1
|
Singh M, Raseley K, Perez A, MacKenzie D, Kosiyatrakul S, Desai S, Batista N, Guru N, Loomba K, Abid H, Wang Y, Udo-Bellner L, Stout R, Schildkraut C, Xiao M, Zhang D. Elucidation of the molecular mechanism of the breakage-fusion-bridge (BFB) cycle using a CRISPR-dCas9 cellular model. Nucleic Acids Res 2024; 52:11689-11703. [PMID: 39193906 PMCID: PMC11514482 DOI: 10.1093/nar/gkae747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanism for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrate that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we show that targeting dCas9 to telomeres using sgTelo impedes DNA replication at telomeres and induces a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigate the genome-wide features of telomeres in the dCas9/sgTelo cells and observe a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-. Consistently, we also observe an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncover many interesting molecular and structural features of the ITCB and demonstrate that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.
Collapse
Affiliation(s)
- Manrose Singh
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Kaitlin Raseley
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Alexis M Perez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Danny MacKenzie
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | | | - Sanket Desai
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Noelle Batista
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Navjot Guru
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Katherine K Loomba
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Heba Z Abid
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Yilin Wang
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Lars Udo-Bellner
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Randy F Stout
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ming Xiao
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
- Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Center for Cancer Research, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
2
|
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life (Basel) 2024; 14:922. [PMID: 39202666 PMCID: PMC11355349 DOI: 10.3390/life14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioanna A. Darioti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vasiliki Taxiarchoula Agiassoti
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
3
|
Deng E, Fan X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules 2024; 14:488. [PMID: 38672504 PMCID: PMC11048305 DOI: 10.3390/biom14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.
Collapse
Affiliation(s)
- Enze Deng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xiaoying Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| |
Collapse
|
4
|
Singh M, Raseley K, Perez AM, MacKenzie D, Kosiyatrakul ST, Desai S, Batista N, Guru N, Loomba KK, Abid HZ, Wang Y, Udo-Bellner L, Stout RF, Schildkraut CL, Xiao M, Zhang D. Elucidation of the molecular mechanism of the breakage-fusion-bridge (BFB) cycle using a CRISPR-dCas9 cellular model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587951. [PMID: 38617299 PMCID: PMC11014597 DOI: 10.1101/2024.04.03.587951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanisms for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrated that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we showed that targeting dCas9 to telomeres using sgTelo impeded DNA replication at telomeres and induced a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigated the genome-wide features of telomeres in the dCas9/sgTelo cells and observed a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-.Consistently, we also observed an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncovered many novel molecular and structural features of the ITCB and demonstrated that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.
Collapse
|
5
|
Lu X, Liu L. Genome stability from the perspective of telomere length. Trends Genet 2024; 40:175-186. [PMID: 37957036 DOI: 10.1016/j.tig.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Telomeres and their associated proteins protect the ends of chromosomes to maintain genome stability. Telomeres undergo progressive shortening with each cell division in mammalian somatic cells without telomerase, resulting in genome instability. When telomeres reach a critically short length or are recognized as a damage signal, cells enter a state of senescence, followed by cell cycle arrest, programmed cell death, or immortalization. This review provides an overview of recent advances in the intricate relationship between telomeres and genome instability. Alongside well-established mechanisms such as chromosomal fusion and telomere fusion, we will delve into the perspective on genome stability by examining the role of retrotransposons. Retrotransposons represent an emerging pathway to regulate genome stability through their interactions with telomeres.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China; Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, Tianjin 300071, China; Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China.
| |
Collapse
|
6
|
Abramczyk D, Del Carmen Sanchez Olmos M, Rojas AAR, Schindler D, Robertson D, McColm S, Marston AL, Barlow PN. A supernumerary synthetic chromosome in Komagataella phaffii as a repository for extraneous genetic material. Microb Cell Fact 2023; 22:259. [PMID: 38104077 PMCID: PMC10724962 DOI: 10.1186/s12934-023-02262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.
Collapse
Affiliation(s)
| | | | | | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Robertson
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, UK.
