1
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
2
|
Liu B, Satou Y. The genetic program to specify ectodermal cells in ascidian embryos. Dev Growth Differ 2020; 62:301-310. [PMID: 32130723 DOI: 10.1111/dgd.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.
Collapse
Affiliation(s)
- Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
4
|
Abstract
Organizers, which comprise groups of cells with the ability to instruct adjacent cells into specific states, represent a key principle in developmental biology. The concept was first introduced by Spemann and Mangold, who showed that there is a cellular population in the newt embryo that elicits the development of a secondary axis from adjacent cells. Similar experiments in chicken and rabbit embryos subsequently revealed groups of cells with similar instructive potential. In birds and mammals, organizer activity is often associated with a structure known as the node, which has thus been considered a functional homologue of Spemann's organizer. Here, we take an in-depth look at the structure and function of organizers across species and note that, whereas the amphibian organizer is a contingent collection of elements, each performing a specific function, the elements of organizers in other species are dispersed in time and space. This observation urges us to reconsider the universality and meaning of the organizer concept. Summary: This Review re-evaluates the notion of Spemann's organizer as identified in amphibians, highlighting the spatiotemporal dispersion of equivalent elements in mouse and the key influence of responsiveness to organizer signals.
Collapse
Affiliation(s)
| | - Ben Steventon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
5
|
Dumollard R, Minc N, Salez G, Aicha SB, Bekkouche F, Hebras C, Besnardeau L, McDougall A. The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions. eLife 2017; 6. [PMID: 28121291 PMCID: PMC5319837 DOI: 10.7554/elife.19290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula. DOI:http://dx.doi.org/10.7554/eLife.19290.001 The position of cells within an embryo early in development determines what type of cells they will become in the fully formed embryo. The embryos of ascidians, commonly known as sea squirts, are ideal for studying what influences cell positioning. These embryos consist of a small number of cells that divide according to an “invariant cleavage pattern”, which means that the positioning and timing of the cell divisions is identical between different individuals of the same species. The pattern of cell division is also largely the same across different ascidian species, which raises questions about how it is controlled. When a cell divides, a structure called the spindle forms inside it to distribute copies of the cell’s genetic material between the new cells. The orientation of the spindle determines the direction in which the cell will divide. Now, by combining 3D imaging of living ascidian embryos with computational modeling, Dumollard et al. show that the spindles in every equally dividing cell tend to all align in the long length of the cell’s “apical” surface. Such alignment allows the cells to be on the outside of the embryo and implements the ascidian invariant cleavage pattern. The cells in the embryo do not all divide at the same time. Indeed, the shape of the cells (and especially their apical surface) depends on two layers of cells in the embryo not dividing at the same time; instead, periods of cell division alternate between the layers. A network of genes in the embryo regulates the timing of these cell divisions and makes it possible for the cells to divide according to an invariant cleavage pattern. However, this network of genes is not the only control mechanism that shapes the early embryo. A structure found in egg cells (and hence produced by the embryo’s mother) causes cells at the rear of the embryo to divide unequally, and this influences the shape of all the cells in the embryo. Thus it appears that maternal mechanisms work alongside the embryo’s gene network to shape the early embryo. The next step will be to determine how physical forces – for example, from the cells pressing against each other – influence the position of the embryo’s cells. How do gene networks relay the biomechanical properties of the embryo to help it take shape? DOI:http://dx.doi.org/10.7554/eLife.19290.002
Collapse
Affiliation(s)
- Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, Paris, France
| | - Gregory Salez
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Sameh Ben Aicha
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Faisal Bekkouche
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| |
Collapse
|
6
|
Di Maio A, Setar L, Tiozzo S, De Tomaso AW. Wnt affects symmetry and morphogenesis during post-embryonic development in colonial chordates. EvoDevo 2015; 6:17. [PMID: 26171140 PMCID: PMC4499891 DOI: 10.1186/s13227-015-0009-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022] Open
Abstract
