1
|
Bennett JE, Williamson PR. Antigen Titers in Cryptococcal Meningitis: What Determines How Fast They Fall? J Infect Dis 2024; 230:1291-1296. [PMID: 38986025 PMCID: PMC11566034 DOI: 10.1093/infdis/jiae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Follow-up of previously healthy patients surviving cryptococcal meningitis found that cryptococcal antigen could be detected for >1 year in serum from 38 of 44 (86%) patients and in cerebrospinal fluid (CSF) from 20 of 31 patients (67%), far beyond the time of culture conversion. The speed of titer decline, measured as the number of days for a 2-fold drop in titer to occur, was slower in serum than in CSF. The speed of decline of antigen titers was much slower in serum and CSF for patients infected with Cryptococcus gattii than Cryptococcus neoformans. The speed of decline in CSF and serum titers was also much slower in patients who had received a ventriculoperitoneal shunt for increased intracranial pressure. The variable and extraordinarily slow rate of clearance in our patients did not appear to reflect differences in disease control but rather differences in species and shunting for increased intracranial pressure.
Collapse
Affiliation(s)
- John E Bennett
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
2
|
Crawford C, Liporagi-Lopes L, Coelho C, Santos Junior SR, Moraes Nicola A, Wear MP, Vij R, Oscarson S, Casadevall A. Semisynthetic Glycoconjugate Vaccine Candidates against Cryptococcus neoformans. ACS Infect Dis 2024; 10:2089-2100. [PMID: 38819951 PMCID: PMC11184550 DOI: 10.1021/acsinfecdis.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, which poses a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semisynthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semisynthetic glycoconjugate vaccines contain an identical synthetic decasaccharide (M2 motif) antigen. This antigen is present in serotype A strains, which constitute 95% of the clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity toward M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced weakly opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). These findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. This antigen could serve as a component in a multivalent GXM motif vaccine.
Collapse
Affiliation(s)
- Conor
J. Crawford
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Livia Liporagi-Lopes
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Carolina Coelho
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Samuel R. Santos Junior
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - André Moraes Nicola
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Maggie P. Wear
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Raghav Vij
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Stefan Oscarson
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Arturo Casadevall
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| |
Collapse
|
3
|
McConnell SA, Casadevall A. Immunoglobulin constant regions provide stabilization to the paratope and enforce epitope specificity. J Biol Chem 2024; 300:107397. [PMID: 38763332 PMCID: PMC11215335 DOI: 10.1016/j.jbc.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Wang Z, Teixeira SCM, Strother C, Bowen A, Casadevall A, Cordero RJB. Neutron Scattering Analysis of Cryptococcus neoformans Polysaccharide Reveals Solution Rigidity and Repeating Fractal-like Structural Patterns. Biomacromolecules 2024; 25:690-699. [PMID: 38157431 PMCID: PMC10922810 DOI: 10.1021/acs.biomac.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cryptococcus neoformans is a fungal pathogen that can cause life-threatening brain infections in immunocompromised individuals. Unlike other fungal pathogens, it possesses a protective polysaccharide capsule that is crucial for its virulence. During infections, Cryptococcus cells release copious amounts of extracellular polysaccharides (exo-PS) that interfere with host immune responses. Both exo-PS and capsular-PS play pivotal roles in Cryptococcus infections and serve as essential targets for disease diagnosis and vaccine development strategies. However, understanding their structure is complicated by their polydispersity, complexity, sensitivity to sample isolation and processing, and scarcity of methods capable of isolating and analyzing them while preserving their native structure. In this study, we employ small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) for the first time to investigate both fungal cell suspensions and extracellular polysaccharides in solution. Our data suggests that exo-PS in solution exhibits collapsed chain-like behavior and demonstrates mass fractal properties that indicate a relatively condensed pore structure in aqueous environments. This observation is also supported by scanning electron microscopy (SEM). The local structure of the polysaccharide is characterized as a rigid rod, with a length scale corresponding to 3-4 repeating units. This research not only unveils insights into exo-PS and capsular-PS structures but also demonstrates the potential of USANS for studying changes in cell dimensions and the promise of contrast variation in future neutron scattering studies.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Susana C. M. Teixeira
- NIST Center of Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Camilla Strother
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Anthony Bowen
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Radamés JB Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| |
Collapse
|
5
|
Crawford CJ, Liporagi-Lopes L, Coelho C, Santos SR, Nicola AM, Wear MP, Vij R, Oscarson S, Casadevall A. Semi-synthetic glycoconjugate vaccine candidate against Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578725. [PMID: 38352552 PMCID: PMC10862886 DOI: 10.1101/2024.02.02.578725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, posing a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semi-synthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semi-synthetic glycoconjugate vaccines contain the identical synthetic decasaccharide (M2 motif) antigen. This motif is present in serotype A strains, which constitute 95% of clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity towards M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). While these findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. It could serve as a component in a multi-valent GXM motif vaccine, enhancing both strength and breadth of immune responses.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Max Planck Institute of Colloids and Interfaces, Am Mühlenberg1, 14476 Potsdam, Germany
