1
|
Shrivastava M, Kouyoumdjian GS, Kirbizakis E, Ruiz D, Henry M, Vincent AT, Sellam A, Whiteway M. The Adr1 transcription factor directs regulation of the ergosterol pathway and azole resistance in Candida albicans. mBio 2023; 14:e0180723. [PMID: 37791798 PMCID: PMC10653825 DOI: 10.1128/mbio.01807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Research often relies on well-studied orthologs within related species, with researchers using a well-studied gene or protein to allow prediction of the function of the ortholog. In the opportunistic pathogen Candida albicans, orthologs are usually compared with Saccharomyces cerevisiae, and this approach has been very fruitful. Many transcription factors (TFs) do similar jobs in the two species, but many do not, and typically changes in function are driven not by modifications in the structures of the TFs themselves but in the connections between the transcription factors and their regulated genes. This strategy of changing TF function has been termed transcription factor rewiring. In this study, we specifically looked for rewired transcription factors, or Candida-specific TFs, that might play a role in drug resistance. We investigated 30 transcription factors that were potentially rewired or were specific to the Candida clade. We found that the Adr1 transcription factor conferred resistance to drugs like fluconazole, amphotericin B, and terbinafine when activated. Adr1 is known for fatty acid and glycerol utilization in Saccharomyces, but our study reveals that it has been rewired and is connected to ergosterol biosynthesis in Candida albicans.
Collapse
Affiliation(s)
- Manjari Shrivastava
- Department of Biology, Concordia University, Montréal, Quebec, Canada
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | - Daniel Ruiz
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| | - Manon Henry
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Antony T. Vincent
- Department of Animal Sciences, Université Laval, Quebec City, Canada
| | - Adnane Sellam
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Rashid S, Correia-Mesquita TO, Godoy P, Omran RP, Whiteway M. SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:764711. [PMID: 35350439 PMCID: PMC8957876 DOI: 10.3389/fcimb.2022.764711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
SAGA (Spt-Ada-Gcn5-acetyltransferase) is a highly conserved, multiprotein co-activator complex that consists of five distinct modules. It has two enzymatic functions, a histone acetyltransferase (HAT) and a deubiquitinase (DUB) and plays a central role in processes such as transcription initiation, elongation, protein stability, and telomere maintenance. We analyzed conditional and null mutants of the SAGA complex module components in the fungal pathogen Candida albicans; Ngg1, (the HAT module); Ubp8, (the DUB module); Tra1, (the recruitment module), Spt7, (the architecture module) and Spt8, (the TBP interaction unit), and assessed their roles in a variety of cellular processes. We observed that spt7Δ/Δ and spt8Δ/Δ strains have a filamentous phenotype, and both are highly invasive in yeast growing conditions as compared to the wild type, while ngg1Δ/Δ and ubp8Δ/Δ are in yeast-locked state and non-invasive in both YPD media and filamentous induced conditions compared to wild type. RNA-sequencing-based transcriptional profiling of SAGA mutants reveals upregulation of hyphal specific genes in spt7Δ/Δ and spt8Δ/Δ strains and downregulation of ergosterol metabolism pathway. As well, spt7Δ/Δ and spt8Δ/Δ confer susceptibility to antifungal drugs, to acidic and alkaline pH, to high temperature, and to osmotic, oxidative, cell wall, and DNA damage stresses, indicating that these proteins are important for genotoxic and cellular stress responses. Despite having similar morphological phenotypes (constitutively filamentous and invasive) spt7 and spt8 mutants displayed variation in nuclear distribution where spt7Δ/Δ cells were frequently binucleate and spt8Δ/Δ cells were consistently mononucleate. We also observed that spt7Δ/Δ and spt8Δ/Δ mutants were quickly engulfed by macrophages compared to ngg1Δ/Δ and ubp8Δ/Δ strains. All these findings suggest that the SAGA complex modules can have contrasting functions where loss of Spt7 or Spt8 enhances filamentation and invasiveness while loss of Ngg1 or Ubp8 blocks these processes.
