butyrylated-starch oxidation followed by organocatalytic butyrylation) or not. To this end, six pasta systems were developed and characterized by solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (CP MAS NMR) spectroscopy, degree of substitution (DS), attenuated total reflectance Fourier transform infrared (ATR/FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), pancreatic digestion, free Bu content analysis and in vitro starch digestibility. The results obtained here suggest that starch oxidation hydrolytically degrades starch chains, making them more susceptible to enzymatic degradation by α-amylase. However, the oxidized starch-based pasta systems, once esterified by Bu mainly on the amylose molecules (doubly modified pasta systems) increased their RS values, and this was more pronounced with the addition of the organocatalyst (maximum RS value = ~8%). Interestingly, despite the checked chemical changes that took place on the molecular structure of starch upon butyrylation or oxidation reactions in corn starch-based spaghetti-type pasta systems, and their incidence on starch digestibility, the orthorhombic crystalline structure (A-type starch) of starch remained unchanged.
Collapse
Affiliation(s)
| | | | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Tomy J Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, Mar del Plata B7608FLC, Argentina
| |
Collapse
|
7
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Starch-based food packaging films processed by reactive extrusion/thermo-molding using chromium octanoate-loaded zeolite A as a potential triple-action mesoporous material (reinforcing filler/food-grade antimicrobial organocatalytic nanoreactor). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Vidal NP, Bai W, Geng M, Martinez MM. Organocatalytic acetylation of pea starch: Effect of alkanoyl and tartaryl groups on starch acetate performance. Carbohydr Polym 2022; 294:119780. [PMID: 35868756 DOI: 10.1016/j.carbpol.2022.119780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Organocatalytic acetylation of pea starch was systematically optimized using tartaric acid as catalyst. The effect of the degree of substitution with alkanoyl (DSacyl) and tartaryl groups (DStar) on thermal and moisture resistivity, and film-forming properties was investigated. Pea starch with DSacyl from 0.03 to 2.8 was successfully developed at more efficient reaction rates than acetylated maize starch. Nevertheless, longer reaction time resulted in granule surface roughness, loss of birefringence, hydrolytic degradation, and a DStar up to 0.5. Solid-state 13C NMR and SEC-MALS-RI suggested that tartaryl groups formed crosslinked di-starch tartrate. Acetylation increased the hydrophobicity, degradation temperature (by ~17 %), and glass transition temperature (by up to ~38 %) of pea starch. The use of organocatalytically-acetylated pea starch with DSacyl ≤ 0.39 generated starch-based biofilms with higher tensile and water barrier properties. Nevertheless, at higher DS, the incompatibility between highly acetylated and native pea starches resulted in a heterogenous/microporous structure that worsened film properties.
Collapse
Affiliation(s)
- Natalia P Vidal
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Wenqiang Bai
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark
| | - Mingwei Geng
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mario M Martinez
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
10
|
Structure-digestibility relationship from noodles based on organocatalytically esterified regular and waxy corn starch obtained by reactive extrusion using sodium propionate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
He Z, Wang D, Lian X, Guo J, Zhu W. The anti-retrogradation properties of maize amylopectin treated by being co-crystallized with NaCl. Int J Biol Macromol 2022; 219:508-518. [DOI: 10.1016/j.ijbiomac.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|