1
|
Meng Y, Nerlov C. Epigenetic regulation of hematopoietic stem cell fate. Trends Cell Biol 2025; 35:217-229. [PMID: 39271425 DOI: 10.1016/j.tcb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Hematopoietic stem cells (HSCs) sustain blood cell production throughout the mammalian life span. However, it has become clear that at the single cell level a subset of HSCs is stably biased in their lineage output, and that such heterogeneity may play a key role in physiological processes including aging and adaptive immunity. Analysis of chromatin accessibility, DNA methylation, and histone modifications has revealed that HSCs with different lineage bias exhibit distinct epigenetic traits inscribed at poised, lineage-specific enhancers. This allows for lineage priming without initiating lineage-specific gene expression in HSCs, controlling lineage bias while preserving self-renewal and multipotency. Here, we review our current understanding of epigenetic regulation in the establishment and maintenance of HSC fate decisions under different physiological conditions.
Collapse
Affiliation(s)
- Yiran Meng
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK.
| |
Collapse
|
2
|
Branch MC, Weber M, Li MY, Flora P, Ezhkova E. Overview of chromatin regulatory processes during surface ectodermal development and homeostasis. Dev Biol 2024; 515:30-45. [PMID: 38971398 PMCID: PMC11317222 DOI: 10.1016/j.ydbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.
Collapse
Affiliation(s)
- Meagan C Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Rodrigues FS, Karoutas A, Ruhland S, Rabas N, Rizou T, Di Blasio S, Ferreira RMM, Bridgeman VL, Goldstone R, Sopena ML, Lee JH, Ombrato L, Malanchi I. Bidirectional activation of stem-like programs between metastatic cancer and alveolar type 2 cells within the niche. Dev Cell 2024; 59:2398-2413.e8. [PMID: 38866011 DOI: 10.1016/j.devcel.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
A key step for metastatic outgrowth involves the generation of a deeply altered microenvironment (niche) that supports the malignant behavior of cancer cells. The complexity of the metastatic niche has posed a significant challenge in elucidating the underlying programs driving its origin. Here, by focusing on early stages of breast cancer metastasis to the lung in mice, we describe a cancer-dependent chromatin remodeling and activation of developmental programs in alveolar type 2 (AT2) cells within the niche. We show that metastatic cells can prime AT2 cells into a reprogrammed multilineage state. In turn, this cancer-induced reprogramming of AT2 cells promoted stem-like features in cancer cells and enhanced their initiation capacity. In conclusion, we propose the concept of "reflected stemness" as an early phenomenon during metastatic niche initiation, wherein metastatic cells reprogram the local tissue into a stem-like state that enhances intrinsic cancer-initiating potential, creating a positive feedback loop where tumorigenic programs are amplified.
Collapse
Affiliation(s)
- Felipe S Rodrigues
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Adam Karoutas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefanie Ruhland
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Nicolas Rabas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Tatiana Rizou
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Di Blasio
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Rute M M Ferreira
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | | | - Robert Goldstone
- Bioinformatics & Biostatistics Unit, The Francis Crick Institute, London, UK
| | - Miriam L Sopena
- Bioinformatics & Biostatistics Unit, The Francis Crick Institute, London, UK
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Luigi Ombrato
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Rezazadeh S, Ellison-Hughes GM. Editorial: Stem cell exhaustion in aging. FRONTIERS IN AGING 2024; 5:1433702. [PMID: 38881824 PMCID: PMC11177088 DOI: 10.3389/fragi.2024.1433702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Sarallah Rezazadeh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Georgina May Ellison-Hughes
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, England, United Kingdom
| |
Collapse
|
5
|
Gallus R, Rizzo D, Rossi G, Mureddu L, Galli J, Artuso A, Bussu F. p16 Expression in Laryngeal Squamous Cell Carcinoma: A Surrogate or Independent Prognostic Marker? Pathogens 2024; 13:100. [PMID: 38392838 PMCID: PMC10892421 DOI: 10.3390/pathogens13020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignancy that, despite scientific advancements, has not seen an improvement in its prognosis in the last decades. Few promising predictive markers have been found and none are relevant in clinical practice. p16ink4a, an oncosuppressor protein involved in cell cycle arrest, with a prognostic impact on other cancers, has been widely used in the head and neck region as a surrogate marker of HPV infection. Published papers and recent meta-analyses seem to minimize the biological role of HPV in the context of LSCC's cancerogenesis, and to disprove the reliability of p16ink4a as a surrogate prognostic marker in this context, while still highlighting its potential role as an independent predictor of survival. Unfortunately, the available literature, in particular during the last two decades, is often not focused on its potential role as an independent biomarker and few relevant data are found in papers mainly focused on HPV. The available data suggest that future research should focus specifically on p16ink4a, taking into account both its potential inactivation and overexpression, different patterns of staining, and immunohistochemistry cutoffs, and should focus not on its potential role as a surrogate marker but on its independent role as a predictor of survival.
Collapse
Affiliation(s)
- Roberto Gallus
- Otolaryngology, Mater Olbia Hospital, 07026 Olbia, Italy; (R.G.); (A.A.)
| | - Davide Rizzo
- U.O.C. Otorinolaringoiatria, Azienda Ospedaliero Universitaria di Sassari, Viale San Pietro, 43, 07100 Sassari, Italy; (D.R.); (F.B.)
- Otolaryngology Division, Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro, 43, 07100 Sassari, Italy
| | - Giorgia Rossi
- Unit of Otorhinolaryngology and Head-Neck Surgery, “A. Gemelli” Hospital Foundation IRCCS, 00168 Rome, Italy; (G.R.); (J.G.)
| | - Luca Mureddu
- U.O.C. Otorinolaringoiatria, Azienda Ospedaliero Universitaria di Sassari, Viale San Pietro, 43, 07100 Sassari, Italy; (D.R.); (F.B.)
| | - Jacopo Galli
- Unit of Otorhinolaryngology and Head-Neck Surgery, “A. Gemelli” Hospital Foundation IRCCS, 00168 Rome, Italy; (G.R.); (J.G.)
- Department of Head-Neck and Sensory Organs, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Alberto Artuso
- Otolaryngology, Mater Olbia Hospital, 07026 Olbia, Italy; (R.G.); (A.A.)
| | - Francesco Bussu
- U.O.C. Otorinolaringoiatria, Azienda Ospedaliero Universitaria di Sassari, Viale San Pietro, 43, 07100 Sassari, Italy; (D.R.); (F.B.)