Collapse
Affiliation(s)
| | | | | | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
3
|
Nuclear Ssr4 Is Required for the In Vitro and In Vivo Asexual Cycles and Global Gene Activity of Beauveria bassiana. mSystems 2020; 5:5/2/e00677-19. [PMID: 32317391 PMCID: PMC7174636 DOI: 10.1128/msystems.00677-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ssr4 is known to serve as a cosubunit of chromatin-remodeling SWI/SNF and RSC complexes in yeasts but has not been functionally characterized in fungi. This study unveils for the first time the pleiotropic effects caused by deletion of ssr4 and its role in mediating global gene expression in a fungal insect pathogen. Our findings confirm an essential role of Ssr4 in hydrophobin biosynthesis and assembly required for growth, differentiation, and development of aerial hyphae for conidiation and conidial adhesion to insect surface and its essentiality for insect pathogenicity and virulence-related cellular events. Importantly, Ssr4 can regulate nearly one-fourth of all genes in the fungal genome in direct and indirect manners, including dozens involved in gene activity and hundreds involved in metabolism and/or transport of carbohydrates, amino acids, lipids, and/or inorganic ions. These findings highlight a significance of Ssr4 for filamentous fungal lifestyle. Ssr4 serves as a cosubunit of chromatin-remodeling SWI/SNF and RSC complexes in yeasts but remains functionally uncharacterized due to its essentiality for yeast viability. Here, we report pleiotropic effects of the deletion of the ssr4 ortholog nonessential for cell viability in Beauveria bassiana, an asexual insect mycopathogen. The deletion of ssr4 resulted in severe growth defects on different carbon/nitrogen sources, increased hyphal hydrophilicity, blocked hyphal differentiation, and 98% reduced conidiation capacity compared to a wild-type standard. The limited Δssr4 conidia featured an impaired coat with disordered or obscure hydrophobin rodlet bundles, decreased hydrophobicity, increased size, and lost insect pathogenicity via normal cuticle infection and 90% of virulence via intrahemocoel injection. The expression of genes required for hydrophobin biosynthesis and assembly of the rodlet layer was drastically repressed in more hydrophilic Δssr4 cells. Transcriptomic analysis revealed 2,517 genes differentially expressed in the Δssr4 mutant, including 1,505 downregulated genes and 1,012 upregulated genes. The proteins encoded by hundreds of repressed genes were involved in metabolism and/or transport of carbohydrates, amino acids, and lipids, inorganic ion transport and energy production or conversion, including dozens involved in DNA replication, transcription, translation, and posttranslational modifications. However, purified Ssr4 samples showed no DNA-binding activity, implying that the role of Ssr4 in genome-wide gene regulation could rely upon its acting as a cosubunit of the two complexes. These findings provide the first insight into an essential role of Ssr4 in the asexual cycle in vitro and in vivo of B. bassiana and highlights its importance for the filamentous fungal lifestyle. IMPORTANCE Ssr4 is known to serve as a cosubunit of chromatin-remodeling SWI/SNF and RSC complexes in yeasts but has not been functionally characterized in fungi. This study unveils for the first time the pleiotropic effects caused by deletion of ssr4 and its role in mediating global gene expression in a fungal insect pathogen. Our findings confirm an essential role of Ssr4 in hydrophobin biosynthesis and assembly required for growth, differentiation, and development of aerial hyphae for conidiation and conidial adhesion to insect surface and its essentiality for insect pathogenicity and virulence-related cellular events. Importantly, Ssr4 can regulate nearly one-fourth of all genes in the fungal genome in direct and indirect manners, including dozens involved in gene activity and hundreds involved in metabolism and/or transport of carbohydrates, amino acids, lipids, and/or inorganic ions. These findings highlight a significance of Ssr4 for filamentous fungal lifestyle.