| | - Livia Liporagi-Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: MRC Centre for Medical Mycology, University of Exeter, Exeter Devon UK
| | - Samuel R Santos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - André Moraes Nicola
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Raghav Vij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present address: Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Guess TE, Lai H, Nelson DE, McClelland EE. Quantification of C. neoformans Capsule Diameter. Methods Mol Biol 2024; 2775:225-237. [PMID: 38758321 DOI: 10.1007/978-1-0716-3722-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The polysaccharide capsule of Cryptococcus neoformans is the primary virulence factor and one of the most commonly studied aspects of this pathogenic yeast. Capsule size varies widely between strains, has the ability to grow rapidly when introduced to stressful or low-nutrient conditions, and has been positively correlated with strain virulence. For these reasons, the size of the capsule is of great interest to C. neoformans researchers. Inducing the growth of the C. neoformans capsule is used during phenotypic testing to help understand the effects of different treatments on the yeast or size differences between strains. Here, we describe one of the standard methods of capsule induction and detail two accepted methods of staining: (i) India ink, a negative stain, used in conjunction with conventional light microscopy and (ii) co-staining with fluorescent dyes of both the cell wall and capsule followed by confocal microscopy. Finally, we outline how to measure capsule diameter manually and offer a protocol for automated diameter measurement of India ink-stained samples using computational image analysis.
Collapse
Affiliation(s)
- Tiffany E Guess
- Middle Tennessee State University, Murfreesboro, TN, USA
- Molecular Pathology Laboratory Network, Inc., Maryville, TN, USA
| | | | - David E Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Erin E McClelland
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Wang Z, Teixeira SCM, Strother C, Bowen A, Casadevall A, Cordero RJB. Neutron Scattering Analysis of Cryptococcus neoformans Polysaccharide Reveals Solution Rigidity and Repeating Fractal-like Structural Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559017. [PMID: 37790378 PMCID: PMC10542156 DOI: 10.1101/2023.09.22.559017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that can cause life-threatening brain infections in immunocompromised individuals. Unlike other fungal pathogens, it possesses a protective polysaccharide capsule that is crucial for its virulence. During infections, Cryptococcus cells release copious amounts of extracellular polysaccharides (exo-PS) that interfere with host immune responses. Both exo-PS and capsular-PS play pivotal roles in Cryptococcus infections and serve as essential targets for disease diagnosis and vaccine development strategies. However, understanding their structure is complicated by their polydispersity, complexity, sensitivity to sample isolation and processing, and scarcity of methods capable of isolating and analyzing them while preserving their native structure. In this study, we employ small-angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) for the first time to investigate both fungal cell suspensions and extracellular polysaccharides in solution. Our data suggests that exo-PS in solution exhibits collapsed chain-like behavior and demonstrates mass fractal properties that indicate a relatively condensed pore structure in aqueous environments. This observation is also supported by scanning electron microscopy (SEM). The local structure of the polysaccharide is characterized as a rigid rod, with a length-scale corresponding to 3 to 4 repeating units. This research not only unveils insights into exo-PS and capsular-PS structures but also demonstrates the potential of USANS for studying changes in cell dimensions and the promise of contrast variation in future neutron scattering studies.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Susana C. M. Teixeira
- NIST Center of Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Camilla Strother
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Anthony Bowen
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Radamés JB Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| |
Collapse
|
8
|
de Andrade IB, Alves V, Pereira L, Miranda B, Corrêa-Junior D, Galdino Figueiredo-Carvalho MH, Santos MV, Almeida-Paes R, Frases S. Effect of rapamycin on Cryptococcus neoformans: cellular organization, biophysics and virulence factors. Future Microbiol 2023; 18:1061-1075. [PMID: 37721517 DOI: 10.2217/fmb-2023-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background: Cryptococcus neoformans is an opportunistic fungal pathogen that causes infections mainly in immunosuppressed individuals, such as transplant recipients. Aims: This study investigated the effects of rapamycin, an immunosuppressant drug, on the cellular organization, biophysical characteristics, and main virulence factors of C. neoformans. Methods: Morphological, structural, physicochemical and biophysical analyses of cells and secreted polysaccharides of the reference H99 C. neoformans strain were investigated under the effect of subinhibitory concentrations of rapamycin. Results: Rapamycin at a minimum inhibitory concentration of 2.5 μM reduced C. neoformans cell viability by 53%, decreased capsule, increased cell size, chitin and lipid body formation, and changed peptidase and urease activity. Conclusion: Further studies are needed to assess how rapamycin affects the virulence factors and pathogenicity of C. neoformans.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Pereira
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Miranda
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcos Vinicius Santos