- Otolaryngology Division, Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro, 43, 07100 Sassari, Italy
| |
Collapse
|
6
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. Cells 2023; 12:2805. [PMID: 38132125 PMCID: PMC10741483 DOI: 10.3390/cells12242805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (p-value < 1E-5) and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA Pol-II, including TATA-box, transcription initiator motif, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns were enriched with the Homeobox family of transcription factors and exhibited TA-rich motif sequences, suggesting potential motif-specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521 enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers, 3390 (12%) exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565657. [PMID: 37961291 PMCID: PMC10635152 DOI: 10.1101/2023.11.04.565657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed an unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (P-value < 1e-5 and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA polII, including TATA, transcription initiator, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns, were enriched with the Homeobox family of transcription factors, and exhibited TA-rich motif sequences, suggesting potential motif specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers,12% exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may potentially dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
8
|
Wiggans M, Zhu SJ, Molinaro AM, Pearson BJ. The BAF chromatin remodeling complex licenses planarian stem cells access to ectodermal and mesodermal cell fates. BMC Biol 2023; 21:227. [PMID: 37864247 PMCID: PMC10589948 DOI: 10.1186/s12915-023-01730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The flatworm planarian, Schmidtea mediterranea, has a large population of adult stem cells (ASCs) that replace any cell type during tissue turnover or regeneration. How planarian ASCs (called neoblasts) manage self-renewal with the ability to produce daughter cells of different cell lineages (multipotency) is not well understood. Chromatin remodeling complexes ultimately control access to DNA regions of chromosomes and together with specific transcription factors determine whether a gene is transcribed in a given cell type. Previous work in planarians determined that RNAi of core components of the BAF chromatin remodeling complex, brg1 and smarcc2, caused increased ASCs and failed regeneration, but how these cellular defects arise at the level of gene regulation in neoblasts is unknown. RESULTS Here, we perform ATAC and RNA sequencing on purified neoblasts, deficient for the BAF complex subunits brg-1 and smarcc2. The data demonstrate that the BAF complex promotes chromatin accessibility and facilitates transcription at target loci, as in other systems. Interestingly, we find that the BAF complex enables access to genes known to be required for the generation of mesoderm- and ectoderm-derived lineages, including muscle, parenchymal cathepsin, neural, and epithelial lineages. BAF complex knockdowns result in disrupted differentiation into these cell lineages and functional consequences on planarian regeneration and tissue turnover. Notably, we did not detect a role for the BAF complex in neoblasts making endodermal lineages. CONCLUSIONS Our study provides functional insights into how the BAF complex contributes to cell fate decisions in planarian ASCs in vivo.
Collapse
Affiliation(s)
- Mallory Wiggans
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Shu Jun Zhu
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alyssa M Molinaro
- Present address: Oregon Health & Science University, Portland, OR, 97239, USA
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Present address: Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Chen GD, Fatima I, Xu Q, Rozhkova E, Fessing MY, Mardaryev AN, Sharov AA, Xu GL, Botchkarev VA. DNA dioxygenases Tet2/3 regulate gene promoter accessibility and chromatin topology in lineage-specific loci to control epithelial differentiation. SCIENCE ADVANCES 2023; 9:eabo7605. [PMID: 36630508 PMCID: PMC9833667 DOI: 10.1126/sciadv.abo7605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/05/2022] [Indexed: 05/03/2023]
Abstract
Execution of lineage-specific differentiation programs requires tight coordination between many regulators including Ten-eleven translocation (TET) family enzymes, catalyzing 5-methylcytosine oxidation in DNA. Here, by using Keratin 14-Cre-driven ablation of Tet genes in skin epithelial cells, we demonstrate that ablation of Tet2/Tet3 results in marked alterations of hair shape and length followed by hair loss. We show that, through DNA demethylation, Tet2/Tet3 control chromatin accessibility and Dlx3 binding and promoter activity of the Krt25 and Krt28 genes regulating hair shape, as well as regulate interactions between the Krt28 gene promoter and distal enhancer. Moreover, Tet2/Tet3 also control three-dimensional chromatin topology in Keratin type I/II gene loci via DNA methylation-independent mechanisms. These data demonstrate the essential roles for Tet2/3 in establishment of lineage-specific gene expression program and control of Dlx3/Krt25/Krt28 axis in hair follicle epithelial cells and implicate modulation of DNA methylation as a novel approach for hair growth control.
Collapse
Affiliation(s)
- Guo-Dong Chen
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Iqra Fatima
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Qin Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Elena Rozhkova
- Department of Dermatology, Boston University, Boston, MA, USA
| | - Michael Y. Fessing
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Andrei N. Mardaryev
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | | | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, China
| | | |
Collapse
|
10
|
Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel) 2022; 12:1332. [PMID: 36143369 PMCID: PMC9501954 DOI: 10.3390/life12091332] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological feature that is characterized by gradual degeneration of function in cells, tissues, organs, or an intact organism due to the accumulation of environmental factors and stresses with time. Several factors have been attributed to aging such as oxidative stress and augmented production or exposure to reactive oxygen species, inflammatory cytokines production, telomere shortening, DNA damage, and, importantly, the deposit of senescent cells. These are irreversibly mitotically inactive, yet metabolically active cells. The reason underlying their senescence lies within the extrinsic and the intrinsic arms. The extrinsic arm is mainly characterized by the expression and the secretory profile known as the senescence-associated secretory phenotype (SASP). The intrinsic arm results from the impact of several genes meant to regulate the cell cycle, such as tumor suppressor genes. P16INK4A is a tumor suppressor and cell cycle regulator that has been linked to aging and senescence. Extensive research has revealed that p16 expression is significantly increased in senescent cells, as well as during natural aging or age-related pathologies. Based on this fact, p16 is considered as a specific biomarker for detecting senescent cells and aging. Other studies have found that p16 is not only a senescence marker, but also a protein with many functions outside of senescence and aging. In this paper, we discuss and shed light on several studies that show the different functions of p16 and provide insights in its role in several biological processes besides senescence and aging.
Collapse
Affiliation(s)
| | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | | |
Collapse
|
11
|
Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Nat Commun 2022; 13:1293. [PMID: 35277509 PMCID: PMC8917218 DOI: 10.1038/s41467-022-28966-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
The insights into how genome topology couples with epigenetic states to govern the function and identity of the corneal epithelium are poorly understood. Here, we generate a high-resolution Hi-C interaction map of human limbal stem/progenitor cells (LSCs) and show that chromatin multi-hierarchical organisation is coupled to gene expression. By integrating Hi-C, epigenome and transcriptome data, we characterize the comprehensive 3D epigenomic landscapes of LSCs. We find that super-silencers mediate gene repression associated with corneal development, differentiation and disease via chromatin looping and/or proximity. Super-enhancer (SE) interaction analysis identified a set of SE interactive hubs that contribute to LSC-specific gene activation. These active and inactive element-anchored loop networks occur within the cohesin-occupied CTCF-CTCF loops. We further reveal a coordinated regulatory network of core transcription factors based on SE-promoter interactions. Our results provide detailed insights into the genome organization principle for epigenetic regulation of gene expression in stratified epithelia. Genome topology provides a structural basis for epigenome-mediated transcriptional regulation in eukaryotes. Here the authors characterized the 3D genome of stratified squamous epithelia. They generated a Hi-C map of human limbal stem/progenitor cells (LSCs) and integrated these data with epigenomics, transcription factor binding maps, and transcriptome data.
