1
|
Dahiya D, Mackin C, Nigam PS. Studies on bioactivities of Manuka and regional varieties of honey for their potential use as natural antibiotic agents for infection control related to wound healing and in pharmaceutical formulations. AIMS Microbiol 2024; 10:288-310. [PMID: 38919717 PMCID: PMC11194624 DOI: 10.3934/microbiol.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Presently, most of the reported infections are of a bacterial origin; however, this leads to a limit within the literature and research around infections caused by fungal pathogens, which are now developing resistance to antibiotic medicines. Of the natural antimicrobial agents, honey has been observed with demonstrable and highly exploitable antimicrobial and infection control related to wound healing properties; therefore, it has been incorporated into many standard pharmaceutical formulations. Generally, these products utilize a pure sample of honey as a bioactive ingredient in a product which has been purposely designed for the convenience of application. This article aims to review information available from published reports on various bioactivities of a variety of medical-grade honey products, including manuka and other conventional non-manuka types sourced from different floral types and geographical regions. Additionally, this review highlights the antibiotic activities of various types of honey products tested against pathogenic strains of bacteria, yeast and fungi, and their applications in the formulation of healthcare products.
Collapse
Affiliation(s)
- Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, England, UK
- current address: Haematology and Blood Transfusion, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Caoimhin Mackin
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
2
|
Bucekova M, Godocikova J, Gueyte R, Chambrey C, Majtan J. Characterisation of physicochemical parameters and antibacterial properties of New Caledonian honeys. PLoS One 2023; 18:e0293730. [PMID: 37906561 PMCID: PMC10617706 DOI: 10.1371/journal.pone.0293730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Honey is an attractive natural product with various health benefits. A few honey-based commercial products have successfully been adopted in clinics to improve wound healing. However, screening of other potential sources of medical-grade honey, in particular, honeys from territories with high floral species diversity and high endemicity, is highly needed. The goal of this study was to characterise the physicochemical and antibacterial properties of New Caledonian honey samples (n = 33) and to elucidate the major mechanism of their antibacterial action. Inhibitory antibacterial activity of honeys against Staphylococcus aureus and Pseudomonas aeruginosa was determined with a minimum inhibitory concentration (MIC) assay. Enzymatic activity of glucose oxidase and the content of hydrogen peroxide (H2O2) in honey samples were analysed. Furthermore, total protein content of honeys together with their electrophoretic protein profiles were also determined in the study. The antibacterial efficacy of 24% of the tested honey samples was slightly superior to that of manuka honey with unique manuka factor 15+. The antibacterial activity of catalase-treated honey sample solutions was significantly reduced, suggesting that H2O2 is a key antibacterial compound of diluted honeys. However, the kinetic profiles of H2O2 production in most potent honeys at a MIC value of 6% was not uniform. Under the experimental conditions, we found that a H2O2 concentration of 150 μM in diluted honeys is a critical concentration for inhibiting the growth of S. aureus. In contrast, 150 μM H2O2 in artificial honey solution was not able to inhibit bacterial growth, suggesting a role of phytochemicals in the antibacterial activity of natural honey. In addition, the continuous generation of H2O2 in diluted honey demonstrated an ability to counteract additional bacteria in re-inoculation experiments. In conclusion, the tested New Caledonian honey samples showed strong antibacterial activity, primarily based on H2O2 action, and therefore represent a suitable source for medical-grade honey.