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Vízkeleti L, Spisák S. Rewired Metabolism Caused by the Oncogenic Deregulation of MYC as an Attractive Therapeutic Target in Cancers. Cells 2023; 12:1745. [PMID: 37443779 PMCID: PMC10341379 DOI: 10.3390/cells12131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
MYC is one of the most deregulated oncogenes on multiple levels in cancer. As a node transcription factor, MYC plays a diverse regulatory role in many cellular processes, including cell cycle and metabolism, both in physiological and pathological conditions. The relentless growth and proliferation of tumor cells lead to an insatiable demand for energy and nutrients, which requires the rewiring of cellular metabolism. As MYC can orchestrate all aspects of cellular metabolism, its altered regulation plays a central role in these processes, such as the Warburg effect, and is a well-established hallmark of cancer development. However, our current knowledge of MYC suggests that its spatial- and concentration-dependent contribution to tumorigenesis depends more on changes in the global or relative expression of target genes. As the direct targeting of MYC is proven to be challenging due to its relatively high toxicity, understanding its underlying regulatory mechanisms is essential for the development of tumor-selective targeted therapies. The aim of this review is to comprehensively summarize the diverse forms of MYC oncogenic deregulation, including DNA-, transcriptional- and post-translational level alterations, and their consequences for cellular metabolism. Furthermore, we also review the currently available and potentially attractive therapeutic options that exploit the vulnerability arising from the metabolic rearrangement of MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Sándor Spisák
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Dhillon VS, Deo P, Fenech M. The Relationship between Telomere Length and Nucleoplasmic Bridges and Severity of Disease in Prostate Cancer Patients. Cancers (Basel) 2023; 15:3351. [PMID: 37444460 DOI: 10.3390/cancers15133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Telomeres are repetitive nucleotide (TTAGGG) sequences that stabilize the chromosome ends and play an important role in the prevention of cancer initiation and progression. Nucleoplasmic bridges (NPBs) are formed when chromatids remain joined together during mitotic anaphase either due to mis-repair of DNA breaks or due to chromatid end fusion as a result of telomere loss or telomere dysfunction. We tested the hypotheses that (i) telomere length (TL) is shorter in prostate cancer (PC) patients relative to healthy age-matched individuals, (ii) TL differs in different stages of PC and (iii) shorter TL is significantly correlated with NPBs formation in PC cases. TL was measured in whole blood by well-established quantitative PCR method and the frequency of NPBs was measured in lymphocytes using cytokinesis-block micronucleus cytome (CBMNcyt) assay. Our results indicate that TL is shorter and NPBs are increased in PC patients relative to age-matched healthy controls. Furthermore, TL was significantly shorter (p = 0.03) in patients with a Gleason score more than 7 and there was also a significant trend of decreasing TL across all three stages (p trend = 0.01; Gleason score <7, 7 and >7). Furthermore, TL was significantly inversely correlated with NPB frequency in PC patients (r = -0.316; p = 0.001) but not in controls (r = 0.163; p = 0.06) and their relationships became stronger with higher Gleason scores. More studies are required that can confirm our observations and explore mechanistic differences in the role of telomeres in NPB formation in PC cases relative to non-cancer cases.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton 5048, Australia
| |
Collapse
|
9
|
Hill HJ, Bonser D, Golic KG. Dicentric chromosome breakage in Drosophila melanogaster is influenced by pericentric heterochromatin and occurs in nonconserved hotspots. Genetics 2023; 224:iyad052. [PMID: 37010100 PMCID: PMC10213500 DOI: 10.1093/genetics/iyad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/18/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Chromosome breakage plays an important role in the evolution of karyotypes and can produce deleterious effects within a single individual, such as aneuploidy or cancer. Forces that influence how and where chromosomes break are not fully understood. In humans, breakage tends to occur in conserved hotspots called common fragile sites (CFS), especially during replication stress. By following the fate of dicentric chromosomes in Drosophila melanogaster, we find that breakage under tension also tends to occur in specific hotspots. Our experimental approach was to induce sister chromatid exchange in a ring chromosome to generate a dicentric chromosome with a double chromatid bridge. In the following cell division, the dicentric bridges may break. We analyzed the breakage patterns of 3 different ring-X chromosomes. These chromosomes differ by the amount and quality of heterochromatin they carry as well as their genealogical history. For all 3 chromosomes, breakage occurs preferentially in several hotspots. Surprisingly, we found that the hotspot locations are not conserved between the 3 chromosomes: each displays a unique array of breakage hotspots. The lack of hotspot conservation, along with a lack of response to aphidicolin, suggests that these breakage sites are not entirely analogous to CFS and may reveal new mechanisms of chromosome fragility. Additionally, the frequency of dicentric breakage and the durability of each chromosome's spindle attachment vary significantly between the 3 chromosomes and are correlated with the origin of the centromere and the amount of pericentric heterochromatin. We suggest that different centromere strengths could account for this.