Collapse
|
12
|
Botchkarev VA, Sharov AA. Histone Deacetylases in the Control of Epidermal Homeostasis: From Chromatin Biology toward Therapy. J Invest Dermatol 2021; 142:12-14. [PMID: 34565558 DOI: 10.1016/j.jid.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
Histone deacetylases (HDACs) induce gene repression and modify the activity of nonhistone proteins. In a new article in the Journal of Investigative Dermatology, Zhu et al. (2021) demonstrate essential roles for HDAC1/2 in maintaining keratinocyte proliferation and survival in adult epidermis and basal cell carcinoma, thus providing a rationale for using HDAC inhibitors for the treatment of hyperproliferative and neoplastic skin disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
14
|
Tauc HM, Rodriguez-Fernandez IA, Hackney JA, Pawlak M, Ronnen Oron T, Korzelius J, Moussa HF, Chaudhuri S, Modrusan Z, Edgar BA, Jasper H. Age-related changes in polycomb gene regulation disrupt lineage fidelity in intestinal stem cells. eLife 2021; 10:62250. [PMID: 33724181 PMCID: PMC7984841 DOI: 10.7554/elife.62250] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Tissue homeostasis requires long-term lineage fidelity of somatic stem cells. Whether and how age-related changes in somatic stem cells impact the faithful execution of lineage decisions remains largely unknown. Here, we address this question using genome-wide chromatin accessibility and transcriptome analysis as well as single-cell RNA-seq to explore stem-cell-intrinsic changes in the aging Drosophila intestine. These studies indicate that in stem cells of old flies, promoters of Polycomb (Pc) target genes become differentially accessible, resulting in the increased expression of enteroendocrine (EE) cell specification genes. Consistently, we find age-related changes in the composition of the EE progenitor cell population in aging intestines, as well as a significant increase in the proportion of EE-specified intestinal stem cells (ISCs) and progenitors in aging flies. We further confirm that Pc-mediated chromatin regulation is a critical determinant of EE cell specification in the Drosophila intestine. Pc is required to maintain expression of stem cell genes while ensuring repression of differentiation and specification genes. Our results identify Pc group proteins as central regulators of lineage identity in the intestinal epithelium and highlight the impact of age-related decline in chromatin regulation on tissue homeostasis.
Collapse
Affiliation(s)
- Helen M Tauc
- Immunology Discovery, Genentech, South San Francisco, United States
| | | | - Jason A Hackney
- OMNI Bioinformatics, Genentech, South San Francisco, United States
| | - Michal Pawlak
- Institute of Hematology and Blood Transfusion, Warsaw, Poland
| | | | - Jerome Korzelius
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Hagar F Moussa
- Department of Biomedical Engineering and Biological Design Center,Boston University, Boston, United States
| | - Subhra Chaudhuri
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, United States
| | - Zora Modrusan
- Immunology Discovery, Genentech, South San Francisco, United States.,Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, United States
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Heinrich Jasper
- Immunology Discovery, Genentech, South San Francisco, United States
| |
Collapse
|
15
|
Stelman CR, Smith BM, Chandra B, Roberts-Galbraith RH. CBP/p300 homologs CBP2 and CBP3 play distinct roles in planarian stem cell function. Dev Biol 2021; 473:130-143. [PMID: 33607113 DOI: 10.1016/j.ydbio.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Chromatin modifications function as critical regulators of gene expression and cellular identity, especially in the regulation and maintenance of the pluripotent state. However, many studies of chromatin modification in stem cells-and pluripotent stem cells in particular-are performed in mammalian stem cell culture, an in vitro condition mimicking a very transient state during mammalian development. Thus, new models for studying pluripotent stem cells in vivo could be helpful for understanding the roles of chromatin modification, for confirming prior in vitro studies, and for exploring evolution of the pluripotent state. The freshwater flatworm, Schmidtea mediterranea, is an excellent model for studying adult pluripotent stem cells, particularly in the context of robust, whole-body regeneration. To identify chromatin modifying and remodeling enzymes critical for planarian regeneration and stem cell maintenance, we took a candidate approach and screened planarian homologs of 25 genes known to regulate chromatin biology in other organisms. Through our study, we identified six genes with novel functions in planarian homeostasis, regeneration, and behavior. Of the list of genes characterized, we identified five planarian homologs of the mammalian CREB-Binding Protein (CBP) and p300 family of histone acetyltransferases, representing an expansion of this family in planarians. We find that two planarian CBP family members are required for planarian survival, with knockdown of Smed-CBP2 and Smed-CBP3 causing distinct defects in stem cell maintenance or function. Loss of CBP2 causes a quick, dramatic loss of stem cells, while knockdown of CBP3 affects stem cells more narrowly, influencing differentiation of several cell types that include neuronal subtypes and cells of the eye. Further, we find that Smed-CBP1 is required for planarian fissioning behavior. We propose that the division of labor among a diversified CBP family in planarians presents an opportunity to dissect specific functions of a broadly important histone acetyltransferase family.
Collapse
Affiliation(s)
- Clara R Stelman
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Britessia M Smith
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rachel H Roberts-Galbraith
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
16
|
Wiggans M, Pearson BJ. One stem cell program to rule them all? FEBS J 2020; 288:3394-3406. [PMID: 33063917 DOI: 10.1111/febs.15598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Many species of animals have stem cells that they maintain throughout their lives, which suggests that stem cells are an ancestral feature of all animals. From this, we take the viewpoint that cells with the biological properties of 'stemness'-self-renewal and multipotency-may share ancestral genetic circuitry. However, in practice is it very difficult to identify and compare stemness gene signatures across diverse animals and large evolutionary distances? First, it is critical to experimentally demonstrate self-renewal and potency. Second, genomic methods must be used to determine specific gene expression in stem cell types compared with non-stem cell types to determine stem cell gene enrichment. Third, gene homology must be mapped between diverse animals across large evolutionary distances. Finally, conserved genes that fulfill these criteria must be tested for role in stem cell function. It is our viewpoint that by comparing stem cell-specific gene signatures across evolution, ancestral programs of stemness can be uncovered, and ultimately, the dysregulation of stemness programs drives the state of cancer stem cells.
Collapse
Affiliation(s)
- Mallory Wiggans
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Bret J Pearson
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
17
|
Rodrigues CP, Shvedunova M, Akhtar A. Epigenetic Regulators as the Gatekeepers of Hematopoiesis. Trends Genet 2020; 37:S0168-9525(20)30251-1. [PMID: 34756331 DOI: 10.1016/j.tig.2020.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
18
|
Metabolic Coordination of Cell Fate by α-Ketoglutarate-Dependent Dioxygenases. Trends Cell Biol 2020; 31:24-36. [PMID: 33092942 DOI: 10.1016/j.tcb.2020.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Cell fate determination requires faithful execution of gene expression programs, which are increasingly recognized to respond to metabolic inputs. In particular, the family of α-ketoglutarate (αKG)-dependent dioxygenases, which include several chromatin-modifying enzymes, are emerging as key mediators of metabolic control of cell fate. αKG-dependent dioxygenases consume the metabolite αKG (also known as 2-oxoglutarate) as an obligate cosubstrate and are inhibited by succinate, fumarate, and 2-hydroxyglutarate. Here, we review the role of these metabolites in the control of dioxygenase activity and cell fate programs. We discuss the biochemical and transcriptional mechanisms enabling these metabolites to control cell fate and review evidence that nutrient availability shapes tissue-specific fate programs via αKG-dependent dioxygenases.