Collapse
|
4
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
5
|
mSphere of Influence: Decoding Transcriptional Regulatory Networks To Illuminate the Mechanisms of Microbial Pathogenicity. mSphere 2020; 5:5/1/e00917-19. [PMID: 31915232 PMCID: PMC6952206 DOI: 10.1128/msphere.00917-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sadri Znaidi works in the field of molecular mycology with a focus on functional genomics in Candida albicans. In this mSphere of Influence article, he reflects on how the paper “An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis” by Chen et al. (C. Chen, K. Pande, S. D. French, B. B. Tuch, and S. M. Sadri Znaidi works in the field of molecular mycology with a focus on functional genomics in Candida albicans. In this mSphere of Influence article, he reflects on how the paper “An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis” by Chen et al. (C. Chen, K. Pande, S. D. French, B. B. Tuch, and S. M. Noble, Cell Host Microbe 10:118–135, 2011, https://doi.org/10.1016/j.chom.2011.07.005) made an impact on his research on how transcriptional regulatory networks function to control C. albicans’ ability to efficiently interact with the host environment.
Collapse
|
6
|
An Intragenic Recombination Event Generates a Snf4-Independent Form of the Essential Protein Kinase Snf1 in Candida albicans. mSphere 2019; 4:4/3/e00352-19. [PMID: 31217306 PMCID: PMC6584375 DOI: 10.1128/msphere.00352-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase. The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1Δ311 − 316 was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1Δ311 − 316 still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4. IMPORTANCE Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase.
Collapse
|
7
|
Abstract
The telomere regulator and transcription factor Rap1 is the only telomere protein conserved in yeasts and mammals. Its functional repertoire in budding yeasts is a particularly interesting field for investigation, given the high evolutionary diversity of this group of unicellular organisms. In the methylotrophic thermotolerant species Hansenula polymorpha DL-1 the RAP1 gene is duplicated (HpRAP1A and HpRAP1B). Here, we report the functional characterization of the two paralogues from H. polymorpha DL-1. We uncover distinct (but overlapping) DNA binding preferences of HpRap1A and HpRap1B proteins. We show that only HpRap1B is able to recognize telomeric DNA directly and to protect it from excessive recombination, whereas HpRap1A is associated with subtelomere regions. Furthermore, we identify specific binding sites for both HpRap1A and HpRap1B within promoters of a large number of ribosomal protein genes (RPGs), implicating Rap1 in the control of the RP regulon in H. polymorpha. Our bioinformatic analysis suggests that RAP1 was duplicated early in the evolution of the “methylotrophs” clade, and the two genes evolved independently. Therefore, our characterization of Rap1 paralogues in H. polymorpha may be relevant to other “methylotrophs”, yielding valuable insights into the evolution of budding yeasts.
Collapse
|
8
|
Evolutionary Transition of GAL Regulatory Circuit from Generalist to Specialist Function in Ascomycetes. Trends Microbiol 2019; 26:692-702. [PMID: 29395731 DOI: 10.1016/j.tim.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022]
Abstract
The Gal4 transcription factor (TF) controls gene expression by binding the DNA sequence motif CGG(N11)CCG. Well studied versions regulate metabolism of glucose in Candida albicans and galactose in Saccharomyces cerevisiae. Gal4 is also found within Aspergillus species and shows a wide range of potential binding targets. Members of the CTG clade that reassigned CUG codons from leucine to serine lack the Gal80 binding domain of Gal4, and they use the TF to regulate only glycolytic genes. In this clade, the galactose catabolic pathway (also known as the Leloir pathway) genes are regulated by Rtg1/Rtg3. In the WGD species, the complete Gal4/Gal80 module is limited to regulation of the Leloir pathway, while glycolysis is controlled by Gcr1/Gcr2. This shows a switch of Gal4 from a generalist to a specialist within the ascomycetes, and the split of glucose and galactose metabolism into distinct regulatory circuits.