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Alves V, Martins PH, Miranda B, de Andrade IB, Pereira L, Maeda CT, de Sousa Araújo GR, Frases S. Assessing the In Vitro Potential of Glatiramer Acetate (Copaxone ®) as a Chemotherapeutic Candidate for the Treatment of Cryptococcus neoformans Infection. J Fungi (Basel) 2023; 9:783. [PMID: 37623554 PMCID: PMC10455304 DOI: 10.3390/jof9080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Cryptococcosis is a systemic mycosis affecting immunosuppressed individuals, caused by various Cryptococcus species. The current treatment utilizes a combination of antifungal drugs, but issues such as nephrotoxicity, restricted or limited availability in certain countries, and resistance limit their effectiveness. Repurposing approved drugs presents a viable strategy for developing new antifungal options. This study investigates the potential of glatiramer acetate (Copaxone®) as a chemotherapy candidate for Cryptococcus neoformans infection. Various techniques are employed to evaluate the effects of glatiramer acetate on the fungus, including microdilution, XTT analysis, electron and light microscopy, and physicochemical measurements. The results demonstrate that glatiramer acetate exhibits antifungal properties, with an IC50 of 0.470 mg/mL and a minimum inhibitory concentration (MIC) of 2.5 mg/mL. Furthermore, it promotes enhanced cell aggregation, facilitates biofilm formation, and increases the secretion of fungal polysaccharides. These findings indicate that glatiramer acetate not only shows an antifungal effect but also modulates the key virulence factor-the polysaccharide capsule. In summary, repurposing glatiramer acetate as a potential chemotherapy option offers new prospects for combating C. neoformans infection. It addresses the limitations associated with current antifungal therapies by providing an alternative treatment approach.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Pedro Henrique Martins
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Bruna Miranda
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Luiza Pereira
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Christina Takiya Maeda
- Laboratório de Fisiopatologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (V.A.); (P.H.M.); (B.M.); (I.B.d.A.); (L.P.); (G.R.d.S.A.)
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
10
|
Li H, Ma Y, Zeng Z, Luo L, Li T, Zeng H, Chen Y. Follow-Up of Surgical or Nonsurgical Patients with Pulmonary Cryptococcosis: A Real-World Study. Infect Drug Resist 2022; 15:3669-3681. [PMID: 35844359 PMCID: PMC9285854 DOI: 10.2147/idr.s352966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Surgical and medical treatments are applied to pulmonary cryptococcosis (PC) in the real world, while the prognosis of different therapies is uncertain. This study investigated diagnosis, real-world therapy, follow-up outcomes, and prognosis factors, aiming to deepen our understanding of PC. Methods Patients pathologically diagnosed with PC were retrospectively reviewed and followed up. Further comparisons and subgroup analyses were conducted in surgical and nonsurgical treatment individuals. Univariable and multivariable logistic regression methods were used to explore the risk factors associated with treatment failure. Results One hundred and sixty-three patients were included in this study, of whom 92 underwent surgical removal of VATS or open lung surgery (68 of them received postoperative antifungal treatment) and 71 got antifungal drugs only. Compared with nonsurgical patients, surgical patients were more immunocompetent (73 [79.3%] cases vs 33 [46.5%]), showed milder symptoms and more limited pulmonary lesions. Although they had instant treatment response owing to lesions resection, there is no significant advantage in the rate of treatment failure. Multivariable regression showed independent predictive factors associated with treatment failure were polymorphonuclear (PMN)>6.30*109/L, albumin (Alb) <40g/L and antifungal dosage <400mg/d. Further analysis among patients with different immune statuses or symptoms demonstrated that sufficient antifungal dosage could reduce the rate of treatment failure. Conclusion PC showed variable and nonspecific clinical features. PC patients with limited nodules/masses and mild symptoms often led to misdiagnosis and unnecessary lung resections. The potential risk factors including higher PMN and hypoalbuminemia could help clinicians to identify PC patients with poor treatment efficiency at an early stage. To note, sufficient antifungal dosage may improve the treatment outcomes.
Collapse
Affiliation(s)
- Herui Li
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yiming Ma
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lijuan Luo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tiao Li
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huihui Zeng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
11
|
Maciel IF, de Freitas-Xavier RS, Vicentini AP, Apoliano CF, Ruiz J, Dias ADS, Gimenes VFM, Benard G, Vasconcelos DM. Evaluation of IFN-γ secretion after stimulation with C. neoformans and C. gattii antigens in individuals with frequent exposure to the fungus. J Mycol Med 2021; 32:101230. [PMID: 34923245 DOI: 10.1016/j.mycmed.2021.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
In this study we produced antigenic extracts from prototypical strains of C. neoformans (VNI-VNIV) and C. gattii (VGI-VGIV) and tested IFN-γ secretion by Elispot. Antigens from the eight Cryptococcus molecular types (VNI -VNIV and VGI - VGIV) were obtained after capsule reduction. IFN-γ secretion by Elispot method were stimulated with C. neoformans and C. gattii antigens. Peripheral blood mononuclear cells of fourteen healthy control subjects, being: five ecotourists, two mycologists, three poultry keepers, and four individuals without reports of exposure to the fungus. We observed a significant increase in IFN-γ secretion in the group of ecotourists, mycologists and bird keepers in relation to the group of individuals without reports of occupational exposures to these agents. Our results suggest the significant increase in IFN-γ secretion may be related to the continuous exposure of these groups of individuals to the fungus, as well as to the specific antigen memory immune response developed during exposure to Cryptococcus.