Collapse
|
19
|
Deblois G, Tonekaboni SAM, Grillo G, Martinez C, Kao YI, Tai F, Ettayebi I, Fortier AM, Savage P, Fedor AN, Liu X, Guilhamon P, Lima-Fernandes E, Murison A, Kuasne H, Ba-alawi W, Cescon DW, Arrowsmith CH, De Carvalho DD, Haibe-Kains B, Locasale JW, Park M, Lupien M. Epigenetic Switch–Induced Viral Mimicry Evasion in Chemotherapy-Resistant Breast Cancer. Cancer Discov 2020; 10:1312-1329. [DOI: 10.1158/2159-8290.cd-19-1493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
|
20
|
Kang X, Zhao Y, Van Arsdell G, Nelson SF, Touma M. Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory genes to promote cardiac and skeletal muscle development in mouse and human. RNA (NEW YORK, N.Y.) 2020; 26:481-491. [PMID: 31953255 PMCID: PMC7075267 DOI: 10.1261/rna.073692.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators and play important roles in cardiac development and congenital heart disease. In a previous study, we identified a novel lncRNA, Ppp1r1b, with expression highly correlated with myogenesis. However, the molecular mechanism that underlies Ppp1r1b-lncRNA function in myogenic regulation is unknown. By silencing Ppp1r1b-lncRNA, mouse C2C12 and human skeletal myoblasts failed to develop fully differentiated myotubes. Myogenic differentiation was also impaired in PPP1R1B-lncRNA deficient human-induced pluripotent stem cell-derived cardiomyocytes (hiPSCs-CMs). The expression of myogenic transcription factors, including MyoD, Myogenin, and Tbx5, as well as sarcomere proteins, was significantly suppressed in Ppp1r1b-lncRNA inhibited myoblast cells and neonatal mouse heart. Histone modification analysis revealed increased H3K27 tri-methylation at MyoD1 and Myogenin promoters in GapmeR treated C2C12 cells. Furthermore, Ppp1r1b-lncRNA was found to bind to Ezh2, and chromatin isolation by RNA purification (ChIRP) assay revealed enriched interaction of Ppp1r1b-lncRNA with Myod1 and Tbx5 promoters, suggesting that Ppp1r1b-lncRNA induces transcription of myogenic transcription factors by interacting with the polycomb repressive complex 2 (PRC2) at the chromatin interface. Correspondingly, the silencing of Ppp1r1b-lncRNA increased EZH2 binding at promoter regions of myogenic transcription factors. Therefore, our results suggest that Ppp1r1b-lncRNA promotes myogenic differentiation through competing for PRC2 binding with chromatin of myogenic master regulators during heart and skeletal muscle development.
Collapse
Affiliation(s)
- Xuedong Kang
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yan Zhao
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Glen Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Stanley F Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- The Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Children's Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Stem Cell Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
21
|
Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, Botta-Orfila T, Tartaglia GG, Mauriello A, Zhang X, Calin GA, Melino G, Candi E. Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep 2020. [PMID: 32017402 DOI: 10.5252/embr.201846734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
The mechanisms that regulate the switch between epidermal progenitor state and differentiation are not fully understood. Recent findings indicate that the chromatin remodelling BAF complex (Brg1-associated factor complex or SWI/SNF complex) and the transcription factor p63 mutually recruit one another to open chromatin during epidermal differentiation. Here, we identify a long non-coding transcript that includes an ultraconserved element, uc.291, which physically interacts with ACTL6A and modulates chromatin remodelling to allow differentiation. Loss of uc.291 expression, both in primary keratinocytes and in three-dimensional skin equivalents, inhibits differentiation as indicated by epidermal differentiation complex genes down-regulation. ChIP experiments reveal that upon uc.291 depletion, ACTL6A is bound to the differentiation gene promoters and inhibits BAF complex targeting to induce terminal differentiation genes. In the presence of uc.291, the ACTL6A inhibitory effect is released, allowing chromatin changes to promote the expression of differentiation genes. Thus, uc.291 interacts with ACTL6A to modulate chromatin remodelling activity, allowing the transcription of late differentiation genes.
Collapse
Affiliation(s)
- Emanuele Panatta
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alberto Marini
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- IDI-IRCCS, Rome, Italy
| |
Collapse
|
22
|
Khaminets A, Ronnen-Oron T, Baldauf M, Meier E, Jasper H. Cohesin controls intestinal stem cell identity by maintaining association of Escargot with target promoters. eLife 2020; 9:e48160. [PMID: 32022682 PMCID: PMC7002041 DOI: 10.7554/elife.48160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain regenerative capacity of the intestinal epithelium. Their function and activity are regulated by transcriptional changes, yet how such changes are coordinated at the genomic level remains unclear. The Cohesin complex regulates transcription globally by generating topologically-associated DNA domains (TADs) that link promotor regions with distant enhancers. We show here that the Cohesin complex prevents premature differentiation of Drosophila ISCs into enterocytes (ECs). Depletion of the Cohesin subunit Rad21 and the loading factor Nipped-B triggers an ISC to EC differentiation program that is independent of Notch signaling, but can be rescued by over-expression of the ISC-specific escargot (esg) transcription factor. Using damID and transcriptomic analysis, we find that Cohesin regulates Esg binding to promoters of differentiation genes, including a group of Notch target genes involved in ISC differentiation. We propose that Cohesin ensures efficient Esg-dependent gene repression to maintain stemness and intestinal homeostasis.
Collapse
Affiliation(s)
| | | | - Maik Baldauf
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Elke Meier
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Heinrich Jasper
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Buck Institute for Research on AgingNovatoUnited States
- Immunology DiscoveryGenentech, IncSouth San FranciscoUnited States
| |
Collapse
|
23
|
Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, Botta-Orfila T, Tartaglia GG, Mauriello A, Zhang X, Calin GA, Melino G, Candi E. Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep 2020; 21:e46734. [PMID: 32017402 PMCID: PMC7054673 DOI: 10.15252/embr.201846734] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022] Open
Abstract
The mechanisms that regulate the switch between epidermal progenitor state and differentiation are not fully understood. Recent findings indicate that the chromatin remodelling BAF complex (Brg1‐associated factor complex or SWI/SNF complex) and the transcription factor p63 mutually recruit one another to open chromatin during epidermal differentiation. Here, we identify a long non‐coding transcript that includes an ultraconserved element, uc.291, which physically interacts with ACTL6A and modulates chromatin remodelling to allow differentiation. Loss of uc.291 expression, both in primary keratinocytes and in three‐dimensional skin equivalents, inhibits differentiation as indicated by epidermal differentiation complex genes down‐regulation. ChIP experiments reveal that upon uc.291 depletion, ACTL6A is bound to the differentiation gene promoters and inhibits BAF complex targeting to induce terminal differentiation genes. In the presence of uc.291, the ACTL6A inhibitory effect is released, allowing chromatin changes to promote the expression of differentiation genes. Thus, uc.291 interacts with ACTL6A to modulate chromatin remodelling activity, allowing the transcription of late differentiation genes.