Collapse
|
9
|
Mtibaà R, Olicón-Hernández DR, Pozo C, Nasri M, Mechichi T, González J, Aranda E. Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:87-96. [PMID: 29533211 DOI: 10.1016/j.ecoenv.2018.02.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
Four different laccase-producing strains were isolated from arid soils and used for bisphenol A (BPA) degradation. These strains were identified as Chaetomium strumarium G5I, Thielavia arenaria CH9, Thielavia arenaria HJ22 and Thielavia arenaria SM1(III) by internal transcribed spacer 5.8 S rDNA analysis. Residual BPA was evaluated by HPLC analysis during 48 h of incubation. A complete removal of BPA was observed by the whole cell fungal cultures within different times, depending on each strain. C. strumarium G5I was the most efficient degrader, showing 100% of removal within 8 h of incubation. The degradation of BPA was accompanied by the production of laccase and dye decolorizing peroxidase (DyP) under degradation conditions. The presence of aminobenzotriazole (ABT) as an inhibitor of cytochrome P450s monooxygenases (CYP) demonstrated a slight decrease in BPA removal rate, suggesting the effective contribution of CYP in the conversion. The great involvement of laccase in BPA transformation together with cell-associated enzymes, such as CYP, was supported by the identification of hydroxylated metabolites by ultra-high performance liquid chromatography-mass spectroscopy (UHPLC-MS). The metabolic pathway of BPA transformation was proposed based on the detected metabolites. The acute toxicity of BPA and its products was investigated and showed a significant reduction, except for T. arenaria SM1(III) that did not caused reduction of toxicity (IC50 < 8%), possibly due to the presence of toxic metabolites. The results of the present study point out the potential application of the isolated ascomycetes in pollutant removal processes, especially C. strumarium G5I as an efficient degrader of BPA.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia.
| | | | - Clementina Pozo
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Jesus González
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Elisabet Aranda
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| |
Collapse
|
10
|
Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrob Agents Chemother 2018; 62:AAC.02365-17. [PMID: 29203491 PMCID: PMC5786791 DOI: 10.1128/aac.02365-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
There is currently a small number of classes of antifungal drugs, and these drugs are known to target a very limited set of cellular functions. We derived a set of approximately 900 nonessential, transactivator-defective disruption strains from the tetracycline-regulated GRACE collection of strains of the fungal pathogen Candida albicans This strain set was screened against classic antifungal drugs to identify gene inactivations that conferred either enhanced sensitivity or increased resistance to the compounds. We examined two azoles, fluconazole and posaconazole; two echinocandins, caspofungin and anidulafungin; and a polyene, amphotericin B. Overall, the chemogenomic profiles within drug classes were highly similar, but there was little overlap between classes, suggesting that the different drug classes interacted with discrete networks of genes in C. albicans We also tested two pyridine amides, designated GPI-LY7 and GPI-C107; these drugs gave very similar profiles that were distinct from those of the echinocandins, azoles, or polyenes, supporting the idea that they target a distinct cellular function. Intriguingly, in cases where these gene sets can be compared to genetic disruptions conferring drug sensitivity in other fungi, we find very little correspondence in genes. Thus, even though the drug targets are the same in the different species, the specific genetic profiles that can lead to drug sensitivity are distinct. This implies that chemogenomic screens of one organism may be poorly predictive of the profiles found in other organisms and that drug sensitivity and resistance profiles can differ significantly among organisms even when the apparent target of the drug is the same.