Collapse
Affiliation(s)
- Isabel Feitosa Maciel
- Laboratório de Imunologia em Imunodeficiências Primárias e Secundárias, LIM/56, do departamento de Dermatologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil.
| | - Roseli Santos de Freitas-Xavier
- Laboratório de Micologia Médica, LIM/53, do Instituto de Medicina Tropical de São Paulo, da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | | | - Carlos Fernando Apoliano
- Laboratório de Imunologia em Imunodeficiências Primárias e Secundárias, LIM/56, do departamento de Dermatologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Juliana Ruiz
- Laboratório de Imunologia em Imunodeficiências Primárias e Secundárias, LIM/56, do departamento de Dermatologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Alana Dos Santos Dias
- Laboratório de Imunologia em Imunodeficiências Primárias e Secundárias, LIM/56, do departamento de Dermatologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Viviane Favero Mazo Gimenes
- Laboratório de Micologia Médica, LIM/53, do Instituto de Medicina Tropical de São Paulo, da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Gil Benard
- Laboratório de Micologia Médica, LIM/53, do Instituto de Medicina Tropical de São Paulo, da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Dewton Moraes Vasconcelos
- Laboratório de Imunologia em Imunodeficiências Primárias e Secundárias, LIM/56, do departamento de Dermatologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| |
Collapse
|
12
|
Wang Y, Liu Y, Li J, Bai S, Tian T. Fungal community composition and diversity in the rhizosphere soils of Argentina (syn. Potentilla) anserina, on the Qinghai Plateau. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
A Novel, Inexpensive In-House Immunochromatographic Strip Test for Cryptococcosis Based on the Cryptococcal Glucuronoxylomannan Specific Monoclonal Antibody 18B7. Diagnostics (Basel) 2021; 11:diagnostics11050758. [PMID: 33922698 PMCID: PMC8145812 DOI: 10.3390/diagnostics11050758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to develop a novel lateral flow immunochromatoghaphic strip test (ICT) for detecting cryptococcal polysaccharide capsular antigens using only a single specific monoclonal antibody, mAb 18B7. The mAb 18B7 is a well characterized antibody that specifically binds repeating epitopes displayed on the cryptococcal polysaccharide glucuronoxylomannan (GXM). We validated the immunoreactivities of mAb 18B7 against capsular antigens of different cryptococcal serotypes. The mAb 18B7 ICT was constructed as a sandwich ICT strip and the antibody serving in the mobile phase (colloidal gold conjugated mAb 18B7) to bind one of the GXM epitopes while the stationary phase antibody (immobilized mAb18B7 on test line) binding to other remaining unoccupied epitopes to generate a positive visual readout. The lower limit of detection of capsular antigens for each of the Cryptococcus serotypes tested was 0.63 ng/mL. No cross-reaction was found against a panel of antigens isolated from cultures of other pathogenic fungal, except the crude antigen of Trichosporon sp. with the lower limit of detection of 500 ng/mL (~800 times higher than that for cryptococcal GXM). The performance of the mAb 18B7 ICT strip was studied using cerebrospinal fluid (CSF) and serum and compared to commercial diagnostic kits (latex agglutination CALAS and CrAg IMMY). The sensitivity, specificity and accuracy of the mAb18B7 ICT with CSF from patients with confirmed cryptococcal meningitis were 92.86%, 100% and 96.23%, respectively. No false positives were observed with samples from non-cryptococcosis patients. With serum samples, the mAb 18B7 ICT gave a sensitivity, specificity and accuracy of 96.15%, 97.78% and 96.91%, respectively. Our results show that the mAb 18B7 based ICT was reliable, reproducible, and cost-effective as a point-of-care immunodiagnostic test for cryptococcosis. The mAb 18B7 ICT may be particularly useful in countries where commercial kits are not available or affordable.