Collapse
Affiliation(s)
- Hunter J Hill
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Danielle Bonser
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Royba E, Repin M, Balajee AS, Shuryak I, Pampou S, Karan C, Wang YF, Lemus OD, Obaid R, Deoli N, Wuu CS, Brenner DJ, Garty G. Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures. Radiat Res 2023; 199:1-16. [PMID: 35994701 PMCID: PMC9947868 DOI: 10.1667/rade-22-00007.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Adayabalam S. Balajee
- Radiation Emergency Assistance Center/Training Site (REAC/TS), Cytogenetic Biodosimetry Laboratory (CBL), Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Olga Dona Lemus
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Razib Obaid
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
- Currently at Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, California
| | - Naresh Deoli
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| |
Collapse
|
11
|
Hill HJ, Golic KG. Chromosome Tug of War: Dicentric Chromosomes and the Centromere Strength Hypothesis. Cells 2022; 11:3550. [PMID: 36428979 PMCID: PMC9688759 DOI: 10.3390/cells11223550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
It has been 70 years since the concept of varied centromere strengths was introduced based on the behavior of dicentric chromosomes. One of the key conclusions from those early experiments was that some centromeres could pull with sufficient force to break a dicentric chromosome bridge, while others could not. In the ensuing decades there have been numerous studies to characterize strengths of the various components involved, such as the spindle, the kinetochore, and the chromosome itself. We review these various measurements to determine if the conclusions about centromere strength are supported by current evidence, with special attention to characterization of Drosophila melanogaster kinetochores upon which the original conclusions were based.
Collapse
Affiliation(s)
| | - Kent G. Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
13
|
M’Kacher R, Miguet M, Maillard PY, Colicchio B, Scheidecker S, Najar W, Arnoux M, Oudrhiri N, Borie C, Biehler M, Plesch A, Heidingsfelder L, Bennaceur-Griscelli A, Dieterlen A, Voisin P, Junker S, Carde P, Jeandidier E. A Central Role of Telomere Dysfunction in the Formation of a Unique Translocation within the Sub-Telomere Region Resulting in Duplication and Partial Trisomy. Genes (Basel) 2022; 13:genes13101762. [PMID: 36292646 PMCID: PMC9601474 DOI: 10.3390/genes13101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Telomeres play a major role in maintaining genome stability and integrity. Putative involvement of telomere dysfunction in the formation of various types of chromosomal aberrations is an area of active research. Here, we report a case of a six-month-old boy with a chromosomal gain encompassing the 11q22.3q25 region identified by SNP array analysis. The size of the duplication is 26.7 Mb and contains 170 genes (OMIM). The duplication results in partial trisomy of the region in question with clinical consequences, including bilateral renal dysplasia, delayed development, and a heart defect. Moreover, the karyotype determined by R-banding and chromosome painting as well as by hybridization with specific sub-telomere probes revealed the presence of an unbalanced t(9;11)(p24;q22.3) translocation with a unique breakpoint involving the sub-telomere region of the short arm of chromosome 9. The karyotypes of the parents were normal. Telomere integrity in circulating lymphocytes from the child and from his parents was assessed using an automated high-throughput method based on fluorescence in situ hybridization (FISH) with telomere- and centromere-specific PNA probes followed by M-FISH multicolor karyotyping. Very short telomeres, as well as an increased frequency of telomere loss and formation of telomere doublets, were detected in the child’s cells. Interestingly, similar telomere profiles were found in the circulating lymphocytes of the father. Moreover, an assessment of clonal telomere aberrations identified chromosomes 9 and 11 with particularly high frequencies of such aberrations. These findings strongly suggest that telomere dysfunction plays a central role in the formation of this specific unbalanced chromosome rearrangement via chromosome end-to-end fusion and breakage–fusion–bridge cycles.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| | - Marguerite Miguet
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
| | - Pierre-Yves Maillard
- Service de Génétique Hôpitaux Universitaires de Strasbourg, Hôpital de Haute Pierre, 1, Rue Molière, 67000 Strasbourg, France
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Sophie Scheidecker
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Wala Najar
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Micheline Arnoux
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Noufissa Oudrhiri
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Claire Borie
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Margaux Biehler
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim, Germany
| | | | - Annelise Bennaceur-Griscelli
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, Paris Saclay, 94805 Villejuif, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| |
Collapse
|