Collapse
|
11
|
Put3 Positively Regulates Proline Utilization in Candida albicans. mSphere 2017; 2:mSphere00354-17. [PMID: 29242833 PMCID: PMC5729217 DOI: 10.1128/msphere.00354-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022] Open
Abstract
Candida albicans poses a significant threat to the lives of immunocompromised people. Historically, knowledge has been drawn from studies on Saccharomyces cerevisiae to understand the pathogen, and many Candida albicans genes are named after their S. cerevisiae orthologs. Direct studies on the pathogen have, however, revealed differences in the roles of some orthologous proteins in the two yeasts. We show that the Put3 transcription factor allows the pathogen to completely degrade proline to usable nitrogen and carbon by evading regulatory restrictions imposed on its S. cerevisiae ortholog, which mandates conditional use of proline only as a nitrogen source in the baker’s yeast. The ability of Candida albicans to freely obtain nutrients from multiple sources may help it thrive as a commensal and opportunistic pathogen. The zinc cluster transcription factor Put3 was initially characterized in Saccharomyces cerevisiae as the transcriptional activator of PUT1 and PUT2, two genes acting early in the proline assimilation pathway. We have used phenotypic studies, transcription profiling, and chromatin immunoprecipitation with microarray technology (ChIP-chip) to establish that unlike S. cerevisiae, which only uses proline as a nitrogen source, Candida albicans can use proline as a nitrogen source, a carbon source, or a source of both nitrogen and carbon. However, a C. albicans put3 null mutant cannot grow on proline, suggesting that as in S. cerevisiae, C. albicans Put3 (CaPut3) is required for proline catabolism, and because the C. albicans put3 null mutant grew efficiently on glutamate as the sole carbon or nitrogen source, it appears that CaPut3 also regulates the early genes of the pathway. CaPut3 showed direct binding to the CaPUT1 promoter, and both PUT1 and PUT2 were upregulated in response to proline addition in a Put3-dependent manner, as well as in a C. albicans strain expressing a hyperactive Put3. CaPut3 directs proline degradation even in the presence of a good nitrogen source such as ammonia, which contrasts with S. cerevisiae Put3 (ScPut3)-regulated proline catabolism, which only occurs in the absence of a rich nitrogen source. Thus, while overall proline regulatory circuitry differs between S. cerevisiae and C. albicans, the specific role of Put3 appears fundamentally conserved. IMPORTANCECandida albicans poses a significant threat to the lives of immunocompromised people. Historically, knowledge has been drawn from studies on Saccharomyces cerevisiae to understand the pathogen, and many Candida albicans genes are named after their S. cerevisiae orthologs. Direct studies on the pathogen have, however, revealed differences in the roles of some orthologous proteins in the two yeasts. We show that the Put3 transcription factor allows the pathogen to completely degrade proline to usable nitrogen and carbon by evading regulatory restrictions imposed on its S. cerevisiae ortholog, which mandates conditional use of proline only as a nitrogen source in the baker’s yeast. The ability of Candida albicans to freely obtain nutrients from multiple sources may help it thrive as a commensal and opportunistic pathogen.
Collapse
|
12
|
The Genomic Landscape of the Fungus-Specific SWI/SNF Complex Subunit, Snf6, in Candida albicans. mSphere 2017; 2:mSphere00497-17. [PMID: 29152582 PMCID: PMC5687922 DOI: 10.1128/msphere.00497-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
SWI/SNF is an ATP-dependent chromatin-remodeling complex that is required for the regulation of gene expression in eukaryotes. While most of the fungal SWI/SNF components are evolutionarily conserved with those of the metazoan SWI/SNF, subunits such as Snf6 are specific to certain fungi and thus represent potential antifungal targets. We have characterized the role of the Snf6 protein in Candida albicans. Our data showed that although there was low conservation of its protein sequence with other fungal orthologs, Snf6 was copurified with bona fide SWI/SNF complex subunits. The role of Snf6 in C. albicans was investigated by determining its genome-wide occupancy using chromatin immunoprecipitation coupled to tiling arrays in addition to transcriptional profiling of the snf6 conditional mutant. Snf6 directs targets that were enriched in functions related to carbohydrate and amino acid metabolic circuits, to cellular transport, and to heat stress responses. Under hypha-promoting conditions, Snf6 expanded its set of targets to include promoters of genes related to respiration, ribosome biogenesis, mating, and vesicle transport. In accordance with the genomic occupancy data, an snf6 doxycycline-repressible mutant exhibited growth defects in response to heat stress and also when grown in the presence of different fermentable and nonfermentable carbon sources. Snf6 was also required to differentiate invasive hyphae in response to different cues. This study represents the first comprehensive characterization, at the genomic level, of the role of SWI/SNF in the pathogenic yeast C. albicans and uncovers functions that are essential for fungal morphogenesis and metabolic flexibility. IMPORTANCECandida albicans is a natural component of the human microbiota but also an opportunistic pathogen that causes life-threatening infections in immunosuppressed patients. Current therapeutics include a limited number of molecules that suffer from limitations, including growing clinical resistance and toxicity. New molecules are being clinically investigated; however, the majority of these potential antifungals target the same processes as do the standard antifungals and might confront the same problems of toxicity and loss of efficiency due to the common resistance mechanisms. Here, we characterized the role of Snf6, a fungus-specific subunit of the chromatin-remodeling complex SWI/SNF. Our genomic and phenotypic data demonstrated a central role of Snf6 in biological processes that are critical for a fungal pathogen to colonize its host and cause disease, suggesting Snf6 as a possible antifungal target.