Collapse
|
14
|
Araújo GRDS, Alcantara CDL, Rodrigues N, de Souza W, Pontes B, Frases S. Ultrastructural Study of Cryptococcus neoformans Surface During Budding Events. Front Microbiol 2021; 12:609244. [PMID: 33732220 PMCID: PMC7957021 DOI: 10.3389/fmicb.2021.609244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals. It is surrounded by three concentric structures that separate the cell from the extracellular space: the plasma membrane, the cell wall and the polysaccharide (PS) capsule. Although several studies have revealed the chemical composition of these structures, little is known about their ultrastructural organization and remodeling during C. neoformans budding events. Here, by combining the latest and most accurate light and electron microscopy techniques, we describe the morphological remodeling that occurs among the capsule, cell wall and plasma membrane during budding in C. neoformans. Our results show that the cell wall deforms to generate a specialized region at one of the cell’s poles. This region subsequently begins to break into layers that are slightly separated from each other and with thick tips. We also observe a reorganization of the capsular PS around the specialized regions. While daughter cells present their PS fibers aligned in the direction of budding, mother cells show a similar pattern but in the opposite direction. Also, daughter cells form multilamellar membrane structures covering the continuous opening between both cells. Together, our findings provide compelling ultrastructural evidence for C. neoformans surface remodeling during budding, which may have important implications for future studies exploring these remodeled specialized regions as drug-targets against cryptococcosis.
Collapse
Affiliation(s)
- Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina de L Alcantara
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Noêmia Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Araújo GRDS, Alves V, Martins-de-Souza PH, Guimarães AJ, Honorato L, Nimrichter L, Takiya CM, Pontes B, Frases S. Dexamethasone and Methylprednisolone Promote Cell Proliferation, Capsule Enlargement, and in vivo Dissemination of C. neoformans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:643537. [PMID: 37744119 PMCID: PMC10512211 DOI: 10.3389/ffunb.2021.643537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 09/26/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, who often have some inflammatory condition and, therefore, end up using glucocorticoids, such as dexamethasone and methylprednisolone. Although the effects of this class of molecules during cryptococcosis have been investigated, their consequences for the biology of C. neoformans is less explored. Here, we studied the effects of dexamethasone and methylprednisolone on the metabolism and on the induction of virulence factors in C. neoformans. Our results showed that both glucocorticoids increased fungal cell proliferation and surface electronegativity but reduced capsule and secreted polysaccharide sizes, as well as capsule compaction, by decreasing the density of polysaccharide fibers. We also tested whether glucocorticoids could affect the fungal virulence in Galleria mellonella and mice. Although the survival rate of Galleria larvae increased, those from mice showed a tendency to decrease, with infected animals dying earlier after glucocorticoid treatments. The pathogenesis of spread of cryptococcosis and the interleukin secretion pattern were also assessed for lungs and brains of infected mice. While increases in the spread of the fungus to lungs were observed after treatment with glucocorticoids, a significant difference in brain was observed only for methylprednisolone, although a trend toward increasing was also observed for dexamethasone. Moreover, increases in both pulmonary and cerebral IL-10 production, reduction of IL-6 production but no changes in IL-4, IL-17, and INF-γ were also observed after glucocorticoid treatments. Finally, histopathological analysis confirmed the increase in number of fungal cells in lung and brain tissues of mice previously subjected to dexamethasone or methylprednisolone treatments. Together, our results provide compelling evidence for the effects of dexamethasone and methylprednisolone on the biology of C. neoformans and may have important implications for future clinical treatments, calling attention to the risks of using these glucocorticoids against cryptococcosis or in immunocompromised individuals.
Collapse
Affiliation(s)
- Glauber R. de S. Araújo
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Martins-de-Souza
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Depto. de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Imunopatologia. Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol 2021; 19:454-466. [PMID: 33558691 PMCID: PMC7868659 DOI: 10.1038/s41579-021-00511-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Cryptococcus spp., in particular Cryptococcus neoformans and Cryptococcus gattii, have an enormous impact on human health worldwide. The global burden of cryptococcal meningitis is almost a quarter of a million cases and 181,000 deaths annually, with mortality rates of 100% if infections remain untreated. Despite these alarming statistics, treatment options for cryptococcosis remain limited, with only three major classes of drugs approved for clinical use. Exacerbating the public health burden is the fact that the only new class of antifungal drugs developed in decades, the echinocandins, displays negligible antifungal activity against Cryptococcus spp., and the efficacy of the remaining therapeutics is hampered by host toxicity and pathogen resistance. Here, we describe the current arsenal of antifungal agents and the treatment strategies employed to manage cryptococcal disease. We further elaborate on the recent advances in our understanding of the intrinsic and adaptive resistance mechanisms that are utilized by Cryptococcus spp. to evade therapeutic treatments. Finally, we review potential therapeutic strategies, including combination therapy, the targeting of virulence traits, impairing stress response pathways and modulating host immunity, to effectively treat infections caused by Cryptococcus spp. Overall, understanding of the mechanisms that regulate anti-cryptococcal drug resistance, coupled with advances in genomics technologies and high-throughput screening methodologies, will catalyse innovation and accelerate antifungal drug discovery.
Collapse
|
17
|
Bhattacharya S, Bouklas T, Fries BC. Replicative Aging in Pathogenic Fungi. J Fungi (Basel) 2020; 7:6. [PMID: 33375605 PMCID: PMC7824483 DOI: 10.3390/jof7010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.