Background Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulation of the Wnt signaling in either process has shown to result in unusual body axis phenotypes. Botryllus schlosseri is a colonial ascidian that can regenerate its entire body through asexual budding. This processes leads to an adult body via a stereotypical developmental pathway (called blastogenesis), without proceeding through any embryonic developmental stages. Results In this study, we describe the role of the canonical Wnt pathway during the early stages of asexual development. We characterized expression of three Wnt ligands (Wnt2B, Wnt5A, and Wnt9A) by in situ hybridization and qRT-PCR. Chemical manipulation of the pathway resulted in atypical budding due to the duplication of the A/P axes, supernumerary budding, and loss of the overall cell apical-basal polarity. Conclusions Our results suggest that Wnt signaling is used for equivalent developmental processes both during embryogenesis and asexual development in an adult organism, suggesting that patterning mechanisms driving morphogenesis are conserved, independent of embryonic, or regenerative development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0009-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Di Maio
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B19 2TT UK.,Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| | - Leah Setar
- Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| | - Stefano Tiozzo
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, 06230 Villefranche-sur-mer, France
| | - Anthony W De Tomaso
- Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
7
|
Namigai EK, Kenny NJ, Shimeld SM. Right across the tree of life: The evolution of left-right asymmetry in the Bilateria. Genesis 2014; 52:458-70. [DOI: 10.1002/dvg.22748] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Erica K.O. Namigai
- Department of Zoology; University of Oxford; South Parks Road Oxford United Kingdom
| | - Nathan J. Kenny
- Department of Zoology; University of Oxford; South Parks Road Oxford United Kingdom
| | - Sebastian M. Shimeld
- Department of Zoology; University of Oxford; South Parks Road Oxford United Kingdom
| |
Collapse
|
8
|
Abstract
The tunicates, or urochordates, constitute a large group of marine animals whose recent common ancestry with vertebrates is reflected in the tadpole-like larvae of most tunicates. Their diversity and key phylogenetic position are enhanced, from a research viewpoint, by anatomically simple and transparent embryos, compact rapidly evolving genomes, and the availability of powerful experimental and computational tools with which to study these organisms. Tunicates are thus a powerful system for exploring chordate evolution and how extreme variation in genome sequence and gene regulatory network architecture is compatible with the preservation of an ancestral chordate body plan.
Collapse
Affiliation(s)
- Patrick Lemaire
- Institut du Biologie de Développement de Marseille Luminy (IBDML, UMR 6216, CNRS, Université de la Méditerranée), Parc Scientifique de Luminy Case 907, F-13288, Marseille Cedex 9, France
- Centre de Recherches en Biochimie Macromoléculaire (CRBM, UMR5237, CNRS, Universités Montpellier 1 and 2), 1919 route de Mende, F-34293, Montpellier Cedex 05, France
| |
Collapse
|
9
|
Klymkowsky MW, Rossi CC, Artinger KB. Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr 2010; 4:595-608. [PMID: 20962584 PMCID: PMC3011258 DOI: 10.4161/cam.4.4.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/09/2010] [Indexed: 01/09/2023] Open
Abstract
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Department of Molecular, Cellular and Developmental Biology; University of Colorado Boulder; Boulder, CO USA
| | - Christy Cortez Rossi
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| |
Collapse
|
10
|
Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 2009; 332:48-60. [DOI: 10.1016/j.ydbio.2009.05.540] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
11
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
|
12
|
Nishida H. Development of the appendicularian Oikopleura dioica: Culture, genome, and cell lineages. Dev Growth Differ 2008; 50 Suppl 1:S239-56. [PMID: 18494706 DOI: 10.1111/j.1440-169x.2008.01035.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
13
|
Abstract
Understanding how the chordate body plan originated and evolved is still controversial. The discovery by Spemann and Mangold in 1924 of the vertebrate organizer and its inductive properties in patterning the AP and DV axis was followed by a long gap until the 1960s when scientists started characterizing the molecular events responsible for such inductions. However, the evolutionary origin of the organizer itself remained obscure until very recently; did it appear together with the origin and radiation of vertebrates, or was it a chordate affair? A recent study by Yu and collaborators,1 which analyses the expression of several organizer-specific genes in amphioxus together with recent phylogenetic data that reversed the position of invertebrate extant chordates (e.g. urochordates and cephalochordates), indicates that the organizer probably appeared in early chordates. It likely had separate signalling centres generating BMP and Wnt signalling gradients along the DV and AP axis. The organizer was then lost in the urochordate lineage, most probably as an adaptation to a rapid and determinate development.