Collapse
|
13
|
The rewiring of transcription circuits in evolution. Curr Opin Genet Dev 2017; 47:121-127. [PMID: 29120735 DOI: 10.1016/j.gde.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
The binding of transcription regulators to cis-regulatory sequences is a key step through which all cells regulate expression of their genes. Due to gains and losses of cis-regulatory sequences and changes in the transcription regulators themselves, the binding connections between regulators and their target genes rapidly change over evolutionary time and constitute a major source of biological novelty. This review covers recent work, carried out in a wide range of species, that addresses the overall extent of these evolutionary changes, their consequences, and some of the molecular mechanisms that lie behind them.
Collapse
|
14
|
Abstract
Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.
Collapse
|
15
|
Tebung WA, Choudhury BI, Tebbji F, Morschhäuser J, Whiteway M. Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae. Curr Biol 2016; 26:1677-1687. [PMID: 27321996 DOI: 10.1016/j.cub.2016.04.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/03/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
Metabolic pathways are largely conserved in eukaryotes, but the transcriptional regulation of these pathways can sometimes vary between species; this has been termed "rewiring." Recently, it has been established that in the Saccharomyces lineage starting from Naumovozyma castellii, genes involved in allantoin breakdown have been genomically relocated to form the DAL cluster. The formation of the DAL cluster occurred along with the loss of urate permease (UAP) and urate oxidase (UOX), reducing the requirement for oxygen and bypassing the candidate Ppr1 inducer, uric acid. In Saccharomyces cerevisiae, this allantoin catabolism cluster is regulated by the transcription factor Dal82, which is not present in many of the pre-rearrangement fungal species. We have used ChIP-chip analysis, transcriptional profiling of an activated Ppr1 protein, bioinformatics, and nitrogen utilization studies to establish that in Candida albicans the zinc cluster transcription factor Ppr1 controls this allantoin catabolism regulon. Intriguingly, in S. cerevisiae, the Ppr1 ortholog binds the same DNA motif (CGG(N6)CCG) as in C. albicans but serves as a regulator of pyrimidine biosynthesis. This transcription factor rewiring appears to have taken place at the same phylogenetic step as the formation of the rearranged DAL cluster. This transfer of the control of allantoin degradation from Ppr1 to Dal82, together with the repositioning of Ppr1 to the regulation of pyrimidine biosynthesis, may have resulted from a switch to a metabolism that could exploit hypoxic conditions in the lineage leading to N. castellii and S. cerevisiae.
Collapse
Affiliation(s)
- Walters Aji Tebung
- Chemistry and Biochemistry Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Baharul I Choudhury
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - Malcolm Whiteway
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
16
|
Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 2016; 38:1-8. [DOI: 10.1016/j.copbio.2015.12.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
|
17
|
Chávez S, García-Martínez J, Delgado-Ramos L, Pérez-Ortín JE. The importance of controlling mRNA turnover during cell proliferation. Curr Genet 2016; 62:701-710. [PMID: 27007479 DOI: 10.1007/s00294-016-0594-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
Microbial gene expression depends not only on specific regulatory mechanisms, but also on cellular growth because important global parameters, such as abundance of mRNAs and ribosomes, could be growth rate dependent. Understanding these global effects is necessary to quantitatively judge gene regulation. In the last few years, transcriptomic works in budding yeast have shown that a large fraction of its genes is coordinately regulated with growth rate. As mRNA levels depend simultaneously on synthesis and degradation rates, those studies were unable to discriminate the respective roles of both arms of the equilibrium process. We recently analyzed 80 different genomic experiments and found a positive and parallel correlation between both RNA polymerase II transcription and mRNA degradation with growth rates. Thus, the total mRNA concentration remains roughly constant. Some gene groups, however, regulate their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulate their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lower mRNA levels by reducing mRNA stability or the transcription rate, respectively. We critically review here these results and analyze them in relation to their possible extrapolation to other organisms and in relation to the new questions they open.