Collapse
Affiliation(s)
- Somanon Bhattacharya
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
| | - Tejas Bouklas
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568, USA
| | - Bettina C. Fries
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
18
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
19
|
Leigh-de Rapper S, van Vuuren SF. Odoriferous Therapy: A Review Identifying Essential Oils against Pathogens of the Respiratory Tract. Chem Biodivers 2020; 17:e2000062. [PMID: 32207224 DOI: 10.1002/cbdv.202000062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/20/2020] [Indexed: 01/01/2023]
Abstract
This review explores the body of scientific information available on the antimicrobial properties of essential oils against pathogens responsible for respiratory infections and critically compares this to what is recommended in the Layman's aroma-therapeutic literature. Essential oils are predominantly indicated for the treatment of respiratory infections caused by bacteria or viruses (total 79.0 %), the efficacy of which has not been confirmed through clinical trials. When used in combination, they are often blended for presumed holistic synergistic effects. Of the essential oils recommended, all show some degree of antioxidant activity, 50.0 % demonstrate anti-inflammatory effects and 83.3 % of the essential oils showed antihistaminic activity. Of the essential oils reviewed, 43.8 % are considered non-toxic while the remaining essential oils are considered slightly to moderately toxic (43.7 %) or the toxicity is unknown (12.5 %). Recommendations are made for further research into essential oil combinations.
Collapse
Affiliation(s)
- Stephanie Leigh-de Rapper
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Sandy F van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
20
|
Ji C, Liu N, Tu J, Li Z, Han G, Li J, Sheng C. Drug Repurposing of Haloperidol: Discovery of New Benzocyclane Derivatives as Potent Antifungal Agents against Cryptococcosis and Candidiasis. ACS Infect Dis 2020; 6:768-786. [PMID: 31550886 DOI: 10.1021/acsinfecdis.9b00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the high morbidity and mortality of invasive fungal infections (IFIs), effective and safe antifungal agents are rather limited. Starting from antifungal lead compound haloperidol that was identified by drug repurposing, a series of novel benzocyclane derivatives were designed, synthesized, and assayed. Several compounds showed improved antifungal potency and broader antifungal spectra. Particularly, compound B10 showed good inhibitory activities against a variety of fungal pathogens and was proven to be an inhibitor of several virulence factors important for drug resistance. In the in vivo cryptococcosis and candidiasis models, compound B10 could effectively reduce the brain fungal burden of Cryptococcus neoformans and synergize with fluconazole to treat resistant Candida albicans infections. Preliminary antifungal mechanism studies revealed that compound B10 regained cell membrane damage and down-regulated the overexpression of ERG11 and MDR1 genes when used in combination with fluconazole. Taken together, haloperidol derivative B10 represents a promising lead compound for the development of a new generation of antifungal agents.
Collapse
Affiliation(s)
- Changjin Ji
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Zhuang Li
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jian Li
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
21
|
Abstract
Among fungal pathogens, Cryptococcus neoformans has gained great importance among the scientific community of several reasons. This fungus is the causative agent of cryptococcosis, a disease mainly associated to HIV immunosuppression and characterized by the appearance of meningoencephalitis. Cryptococcal meningitis is responsible for hundreds of thousands of deaths every year. Research of the pathogenesis and virulence mechanisms of this pathogen has focused on three main different areas: Adaptation to the host environment (nutrients, pH, and free radicals), mechanism of immune evasion (which include phenotypic variations and the ability to behave as a facultative intracellular pathogen), and production of virulence factors. Cryptococcus neoformans has two phenotypic characteristics, the capsule and synthesis of melanin that have a profound effect in the virulence of the yeast because they both have protective effects and induce host damage as virulence factors. Finally, the mechanisms that result in dissemination and brain invasion are also of key importance to understand cryptococcal disease. In this review, I will provide a brief overview of the main mechanisms that makes C. neoformans a pathogen in susceptible patients. Abbreviations: RNS: reactive nitrogen species; BBB: brain blood barrier; GXM: glucuronoxylomannan; GXMGal: glucuronoxylomannogalactan
Collapse
Affiliation(s)
- Oscar Zaragoza
- a Mycology Reference Laboratory National Centre for Microbiology , Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo , Madrid , Spain
| |
Collapse
|
22
|
Probert M, Zhou X, Goodall M, Johnston SA, Bielska E, Ballou ER, May RC. A Glucuronoxylomannan Epitope Exhibits Serotype-Specific Accessibility and Redistributes towards the Capsule Surface during Titanization of the Fungal Pathogen Cryptococcus neoformans. Infect Immun 2019; 87:IAI.00731-18. [PMID: 30670549 PMCID: PMC6434129 DOI: 10.1128/iai.00731-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/23/2018] [Indexed: 11/20/2022] Open
Abstract