Collapse
Affiliation(s)
- Emanuele Panatta
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alberto Marini
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Rome, Italy
| |
Collapse
|
24
|
Jara-Espejo M, Line SR. DNA G-quadruplex stability, position and chromatin accessibility are associated with CpG island methylation. FEBS J 2019; 287:483-495. [PMID: 31532882 DOI: 10.1111/febs.15065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023]
Abstract
CpG islands (CGI) are genomic regions associated with gene promoters and involved in gene expression regulation. Despite their high CpG content and unlike bulk genomic DNA methylation pattern, these regions are usually hypomethylated. So far, the mechanisms controlling the CGI methylation patterning remain unclear. G-quadruplex (G4) structures can inhibit DNA methyltransferases 1 enzymatic activity, leading to CGI hypomethylation. Our aim was to analyse the association of G4 forming sequences (G4FS) and CGI methylation as well as to determine the intrinsic and extrinsic characteristics of G4FS that may modulate this phenomenon. Using methylation data from human embryonic stem cells (hESCs) and three hESC-derived populations, we showed that hypomethylated CpGs located inside CGI (CGI/CpG) tend to be associated with highly stable G4FS (Minimum free energy ≤ -30 kcal·mol-1 ). The association of highly stable G4FS and hypomethylation tend to be stronger when these structures are located at shorter distances (~ < 150 bp) from GCI/CpGs, when G4FS and CpGs are located within open chromatin and G4FS are inside CGI. Moreover, this association is not strongly influenced by the CpG content of CGI. Conversely, highly methylated CGI/CpG tend to be associated with low stability G4FS. Although CpGs inside CGIs without a G4FS tend to be more methylated, high stability G4FS within CGI neighbourhood were associated with decreased methylation. In summary, our data indicate that G4FS may act as protective cis elements against CGI methylation, and this effect seems to be influenced by the G4FS folding potential, its presence within CGI, CpG distance from G4FS and chromatin accessibility.
Collapse
Affiliation(s)
- Manuel Jara-Espejo
- Department of Morphology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Sérgio Roberto Line
- Department of Morphology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| |
Collapse
|
25
|
Arfaoui A, Rioualen C, Azzoni V, Pinna G, Finetti P, Wicinski J, Josselin E, Macario M, Castellano R, Léonard-Stumpf C, Bal A, Gros A, Lossy S, Kharrat M, Collette Y, Bertucci F, Birnbaum D, Douik H, Bidaut G, Charafe-Jauffret E, Ginestier C. A genome-wide RNAi screen reveals essential therapeutic targets of breast cancer stem cells. EMBO Mol Med 2019; 11:e9930. [PMID: 31476112 PMCID: PMC6783652 DOI: 10.15252/emmm.201809930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 07/13/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023] Open
Abstract
Therapeutic resistance is a major clinical challenge in oncology. Evidence identifies cancer stem cells (CSCs) as a driver of tumor evolution. Accordingly, the key stemness property unique to CSCs may represent a reservoir of therapeutic target to improve cancer treatment. Here, we carried out a genome‐wide RNA interference screen to identify genes that regulate breast CSCs‐fate (bCSC). Using an interactome/regulome analysis, we integrated screen results in a functional mapping of the CSC‐related processes. This network analysis uncovered potential therapeutic targets controlling bCSC‐fate. We tested a panel of 15 compounds targeting these regulators. We showed that mifepristone, salinomycin, and JQ1 represent the best anti‐bCSC activity. A combination assay revealed a synergistic interaction of salinomycin/JQ1 association to deplete the bCSC population. Treatment of primary breast cancer xenografts with this combination reduced the tumor‐initiating cell population and limited metastatic development. The clinical relevance of our findings was reinforced by an association between the expression of the bCSC‐related networks and patient prognosis. Targeting bCSCs with salinomycin/JQ1 combination provides the basis for a new therapeutic approach in the treatment of breast cancer.
Collapse
Affiliation(s)
- Abir Arfaoui
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France.,Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, Université de Tunis El Manar, Tunis, Tunisia.,Service de Biologie Clinique, Institut Salah Azaiz, Tunis, Tunisia
| | - Claire Rioualen
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Plateform Integrative Bioinformatics, Cibi, Aix-Marseille Univ, Marseille, France
| | - Violette Azzoni
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Guillaume Pinna
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Finetti
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Aix-Marseille Univ, Marseille, France
| | - Julien Wicinski
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Emmanuelle Josselin
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, TrGET Plateform, Aix-Marseille Univ, Marseille, France
| | - Manon Macario
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Rémy Castellano
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, TrGET Plateform, Aix-Marseille Univ, Marseille, France
| | - Candi Léonard-Stumpf
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Anthony Bal
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Abigaelle Gros
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Sylvain Lossy
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maher Kharrat
- Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, Université de Tunis El Manar, Tunis, Tunisia
| | - Yves Collette
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, TrGET Plateform, Aix-Marseille Univ, Marseille, France
| | - Francois Bertucci
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Aix-Marseille Univ, Marseille, France
| | - Daniel Birnbaum
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Aix-Marseille Univ, Marseille, France
| | - Hayet Douik
- Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, Université de Tunis El Manar, Tunis, Tunisia.,Service de Biologie Clinique, Institut Salah Azaiz, Tunis, Tunisia
| | - Ghislain Bidaut
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Plateform Integrative Bioinformatics, Cibi, Aix-Marseille Univ, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| | - Christophe Ginestier
- Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
26
|
Mylonas C, Tessarz P. NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution. RNA Biol 2019; 16:1156-1165. [PMID: 31156037 PMCID: PMC6693550 DOI: 10.1080/15476286.2019.1621625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The advent of quantitative approaches that enable interrogation of transcription at single nucleotide resolution has allowed a novel understanding of transcriptional regulation previously undefined. However, little is known, at such high resolution, how transcription factors directly influence RNA Pol II pausing and directionality. To map the impact of transcription/elongation factors on transcription dynamics genome-wide at base pair resolution, we developed an adapted NET-seq protocol called NET-prism (Native Elongating Transcription by Polymerase-Regulated Immunoprecipitants in the Mammalian genome). Application of NET-prism on elongation factors (Spt6, Ssrp1), splicing factors (Sf1), and components of the pre-initiation complex (PIC) (TFIID, and Mediator) reveals their inherent command on transcription dynamics, with regards to directionality and pausing over promoters, splice sites, and enhancers/super-enhancers. NET-prism will be broadly applicable as it exposes transcription factor/Pol II dependent topographic specificity and thus, a new degree of regulatory complexity during gene expression.