Collapse
|
14
|
Bertrand S, Escrivà H. Sur l’évolution du plan d’organisation des chordés…. Med Sci (Paris) 2007; 23:468-9. [PMID: 17502058 DOI: 10.1051/medsci/2007235468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Rentzsch F, Guder C, Vocke D, Hobmayer B, Holstein TW. An ancient chordin-like gene in organizer formation of Hydra. Proc Natl Acad Sci U S A 2007; 104:3249-54. [PMID: 17360633 PMCID: PMC1805574 DOI: 10.1073/pnas.0604501104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling centers or organizers play a key role in axial patterning processes in animal embryogenesis. The function of most vertebrate organizers involves the activity of secreted antagonists of bone morphogenetic proteins (BMPs) such as Chordin or Noggin. Although BMP homologs have been isolated from many phyla, the evolutionary origin of the antagonistic BMP/Chordin system in organizer signaling is presently unknown. Here we describe a Chordin-like molecule (HyChdl) from Hydra that inhibits BMP activity in zebrafish embryos and acts in Hydra axis formation when new head organizers are formed during budding and regeneration. hychdl transcripts are also up-regulated in the head regeneration-deficient mutant strain reg-16. Accordingly, HyChdl has a function in organizer formation, but not in head differentiation. Our data indicate that the BMP/Chordin antagonism is a basic property of metazoan signaling centers that was invented in early metazoan evolution to set up axial polarity.
Collapse
Affiliation(s)
- Fabian Rentzsch
- *Zoological Institute, Darmstadt University of Technology, D-64287 Darmstadt, Germany
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Corina Guder
- *Zoological Institute, Darmstadt University of Technology, D-64287 Darmstadt, Germany
- Zoological Institute, University of Heidelberg, 69120 Heidelberg, Germany; and
| | - Dirk Vocke
- *Zoological Institute, Darmstadt University of Technology, D-64287 Darmstadt, Germany
| | - Bert Hobmayer
- *Zoological Institute, Darmstadt University of Technology, D-64287 Darmstadt, Germany
- Zoological Institute and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Thomas W. Holstein
- *Zoological Institute, Darmstadt University of Technology, D-64287 Darmstadt, Germany
- Zoological Institute, University of Heidelberg, 69120 Heidelberg, Germany; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Yu JK, Satou Y, Holland ND, Shin-I T, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ. Axial patterning in cephalochordates and the evolution of the organizer. Nature 2007; 445:613-7. [PMID: 17237766 DOI: 10.1038/nature05472] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 11/20/2006] [Indexed: 11/08/2022]
Abstract
The organizer of the vertebrate gastrula is an important signalling centre that induces and patterns dorsal axial structures. Although a topic of long-standing interest, the evolutionary origin of the organizer remains unclear. Here we show that the gastrula of the cephalochordate amphioxus expresses dorsal/ventral (D/V) patterning genes (for example, bone morphogenetic proteins (BMPs), Nodal and their antagonists) in patterns reminiscent of those of their vertebrate orthlogues, and that amphioxus embryos, like those of vertebrates, are ventralized by exogenous BMP protein. In addition, Wnt-antagonists (for example, Dkks and sFRP2-like) are expressed anteriorly, whereas Wnt genes themselves are expressed posteriorly, consistent with a role for Wnt signalling in anterior/posterior (A/P) patterning. These results suggest evolutionary conservation of the mechanisms for both D/V and A/P patterning of the early gastrula. In light of recent phylogenetic analyses placing cephalochordates basally in the chordate lineage, we propose that separate signalling centres for patterning the D/V and A/P axes may be an ancestral chordate character.
Collapse
Affiliation(s)
- Jr-Kai Yu
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92037-0202, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
18
|
Lane MC, Sheets MD. Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development. Dev Biol 2006; 296:12-28. [PMID: 16750823 DOI: 10.1016/j.ydbio.2006.04.447] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 03/09/2006] [Accepted: 04/09/2006] [Indexed: 11/21/2022]
Abstract
Amphibian embryos have served as a model system for vertebrate axial patterning for more than a century. Recent changes to the Xenopus laevis fate map revised the assignment of the embryonic dorsal/ventral (back-to-belly) axis in pre-gastrula embryos and allowed the assignment of the rostral/caudal (head-to-tail) axis for the first time. Revising the embryonic axes after many years of experimentation changes our view of axial patterning in amphibians. In this review, we discuss the revised maps and axes, and show by example how the new map alters the interpretation of three experiments that form the foundations of amphibian embryology. We compare the revised amphibian fate map to the general maps of the protochordates, and discuss which features of the maps and early development are shared by chordates and which distinguish vertebrates. Finally, we offer an explanation for the formation of both complete and incomplete axes in the rescue assays routinely used to study axial patterning in Xenopus, and a model of amphibian axial patterning.
Collapse
Affiliation(s)
- Mary Constance Lane
- Department of Biomolecular Chemistry, School of Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|