Disseminated infections with the fungal species Cryptococcus neoformans or, less frequently, Cryptococcus gattii are an important cause of mortality in immunocompromised individuals. Central to the virulence of both species is an elaborate polysaccharide capsule that consists predominantly of glucuronoxylomannan (GXM). Due to its abundance, GXM is an ideal target for host antibodies, and several monoclonal antibodies (mAbs) have previously been derived using purified GXM or whole capsular preparations as antigens. In addition to their application in the diagnosis of cryptococcosis, anti-GXM mAbs are invaluable tools for studying capsule structure. In this study, we report the production and characterization of a novel anti-GXM mAb, Crp127, that unexpectedly reveals a role for GXM remodeling during the process of fungal titanization. We show that Crp127 recognizes a GXM epitope in an O-acetylation-dependent, but xylosylation-independent, manner. The epitope is differentially expressed by the four main serotypes of Cryptococcus neoformans and C. gattii, is heterogeneously expressed within clonal populations of C. gattii serotype B strains, and is typically confined to the central region of the enlarged capsule. Uniquely, however, this epitope redistributes to the capsular surface in titan cells, a recently characterized morphotype where haploid 5-μm cells convert to highly polyploid cells of >10 μm with distinct but poorly understood capsular characteristics. Titan cells are produced in the host lung and critical for successful infection. Crp127 therefore advances our understanding of cryptococcal morphological change and may hold significant potential as a tool to differentially identify cryptococcal strains and subtypes.
Collapse
Affiliation(s)
- Mark Probert
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xin Zhou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ewa Bielska
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C May
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
23
|
Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 2018; 113:e180057. [PMID: 29668825 PMCID: PMC5909089 DOI: 10.1590/0074-02760180057] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Collapse
Affiliation(s)
- Shannon K Esher
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| | - Oscar Zaragoza
- Instituto de Salud Carlos III, National Centre for Microbiology, Mycology Reference Laboratory, Madrid, Spain
| | - James Andrew Alspaugh
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| |
Collapse
|
24
|
Li SS, Ogbomo H, Mansour MK, Xiang RF, Szabo L, Munro F, Mukherjee P, Mariuzza RA, Amrein M, Vyas JM, Robbins SM, Mody CH. Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nat Commun 2018; 9:751. [PMID: 29467448 PMCID: PMC5821813 DOI: 10.1038/s41467-018-03014-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that β-1,3-glucan, a component of the fungal cell wall, binds to NKp30. We further demonstrate that β-1,3-glucan stimulates granule convergence and polarization, as shown by live cell imaging. Through Src Family Kinase signaling, β-1,3-glucan increases expression and clustering of NKp30 at the microbial and NK cell synapse to induce perforin release for fungal cytotoxicity. Rather than blocking the interaction between fungi and NK cells, soluble β-1,3-glucan enhances fungal killing and restores defective cryptococcal killing by NK cells from HIV-positive individuals, implicating β-1,3-glucan to be both an activating ligand and a soluble PAMP that shapes NK cell host immunity. Natural killer (NK) cells has been show to mediate fungi killing via the activating receptor NKp30, but the fungal target for NKp30 is still unclear. Here the authors show, using atomic force microscopy and live cell imaging, that β-1,3-glucan is expressed by Cryptococcus neoformans and Candida albicans and responsible for NKp30-mediated NK killing.
Collapse
Affiliation(s)
- Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Michael K Mansour
- Department of Medicine Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Lian Szabo
- Department of Medicine, University of Calgary, Calgary, T2N 4N1, Canada
| | - Fay Munro
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, Canada
| | - Priyanka Mukherjee
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, Canada
| | - Roy A Mariuzza
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, Canada
| | - Jatin M Vyas
- Department of Medicine Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Stephen M Robbins
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada.,Southern Alberta Cancer Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada. .,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada. .,Department of Medicine, University of Calgary, Calgary, T2N 4N1, Canada.
| |
Collapse
|
25
|
Fonseca FL, Reis FCG, Sena BAG, Jozefowicz LJ, Kmetzsch L, Rodrigues ML. The Overlooked Glycan Components of the Cryptococcus Capsule. Curr Top Microbiol Immunol 2018; 422:31-43. [PMID: 30203395 DOI: 10.1007/82_2018_140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pathogenic species of Cryptococcus kill approximately 200,000 people each year. The most important virulence mechanism of C. neoformans and C. gattii, the causative agents of human and animal cryptococcosis, is the ability to form a polysaccharide capsule. Acapsular mutants of C. neoformans are avirulent in mice models of infection, and extracellularly released capsular polysaccharides are deleterious to the immune system. The principal capsular component in the Cryptococcus genus is a complex mannan substituted with xylosyl and glucuronyl units, namely glucuronoxylomannan (GXM). The second most abundant component of the cryptococcal capsule is a galactan with multiple glucuronyl, xylosyl, and mannosyl substitutions, namely glucuronoxylomannogalactan (GXMGal). The literature about the structure and functions of these two polysaccharides is rich, and a number of comprehensive reviews on this topic are available. Here, we focus our discussion on the less explored glycan components associated with the cryptococcal capsule, including mannoproteins and chitin-derived molecules. These glycans were selected for discussion on the basis that i) they have been consistently detected not only in the cell wall but also within the cryptococcal capsular network and ii) they have functions that impact immunological and/or pathogenic mechanisms in the Cryptococcus genus. The reported functions of these molecules strongly indicate that the biological roles of the cryptococcal capsule go far beyond the well-known properties of GXM and GXMGal.
