1
|
Zhang J. Patterns and evolutionary consequences of pleiotropy. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2023; 54:1-19. [PMID: 39473988 PMCID: PMC11521367 DOI: 10.1146/annurev-ecolsys-022323-083451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Pleiotropy refers to the phenomenon of one gene or one mutation affecting multiple phenotypic traits. While the concept of pleiotropy is as old as Mendelian genetics, functional genomics has finally allowed the first glimpses of the extent of pleiotropy for a large fraction of genes in a genome. After describing conceptual and operational difficulties in quantifying pleiotropy and the pros and cons of various methods for measuring pleiotropy, I review empirical data on pleiotropy, which generally show an L-shaped distribution of the degree of pleiotropy (i.e., the number of traits affected) with most genes having low pleiotropy. I then review the current understanding of the molecular basis of pleiotropy. The rest of the review discusses evolutionary consequences of pleiotropy, focusing on advances in topics including the cost of complexity, regulatory vs. coding evolution, environmental pleiotropy and adaptation, evolution of ageing and other seemingly harmful traits, and evolutionary resolution of pleiotropy.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Lee SC, Liou MR, Hsu YH, Wang IN, Lin NS. Trade-off between local replication and long-distance dissemination during experimental evolution of a satellite RNA. Front Microbiol 2023; 14:1139447. [PMID: 37601360 PMCID: PMC10436602 DOI: 10.3389/fmicb.2023.1139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Satellite RNAs (satRNAs) are molecular parasites that depend on their non-homologous helper viruses (HVs) for essential biological functions. While there are multiple molecular and phylogenetic studies on satRNAs, there is no experimental evolution study on how satRNAs may evolve in common infection conditions. In this study, we serially passaged the Bamboo mosaic virus (BaMV) associated-satRNA (satBaMV) under conditions in which satBaMV either coinfects an uninfected host plant, Nicotiana benthamiana, with BaMV or superinfects a transgenic N. benthamiana expressing the full-length BaMV genome. Single-nucleotide polymorphisms (SNPs) of satBaMV populations were analyzed by deep sequencing. Forty-eight SNPs were identified across four different experimental treatments. Most SNPs are treatment-specific, and some are also ephemeral. However, mutations at positions 30, 34, 63, and 82, all located at the 5' untranslated region (UTR), are universal in all treatments. These universal SNPs are configured into several haplotypes and follow different population dynamics. We constructed isogenic satBaMV strains only differing at positions 30 and 82 and conducted competition experiments in protoplasts and host plants. We found that the haplotype that reached high frequency in protoplasts and inoculation leaves also exhibited poor dissemination to systemic leaves and vice versa, thus suggesting an apparent trade-off between local replication and long-distance dissemination. We posit that the trade-off is likely caused by antagonistic pleiotropy at the 5' UTR. Our findings revealed a hitherto under-explored connection between satRNA genome replication and movement within a host plant. The significance of such a connection during satRNA evolution warrants a more thorough investigation.
Collapse
Affiliation(s)
- Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ing-Nang Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Vande Zande P, Wittkopp PJ. Network Topology Can Explain Differences in Pleiotropy Between Cis- and Trans-regulatory Mutations. Mol Biol Evol 2022; 39:6889454. [PMID: 36508350 PMCID: PMC9791367 DOI: 10.1093/molbev/msac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
A mutation's degree of pleiotropy (i.e., the number of traits it alters) is predicted to impact the probability of the mutation being detrimental to fitness. For mutations that impact gene expression, mutations acting in cis have been hypothesized to generally be less pleiotropic than mutations affecting the same gene's expression in trans, suggesting that cis-regulatory mutations should be less deleterious and more likely to fix over evolutionary time. Here, we use expression and fitness data from Saccharomyces cerevisiae gene deletion strains to test these hypotheses. By treating deletion of each gene as a cis-regulatory mutation affecting its own expression and deletions of other genes affecting expression of this focal gene as trans-regulatory mutations, we find that cis-acting mutations do indeed tend to be less pleiotropic than trans-acting mutations affecting expression of the same gene. This pattern was observed for the vast majority of genes in the data set and could be explained by the topology of the regulatory network controlling gene expression. Comparing the fitness of cis- and trans-acting mutations affecting expression of the same gene also confirmed that trans-acting deletions tend to be more deleterious. These findings provide strong support for pleiotropy playing a role in the preferential fixation of cis-regulatory alleles over evolutionary time.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Corresponding author: E-mail: .; Present address: Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Vande Zande P, Hill MS, Wittkopp PJ. Pleiotropic effects of trans-regulatory mutations on fitness and gene expression. Science 2022; 377:105-109. [PMID: 35771906 DOI: 10.1126/science.abj7185] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Variation in gene expression arises from cis- and trans-regulatory mutations, which contribute differentially to expression divergence. We compare the impacts on gene expression and fitness resulting from cis- and trans-regulatory mutations in Saccharomyces cerevisiae, with a focus on the TDH3 gene. We use the effects of cis-regulatory mutations to infer effects of trans-regulatory mutations attributable to impacts beyond the focal gene, revealing a distribution of pleiotropic effects. Cis- and trans-regulatory mutations had different effects on gene expression with pleiotropic effects of trans-regulatory mutants affecting expression of genes both in parallel to and downstream of the focal gene. The more widespread and deleterious effects of trans-regulatory mutations we observed are consistent with their decreasing relative contribution to expression differences over evolutionary time.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mark S Hill
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Geiler-Samerotte KA, Li S, Lazaris C, Taylor A, Ziv N, Ramjeawan C, Paaby AB, Siegal ML. Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping. PLoS Biol 2020; 18:e3000836. [PMID: 32804946 PMCID: PMC7451985 DOI: 10.1371/journal.pbio.3000836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023] Open
Abstract
Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.