Collapse
Affiliation(s)
- Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Burjassot, Spain.,ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Lidia Delgado-Ramos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain. .,ERI Biotecmed, Universitat de València, Burjassot, Spain.
| |
Collapse
|
18
|
Reconfiguration of Transcriptional Control of Lysine Biosynthesis in Candida albicans Involves a Central Role for the Gcn4 Transcriptional Activator. mSphere 2016; 1:mSphere00016-15. [PMID: 27303701 PMCID: PMC4863609 DOI: 10.1128/msphere.00016-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/26/2015] [Indexed: 11/23/2022] Open
Abstract
Microbes evolve rapidly so as to reconfigure their gene expression to adapt to the metabolic demands in diverse environmental niches. Here, we explored how conditions of nutrient deprivation regulate lysine biosynthesis in the human fungal pathogen Candida albicans. We show that although both Saccharomyces cerevisiae and C. albicans respond to lysine deprivation by transcriptional upregulation of lysine biosynthesis, the regulatory factors required for this control have been reconfigured in these species. We found that Gcn4 is an essential and direct transcriptional regulator of the expression of lysine biosynthetic genes under lysine starvation conditions in C. albicans. Our results therefore suggest that the regulation of the lysine biosynthetic pathway in Candida clade genomes involves gain of function by the master transcriptional regulator Gcn4, coincident with the neofunctionalization of the S. cerevisiae pathway-specific regulator Lys14. Evolution of transcriptional control is essential for organisms to cope with diversification into a spectrum of environments, including environments with limited nutrients. Lysine biosynthesis in fungi occurs in eight enzymatic steps. In Saccharomyces cerevisiae, amino acid starvation elicits the induction of LYS gene expression, mediated by the master regulator Gcn4 and the pathway-specific transcriptional regulator Lys14. Here, we have shown that the activation of LYS gene expression in the human fungal pathogen Candida albicans is predominantly controlled by Gcn4 under amino acid starvation conditions. Multiple lines of study showed that the four C. albicans LYS14-like genes have no role in the regulation of lysine biosynthesis. Whereas Gcn4 is dispensable for the growth of S. cerevisiae under lysine deprivation conditions, it is an essential regulator required for the growth of C. albicans under these conditions, as gcn4 deletion caused lysine auxotrophy. Gcn4 is required for the induction of increased LYS2 and LYS9 mRNA but not for the induction of increased LYS4 mRNA. Under lysine or isoleucine-valine deprivation conditions, Gcn4 recruitment to LYS2 and LYS9 promoters was induced in C. albicans. Indeed, in contrast to the S. cerevisiae LYS gene promoters, all LYS gene promoters in C. albicans harbored a Gcn4 binding site but not all harbored the S. cerevisiae Lys14 binding site, indicating the evolutionary divergence of cis-regulatory motifs. Thus, the transcriptional rewiring of the lysine biosynthetic pathway in C. albicans involves not only neofunctionalization of the four LYS14-like genes but the attendant strengthening of control by Gcn4, indicating a coordinated response with a much broader scope for control of amino acid biosynthesis in this human pathogen. IMPORTANCE Microbes evolve rapidly so as to reconfigure their gene expression to adapt to the metabolic demands in diverse environmental niches. Here, we explored how conditions of nutrient deprivation regulate lysine biosynthesis in the human fungal pathogen Candida albicans. We show that although both Saccharomyces cerevisiae and C. albicans respond to lysine deprivation by transcriptional upregulation of lysine biosynthesis, the regulatory factors required for this control have been reconfigured in these species. We found that Gcn4 is an essential and direct transcriptional regulator of the expression of lysine biosynthetic genes under lysine starvation conditions in C. albicans. Our results therefore suggest that the regulation of the lysine biosynthetic pathway in Candida clade genomes involves gain of function by the master transcriptional regulator Gcn4, coincident with the neofunctionalization of the S. cerevisiae pathway-specific regulator Lys14.
Collapse
|