Collapse
Affiliation(s)
- Marcela Bucekova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Godocikova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Romain Gueyte
- Beekeeping Center, ADECAL Technopole, Noumea Cedex, New Caledonia
| | - Céline Chambrey
- Beekeeping Center, ADECAL Technopole, Noumea Cedex, New Caledonia
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
3
|
Siddiqui SA, Li C, Aidoo OF, Fernando I, Haddad MA, Pereira JA, Blinov A, Golik A, Câmara JS. Unravelling the potential of insects for medicinal purposes - A comprehensive review. Heliyon 2023; 9:e15938. [PMID: 37206028 PMCID: PMC10189416 DOI: 10.1016/j.heliyon.2023.e15938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Entomotherapy, the use of insects for medicinal purposes, has been practised for centuries in many countries around the world. More than 2100 edible insect species are eaten by humans, but little is known about the possibility of using these insects as a promising alternative to traditional pharmaceuticals for treating diseases. This review offers a fundamental understanding of the therapeutic applications of insects and how they might be used in medicine. In this review, 235 insect species from 15 orders are reported to be used as medicine. Hymenoptera contains the largest medicinal insect species, followed by Coleoptera, Orthoptera, Lepidoptera, and Blattodea. Scientists have examined and validated the potential uses of insects along with their products and by-products in treating various diseases, and records show that they are primarily used to treat digestive and skin disorders. Insects are known to be rich sources of bioactive compounds, explaining their therapeutic features such as anti-inflammatory, antimicrobial, antiviral, and so on. Challenges associated with the consumption of insects (entomophagy) and their therapeutic uses include regulation barriers and consumer acceptance. Moreover, the overexploitation of medicinal insects in their natural habitat has led to a population crisis, thus necessitating the investigation and development of their mass-rearing procedure. Lastly, this review suggests potential directions for developing insects used in medicine and offers advice for scientists interested in entomotherapy. In future, entomotherapy may become a sustainable and cost-effective solution for treating various ailments and has the potential to revolutionize modern medicine.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
- Corresponding author. Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany.
| | - Chujun Li
- Guangzhou Unique Biotechnology Co., Ltd, 510663, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Owusu Fordjour Aidoo
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, 00233, Somanya, Ghana
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, 65145, East Java, Indonesia
| | - Moawiya A. Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| | - Jorge A.M. Pereira
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Andrey Blinov
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Andrey Golik
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Corresponding author. CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
4
|
Sogari G, Amato M, Palmieri R, Hadj Saadoun J, Formici G, Verneau F, Mancini S. The future is crawling: Evaluating the potential of insects for food and feed security. Curr Res Food Sci 2023; 6:100504. [PMID: 37377490 PMCID: PMC10290996 DOI: 10.1016/j.crfs.2023.100504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/29/2023] Open
Abstract
Current estimations showed that the number of people affected by hunger doubled in the last two years, reaching 9.8% of the global population. According to FAO, in order to satisfy the demand for food in the next few years, it will be necessary to double food production. Moreover, the call for a change in dietary patterns has been raised, showing how the food sector is responsible of 1/3 of climate change where meat-based diets or overconsumption of meat play an important role in the negative environmental impact. Consequently, there is a growing concern in how to achieve the goal of increasing food productions without exploiting environmental resources and to explore the production and use of alternative resources, such as insects. Insects are gaining interests both as food and feed not only to reduce the environmental costs in feed production for common livestock, but also to reduce farmers' dependence on traditional protein sources. In this work we aimed to provide an overview of the state-of-the-art upon insect studies, highlighting the most important results obtained from both an industrial and market perspective. The legislative framework concerning edible insects as food and feed is also analyzed, with the final purpose to highlight recent reforms, relevant case-law as well as unsolved regulatory challenges. From a normative perspective, regulatory efforts are still required to fully take advantage of the potentialities of insects-industry. From a consumer point of view, consumers' willingness to pay a premium is going to be a key issue for economic sustainability of the insect farming chain. To meet the food and feed security challenges, insects will have to be considered all-around, including applications in the food, feed, and other sectors. We believe that this review is an important contribution to the field of food science and will be of interest to researchers, food industry professionals, and policymakers in order to prioritize research questions and help communicate scientific knowledge to a broader audience.
Collapse
Affiliation(s)
- Giovanni Sogari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/a, 43124, Parma, Italy
| | - Mario Amato
- Department of Political Science, University of Naples Federico II, Via Rodinò 22/A, 80138, Naples, Italy
| | - Rossella Palmieri
- Department of Political Science, University of Naples Federico II, Via Rodinò 22/A, 80138, Naples, Italy
| | - Jasmine Hadj Saadoun
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/a, 43124, Parma, Italy
| | - Giulia Formici
- Department of Italian and Supranational Public Law, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Fabio Verneau
- Department of Political Science, University of Naples Federico II, Via Rodinò 22/A, 80138, Naples, Italy
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
5
|
Yong HI, Kim TK, Cha JY, Lee JH, Kang MC, Jung S, Yun-Sang C. Effects of edible insect extracts on the antioxidant, physiochemical, and microbial properties of Tteokgalbi during refrigerated storage. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|