Collapse
Affiliation(s)
- Constantine Mylonas
- a Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing , Cologne , Germany
| | - Peter Tessarz
- a Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing , Cologne , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases (CECAD), University of Cologne , Cologne , Germany
| |
Collapse
|
27
|
Mokalled MH, Poss KD. A Regeneration Toolkit. Dev Cell 2019; 47:267-280. [PMID: 30399333 DOI: 10.1016/j.devcel.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
The ability of animals to replace injured body parts has been a subject of fascination for centuries. The emerging importance of regenerative medicine has reinvigorated investigations of innate tissue regeneration, and the development of powerful genetic tools has fueled discoveries into how tissue regeneration occurs. Here, we present an overview of the armamentarium employed to probe regeneration in vertebrates, highlighting areas where further methodology advancement will deepen mechanistic findings.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Turner A, Tyrrell A, Trefzer M, Lones M. Evolutionary acquisition of complex traits in artificial epigenetic networks. Biosystems 2018; 176:17-26. [PMID: 30557598 DOI: 10.1016/j.biosystems.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/29/2022]
Abstract
How complex traits arise within organisms over evolutionary time is an important question that has relevance both to the understanding of biological systems and to the design of bio-inspired computing systems. This paper investigates the process of acquiring complex traits within epiNet, a recurrent connectionist architecture capable of adapting its topology during execution. Inspired by the biological processes of gene regulation and epigenetics, epiNet captures biological organisms' ability to alter their regulatory topologies according to environmental stimulus. By applying epiNet to a series of computational tasks, each requiring a range of complex behaviours to solve, and capturing the evolutionary process in detail, we can show not only how the physical structure of epiNet changed when acquiring complex traits, but also how these changes in physical structure affected its dynamic behaviour. This is facilitated by using a lightweight optimisation method which makes minor iterative changes to the network structure so that when complex traits emerge for the first time, a direct lineage can be observed detailing exactly how they evolved. From this we can build an understanding of how complex traits evolve and which regulatory environments best allow for the emergence of these complex traits, pointing us towards computational models that allow more swift and robust acquisition of complex traits when optimised in an evolutionary computing setting.
Collapse
Affiliation(s)
| | - Andy Tyrrell
- Department of Electronic Engineering, University of York, UK
| | - Martin Trefzer
- Department of Electronic Engineering, University of York, UK
| | - Michael Lones
- School of Mathematical and Computer Sciences, Heriot-Watt University, UK
| |
Collapse
|
29
|
Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells 2018; 7:cells7120268. [PMID: 30545089 PMCID: PMC6315602 DOI: 10.3390/cells7120268] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Skin undergoes continuous renewal throughout an individual’s lifetime relying on stem cell functionality. However, a decline of the skin regenerative potential occurs with age. The accumulation of senescent cells over time probably reduces tissue regeneration and contributes to skin aging. Keratinocytes and dermal fibroblasts undergo senescence in response to several intrinsic or extrinsic stresses, including telomere shortening, overproduction of reactive oxygen species, diet, and sunlight exposure. Epigenetic mechanisms directly regulate skin homeostasis and regeneration, but they also mark cell senescence and the natural and pathological aging processes. Progeroid syndromes represent a group of clinical and genetically heterogeneous pathologies characterized by the accelerated aging of various tissues and organs, including skin. Skin cells from progeroid patients display molecular hallmarks that mimic those associated with naturally occurring aging. Thus, investigations on progeroid syndromes strongly contribute to disclose the causal mechanisms that underlie the aging process. In the present review, we discuss the role of epigenetic pathways in skin cell regulation during physiologic and premature aging.
Collapse
|
30
|
Yadav T, Quivy JP, Almouzni G. Chromatin plasticity: A versatile landscape that underlies cell fate and identity. Science 2018; 361:1332-1336. [PMID: 30262494 DOI: 10.1126/science.aat8950] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During development and throughout life, a variety of specialized cells must be generated to ensure the proper function of each tissue and organ. Chromatin plays a key role in determining cellular state, whether totipotent, pluripotent, multipotent, or differentiated. We highlight chromatin dynamics involved in the generation of pluripotent stem cells as well as their influence on cell fate decision and reprogramming. We focus on the capacity of histone variants, chaperones, modifications, and heterochromatin factors to influence cell identity and its plasticity. Recent technological advances have provided tools to elucidate the underlying chromatin dynamics for a better understanding of normal development and pathological conditions, with avenues for potential therapeutic application.
Collapse
Affiliation(s)
- Tejas Yadav
- Institut Curie, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
31
|
Singarapu N, Ma K, Reeh KAG, Shen J, Lancaster JN, Yi S, Xie H, Orkin SH, Manley NR, Ehrlich LIR, Jiang N, Richie ER. Polycomb Repressive Complex 2 is essential for development and maintenance of a functional TEC compartment. Sci Rep 2018; 8:14335. [PMID: 30254371 PMCID: PMC6156232 DOI: 10.1038/s41598-018-32729-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Thymic epithelial cells (TEC) are essential for thymocyte differentiation and repertoire selection. Despite their indispensable role in generating functional T cells, the molecular mechanisms that orchestrate TEC development from endodermal progenitors in the third pharyngeal pouch (3rd PP) are not fully understood. We recently reported that the T-box transcription factor TBX1 negatively regulates TEC development. Although initially expressed throughout the 3rd PP, Tbx1 becomes downregulated in thymus-fated progenitors and when ectopically expressed impairs TEC progenitor proliferation and differentiation. Here we show that ectopic Tbx1 expression in thymus fated endoderm increases expression of Polycomb repressive complex 2 (PRC2) target genes in TEC. PRC2 is an epigenetic modifier that represses gene expression by catalyzing trimethylation of lysine 27 on histone H3. The increased expression of PRC2 target genes suggests that ectopic Tbx1 interferes with PRC2 activity and implicates PRC2 as an important regulator of TEC development. To test this hypothesis, we used Foxn1Cre to delete Eed, a PRC2 component required for complex stability and function in thymus fated 3rd PP endoderm. Proliferation and differentiation of fetal and newborn TEC were disrupted in the conditional knockout (EedCKO) mutants leading to severely dysplastic adult thymi. Consistent with PRC2-mediated transcriptional silencing, the majority of differentially expressed genes (DEG) were upregulated in EedCKO TEC. Moreover, a high frequency of EedCKO DEG overlapped with DEG in TEC that ectopically expressed Tbx1. These findings demonstrate that PRC2 plays a critical role in TEC development and suggest that Tbx1 expression must be downregulated in thymus fated 3rd PP endoderm to ensure optimal PRC2 function.