Collapse
Affiliation(s)
- Kerry A. Geiler-Samerotte
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Center for Mechanisms of Evolution, Biodesign Institutes, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Shuang Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charalampos Lazaris
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Austin Taylor
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Naomi Ziv
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Chelsea Ramjeawan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
6
|
Parker MM, Lutz SM, Hobbs BD, Busch R, McDonald MN, Castaldi PJ, Beaty TH, Hokanson JE, Silverman EK, Cho MH. Assessing pleiotropy and mediation in genetic loci associated with chronic obstructive pulmonary disease. Genet Epidemiol 2019; 43:318-329. [PMID: 30740764 DOI: 10.1002/gepi.22192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Genetic association studies have increasingly recognized variant effects on multiple phenotypes. Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with environmental and genetic causes. Multiple genetic variants have been associated with COPD, many of which show significant associations to additional phenotypes. However, it is unknown if these associations represent biological pleiotropy or if they exist through correlation of related phenotypes ("mediated pleiotropy"). Using 6,670 subjects from the COPDGene study, we describe the association of known COPD susceptibility loci with other COPD-related phenotypes and distinguish if these act directly on the phenotypes (i.e., biological pleiotropy) or if the association is due to correlation (i.e., mediated pleiotropy). We identified additional associated phenotypes for 13 of 25 known COPD loci. Tests for pleiotropy between genotype and associated outcomes were significant for all loci. In cases of significant pleiotropy, we performed mediation analysis to test if SNPs had a direct association to phenotype. Most loci showed a mediated effect through the hypothesized causal pathway. However, many loci also had direct associations, suggesting causal explanations (i.e., emphysema leading to reduced lung function) are incomplete. Our results highlight the high degree of pleiotropy in complex disease-associated loci and provide novel insights into the mechanisms underlying COPD.
Collapse
Affiliation(s)
- Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sharon M Lutz
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robert Busch
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - MerryLynn N McDonald
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John E Hokanson
- Department of Epidemiology, University of Colorado, Denver, Aurora, Colorado
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Lotterhos KE, Yeaman S, Degner J, Aitken S, Hodgins KA. Modularity of genes involved in local adaptation to climate despite physical linkage. Genome Biol 2018; 19:157. [PMID: 30290843 PMCID: PMC6173883 DOI: 10.1186/s13059-018-1545-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Linkage among genes experiencing different selection pressures can make natural selection less efficient. Theory predicts that when local adaptation is driven by complex and non-covarying stresses, increased linkage is favored for alleles with similar pleiotropic effects, with increased recombination favored among alleles with contrasting pleiotropic effects. Here, we introduce a framework to test these predictions with a co-association network analysis, which clusters loci based on differing associations. We use this framework to study the genetic architecture of local adaptation to climate in lodgepole pine, Pinus contorta, based on associations with environments. RESULTS We identify many clusters of candidate genes and SNPs associated with distinct environments, including aspects of aridity and freezing, and discover low recombination rates among some candidate genes in different clusters. Only a few genes contain SNPs with effects on more than one distinct aspect of climate. There is limited correspondence between co-association networks and gene regulatory networks. We further show how associations with environmental principal components can lead to misinterpretation. Finally, simulations illustrate both benefits and caveats of co-association networks. CONCLUSIONS Our results support the prediction that different selection pressures favor the evolution of distinct groups of genes, each associating with a different aspect of climate. But our results went against the prediction that loci experiencing different sources of selection would have high recombination among them. These results give new insight into evolutionary debates about the extent of modularity, pleiotropy, and linkage in the evolution of genetic architectures.
Collapse
Affiliation(s)
- Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Jon Degner
- Department of Forest and Conservation Sciences, Faculty of Forestry, Vancouver, BC, V6T 1Z4, Canada
| | - Sally Aitken
- Department of Forest and Conservation Sciences, Faculty of Forestry, Vancouver, BC, V6T 1Z4, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
8
|
Grennan KS, Chen C, Gershon ES, Liu C. Molecular network analysis enhances understanding of the biology of mental disorders. Bioessays 2014; 36:606-16. [PMID: 24733456 DOI: 10.1002/bies.201300147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We provide an introduction to network theory, evidence to support a connection between molecular network structure and neuropsychiatric disease, and examples of how network approaches can expand our knowledge of the molecular bases of these diseases. Without systematic methods to derive their biological meanings and inter-relatedness, the many molecular changes associated with neuropsychiatric disease, including genetic variants, gene expression changes, and protein differences, present an impenetrably complex set of findings. Network approaches can potentially help integrate and reconcile these findings, as well as provide new insights into the molecular architecture of neuropsychiatric diseases. Network approaches to neuropsychiatric disease are still in their infancy, and we discuss what might be done to improve their prospects.
Collapse
Affiliation(s)
- Kay S Grennan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|