Collapse
Affiliation(s)
- Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, 78957, USA
| | - Keyue Ma
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kaitlin A G Reeh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, 78957, USA
| | - Jessica N Lancaster
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Song Yi
- Department of Oncology, Dell Medical School and Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Huafeng Xie
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA, 30602, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, 78957, USA.
| |
Collapse
|
32
|
Chai P, Jia R, Jia R, Pan H, Wang S, Ni H, Wang H, Zhou C, Shi Y, Ge S, Zhang H, Fan X. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis. Nucleic Acids Res 2018; 46:6041-6056. [PMID: 29741668 PMCID: PMC6158754 DOI: 10.1093/nar/gky366] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Aberrant chromatin transformation dysregulates gene expression and may be an important driver of tumorigenesis. However, the functional role of chromosomal dynamics in tumorigenesis remains to be elucidated. Here, using in vitro and in vivo experiments, we reveal a novel long noncoding (lncing) driver at chr12p13.3, in which a novel lncRNA GALNT8 Antisense Upstream 1 (GAU1) is initially activated by an open chromatin status, triggering recruitment of the transcription elongation factor TCEA1 at the oncogene GALNT8 promoter and cis-activates the expression of GALNT8. Analysis of The Cancer Genome Atlas (TCGA) clinical database revealed that the GAU1/GALNT8 driver serves as an important indicative biomarker, and targeted silencing of GAU1 via the HKP-encapsulated method exhibited therapeutic efficacy in orthotopic xenografts. Our study presents a novel oncogenetic mechanism in which aberrant tuning of the chromatin state at specific chromosomal loci exposes factor-binding sites, leading to recruitment of trans-factor and activation of oncogenetic driver, thereby provide a novel alternative concept of chromatin dynamics in tumorigenesis.
Collapse
MESH Headings
- Adult
- Animals
- Biomarkers, Tumor
- Carcinogenesis/genetics
- Cell Line
- Cells, Cultured
- Chromatin/metabolism
- Chromosomes, Human, Pair 12
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Nude
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
- Promoter Regions, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Retinal Neoplasms/genetics
- Retinal Neoplasms/metabolism
- Retinal Neoplasms/pathology
- Retinoblastoma/genetics
- Retinoblastoma/metabolism
- Retinoblastoma/pathology
- Transcriptional Elongation Factors/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Hui Pan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Hongyan Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Huixue Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingyun Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
33
|
Gao B, Lin X, Jing H, Fan J, Ji C, Jie Q, Zheng C, Wang D, Xu X, Hu Y, Lu W, Luo Z, Yang L. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell 2018; 17:e12741. [PMID: 29488314 PMCID: PMC5946084 DOI: 10.1111/acel.12741] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2018] [Indexed: 01/01/2023] Open
Abstract
Aging drives the accumulation of senescent cells (SnCs) including stem/progenitor cells in bone marrow, which contributes to aging‐related bone degenerative pathologies. Local elimination of SnCs has been shown as potential treatment for degenerative diseases. As LepR+ mesenchymal stem/progenitor cells (MSPCs) in bone marrow are the major population for forming bone/cartilage and maintaining HSCs niche, whether local elimination of senescent LepR+MSPCs delays aging‐related pathologies and improves local microenvironment need to be well defined. In this study, we performed local delivery of tetramethylpyrazine (TMP) in bone marrow of aging mice, which previously showed to be used for the prevention and treatment of glucocorticoid‐induced osteoporosis (GIOP). We found the increased accumulation of senescent LepR+MSPCs in bone marrow of aging mice, and TMP significantly inhibited the cell senescent phenotype via modulating Ezh2‐H3k27me3. Most importantly, local delivery of TMP improved bone marrow microenvironment and maintained bone homeostasis in aging mice by increasing metabolic and anti‐inflammatory responses, inducing H‐type vessel formation, and maintaining HSCs niche. These findings provide evidence on the mechanisms, characteristics and functions of local elimination of SnCs in bone marrow, as well as the use of TMP as a potential treatment to ameliorate human age‐related skeletal diseases and to promote healthy lifespan.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Xisheng Lin
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Huan Jing
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering, School of Stomatology; Fourth Military Medical University; Xi'an China
| | - Jing Fan
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Chenchen Ji
- Department of Neurosurgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Qiang Jie
- Department of Orthopedic Surgery; Hong-Hui Hospital; Xi'an Jiaotong University; College of Medicine; Xi'an China
| | - Chao Zheng
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Di Wang
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Yaqian Hu
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Weiguang Lu
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Liu Yang
- Institute of Orthopedic Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| |
Collapse
|
34
|
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018; 19:311-325. [PMID: 29479084 PMCID: PMC6301069 DOI: 10.1038/nrg.2018.9] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
35
|
|
36
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
37
|
Li C, Chai Y, Wang L, Gao B, Chen H, Gao P, Zhou FQ, Luo X, Crane JL, Yu B, Cao X, Wan M. Programmed cell senescence in skeleton during late puberty. Nat Commun 2017; 8:1312. [PMID: 29101351 PMCID: PMC5670205 DOI: 10.1038/s41467-017-01509-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/22/2017] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSPCs) undergo rapid self-renewal and differentiation, contributing to fast skeletal growth during childhood and puberty. It remains unclear whether these cells change their properties during late puberty to young adulthood, when bone growth and accrual decelerate. Here we show that MSPCs in primary spongiosa of long bone in mice at late puberty undergo normal programmed senescence, characterized by loss of nestin expression. MSPC senescence is epigenetically controlled by the polycomb histone methyltransferase enhancer of zeste homolog 2 (Ezh2) and its trimethylation of histone H3 on Lysine 27 (H3K27me3) mark. Ezh2 maintains the repression of key cell senescence inducer genes through H3K27me3, and deletion of Ezh2 in early pubertal mice results in premature cellular senescence, depleted MSPCs pool, and impaired osteogenesis as well as osteoporosis in later life. Our data reveals a programmed cell fate change in postnatal skeleton and unravels a regulatory mechanism underlying this phenomenon. Mesenchymal stem cells are essential for bone development, but it is unclear if their activity is maintained after late puberty, when bone growth decelerates. The authors show that during late puberty in mice, these cells undergo senescence under the epigenetic control of Ezh2.
Collapse
Affiliation(s)
- Changjun Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu Chai
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bo Gao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hao Chen
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Janet L Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Nizovtseva EV, Todolli S, Olson WK, Studitsky VM. Towards quantitative analysis of gene regulation by enhancers. Epigenomics 2017; 9:1219-1231. [PMID: 28799793 DOI: 10.2217/epi-2017-0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Enhancers are regulatory DNA sequences that can activate transcription over large distances. Recent studies have revealed the widespread role of distant activation in eukaryotic gene regulation and in the development of various human diseases, including cancer. Here we review recent progress in the field, focusing on new experimental and computational approaches that quantify the role of chromatin structure and dynamics during enhancer-promoter interactions in vitro and in vivo.
Collapse
Affiliation(s)
- Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Stefjord Todolli
- Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Biology Faculty, Moscow State University, Moscow 119991, Russia.,Laboratory of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Botchkarev VA. Second International Symposium-Epigenetic Regulation of Skin Regeneration and Aging: From Chromatin Biology towards the Understanding of Epigenetic Basis of Skin Diseases. J Invest Dermatol 2017; 137:1604-1608. [PMID: 28583676 DOI: 10.1016/j.jid.2017.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
40
|
Botchkarev VA, Mardaryev AN. Repressing the Keratinocyte Genome: How the Polycomb Complex Subunits Operate in Concert to Control Skin and Hair Follicle Development. J Invest Dermatol 2017; 136:1538-1540. [PMID: 27450498 DOI: 10.1016/j.jid.2016.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/27/2016] [Indexed: 01/10/2023]
Abstract
The Polycomb group proteins are transcriptional repressors that are critically important in the control of stem cell activity and maintenance of the identity of differentiated cells. Polycomb proteins interact with each other to form chromatin-associated repressive complexes (Polycomb repressive complexes 1 and 2) leading to chromatin compaction and gene silencing. However, the roles of the distinct components of the Polycomb repressive complex 2 in the control of skin development and keratinocyte differentiation remain obscure. Dauber et al. demonstrate the conditional ablations of three essential Polycomb repressive complex 2 subunits (EED, Suz12, or Ezh1/2) in the epidermal progenitors result in quite similar skin phenotypes including premature acquisition of a functional epidermal barrier, formation of ectopic Merkel cells, and defective postnatal hair follicle development. The reported data demonstrate that in skin epithelia, EED, Suz12, and Ezh1/2 function largely as subunits of the Polycomb repressive complex 2, which is important in the context of data demonstrating their independent activities in other cell types. The report provides an important platform for further analyses of the role of distinct Polycomb components in the control of gene expression programs in the disorders of epidermal differentiation, such as psoriasis and epidermal cancer.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, USA.
| | - Andrei N Mardaryev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
41
|
D'Arcangelo D, Tinaburri L, Dellambra E. The Role of p16 INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int J Mol Sci 2017; 18:ijms18071591. [PMID: 28737694 PMCID: PMC5536078 DOI: 10.3390/ijms18071591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition of the cell cycle. p16INK4a governs the processes of SC self-renewal in several tissues and its deregulation may result in aging or tumor development. Keratinocytes are equipped with several epigenetic enzymes and transcription factors that shape the gene expression signatures of different epidermal layers and allow dynamic and coordinated expression changes to finely balance keratinocyte self-renewal and differentiation. These factors converge their activity in the basal layer to repress p16INK4a expression, protecting cells from senescence, and preserving epidermal homeostasis and regeneration. Several stress stimuli may activate p16INK4a expression that orchestrates cell cycle exit and senescence response. In the present review, we discuss the role of p16INK4a regulators in human epidermal SC self-renewal, aging and cancer.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Lavinia Tinaburri
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
42
|
Abstract
Chromatin structure is intimately connected with gene expression and cell identity. Here we review recent advances in the field and discuss how establishment of cell identity during development is accompanied by large-scale remodeling of the epigenetic landscape and how this remodeling drives and supports lineage specification and maintenance. We discuss maternal control of the early embryonic epigenetic landscape, selective usage of enhancer clusters via 3D chromatin contacts leading to activation of transcription factor networks, and conserved regulation of developmental pathways by specific DNA demethylation of key regulatory regions. Together, these processes establish an epigenetic framework regulating different phases of embryonic development.
Collapse
Affiliation(s)
- Matteo Perino
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
43
|
Sengupta S, George RE. Super-Enhancer-Driven Transcriptional Dependencies in Cancer. Trends Cancer 2017; 3:269-281. [PMID: 28718439 DOI: 10.1016/j.trecan.2017.03.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
Abstract
Transcriptional deregulation is one of the core tenets of cancer biology and is underpinned by alterations in both protein-coding genes and noncoding regulatory elements. Large regulatory elements, so-called super-enhancers (SEs), are central to the maintenance of cancer cell identity and promote oncogenic transcription to which cancer cells become highly addicted. Such dependence on SE-driven transcription for proliferation and survival offers an Achilles heel for the therapeutic targeting of cancer cells. Indeed, inhibition of the cellular machinery required for the assembly and maintenance of SEs dampens oncogenic transcription and inhibits tumor growth. In this article, we review the organization, function, and regulation of oncogenic SEs and their contribution to the cancer cell state.
Collapse
Affiliation(s)
- Satyaki Sengupta
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rani E George
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Epigenetic Manipulation Facilitates the Generation of Skeletal Muscle Cells from Pluripotent Stem Cells. Stem Cells Int 2017; 2017:7215010. [PMID: 28491098 PMCID: PMC5401757 DOI: 10.1155/2017/7215010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have the capacity to differentiate into essentially all cell types in the body. Such differentiation can be directed to specific cell types by appropriate cell culture conditions or overexpressing lineage-defining transcription factors (TFs). Especially, for the activation of myogenic program, early studies have shown the effectiveness of enforced expression of TFs associated with myogenic differentiation, such as PAX7 and MYOD1. However, the efficiency of direct differentiation was rather low, most likely due to chromatin features unique to hPSCs, which hinder the access of TFs to genes involved in muscle differentiation. Indeed, recent studies have demonstrated that ectopic expression of epigenetic-modifying factors such as a histone demethylase and an ATP-dependent remodeling factor significantly enhances myogenic differentiation from hPSCs. In this article, we review the recent progress for in vitro generation of skeletal muscles from hPSCs through forced epigenetic and transcriptional manipulation.
Collapse
|
45
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
46
|
Ghebes CA, van Lente J, Post JN, Saris DBF, Fernandes H. High-Throughput Screening Assay Identifies Small Molecules Capable of Modulating the BMP-2 and TGF-β1 Signaling Pathway. SLAS DISCOVERY 2016; 22:40-50. [PMID: 27628690 DOI: 10.1177/1087057116669346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Modulating the bone morphogenetic protein 2 (BMP-2) and transforming growth factor-β1 (TGF-β1) signaling pathways is essential during tendon/ligament (T/L) healing. Unfortunately, growth factor delivery in situ is far from trivial and, in many cases, the necessary growth factors are not approved for clinical use. Here we used a BMP-2 and a TGF-β1 reporter cell line to screen a library of 1280 Food and Drug Administration-approved small molecules and identify modulators of both signaling pathways. We identified four compounds capable of modulating BMP and TGF signaling on primary human tendon-derived cells (huTCs) and describe their effects on proliferation and differentiation of these cells.
Collapse
Affiliation(s)
- Corina-Adriana Ghebes
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jéré van Lente
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Janine Nicole Post
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Daniel B F Saris
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,2 Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo Fernandes
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,3 Center for Neuroscience and Cell Biology (CNC), Stem Cells and Drug Screening Lab, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
47
|
Odorisio T. Epigenetic Control of Skin Re-Epithelialization: the NF-kB/JMJD3 Connection. J Invest Dermatol 2016; 136:738-740. [PMID: 27012558 DOI: 10.1016/j.jid.2016.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 01/13/2023]
Abstract
Major changes in gene expression must occur at wound site to establish the cellular responses required for rapid healing. Although epigenetic remodeling plays a role in gene modulation, the mechanisms responsible for epigenetic regulation during healing are largely unknown. The study from Na et al. sheds light on the role of histone demethylase Jumonji domain-containing protein D3 in promoting keratinocyte function after injury, and it links Jumonji domain-containing protein D3-dependent gene expression to NK-kB activity.
Collapse
Affiliation(s)
- Teresa Odorisio
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy.
| |
Collapse
|