Collapse
Affiliation(s)
- Fernanda L Fonseca
- Centro de Desenvolvimento Tecnológico Em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Bianca A G Sena
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Luísa J Jozefowicz
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Livia Kmetzsch
- Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Departamento de Biologia Molecular E Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil. .,Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil. .,Cidade Industrial de Curitiba, Rua Professor Algacyr Munhoz Mader, 2135-2261, Curitiba, PR, 81310-020, Brazil.
| |
Collapse
|
26
|
Gkarmiri K, Mahmood S, Ekblad A, Alström S, Högberg N, Finlay R. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Appl Environ Microbiol 2017; 83:e01938-17. [PMID: 28887416 PMCID: PMC5666129 DOI: 10.1128/aem.01938-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. "Candidatus Nitrososphaera" was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napusIMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Konstantia Gkarmiri
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shahid Mahmood
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alf Ekblad
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Sadhna Alström
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nils Högberg
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roger Finlay
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
27
|
Trevijano-Contador N, Rossi SA, Alves E, Landín-Ferreiroa S, Zaragoza O. Capsule Enlargement in Cryptococcus neoformans Is Dependent on Mitochondrial Activity. Front Microbiol 2017; 8:1423. [PMID: 28824559 PMCID: PMC5534456 DOI: 10.3389/fmicb.2017.01423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus neoformans is an environmental encapsulated yeast that behaves as an opportunistic pathogen in immunocompromised individuals. The capsule is the main virulence factor of this pathogen. This structure is highly dynamic, and it can change its size and structure according to the environmental conditions. During infection, C. neoformans significantly enlarges the size of the capsule by the addition of new polysaccharide. It is believed that capsule growth is an energy-cost process, but this aspect has never been addressed. In this work, we have evaluated the role of mitochondrial activity on capsule growth using specific inhibitors of the electron respiratory chain. We observed that capsule growth was impaired in the presence of inhibitors of the respiratory chain as salicylhydroxamic acid or antimycin A. Furthermore, capsule growth correlated with an increase of the mitochondrial membrane potential and higher production of reactive oxygen species. Our results confirm that capsule growth depends on mitochondrial activity, and open new insights to understand the regulation of this process.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Suelen A Rossi
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Elisabete Alves
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Santiago Landín-Ferreiroa
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
28
|
Aslanyan L, Sanchez DA, Valdebenito S, Eugenin EA, Ramos RL, Martinez LR. The Crucial Role of Biofilms in Cryptococcus neoformans Survival within Macrophages and Colonization of the Central Nervous System. J Fungi (Basel) 2017; 3:E10. [PMID: 29371529 PMCID: PMC5715963 DOI: 10.3390/jof3010010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated yeast-like fungus capable of causing life threatening meningoencephalitis in patients with impaired immunity. This microbe primarily infects the host via inhalation but has the ability to disseminate to the central nervous system (CNS) either as a single cell or inside of macrophages. Upon traversing the blood brain barrier, C. neoformans has the capacity to form biofilm-like structures known as cryptococcomas. Hence, we will discuss the C. neoformans elements contributing to biofilm formation including the fungus' ability to survive in the acidic environment of a macrophage phagosome and inside of the CNS. The purpose of this mini-review is to instill fresh interest in understanding the importance of biofilms on fungal pathogenesis.
Collapse
Affiliation(s)
- Lilit Aslanyan
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - David A Sanchez
- Howard University College of Medicine, Washington, DC 20059-1027, USA.
| | - Silvana Valdebenito
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103-9998, USA.
| | - Eliseo A Eugenin
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103-9998, USA.
| | - Raddy L Ramos
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| |
Collapse
|
29
|
Tseng HK, Huang TY, Wu AYJ, Chen HH, Liu CP, Jong A. How Cryptococcus interacts with the blood-brain barrier. Future Microbiol 2015; 10:1669-82. [PMID: 26437710 DOI: 10.2217/fmb.15.83] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cryptococcus demonstrates predilection for invasion of the brain, but the mechanism by which Cryptococcus crosses the blood-brain barrier (BBB) to cause brain invasion is largely unknown. In order for Cryptococcus to cross the BBB, there must be a way to either cross human brain microvascular endothelial cells, which are the main constitute of the BBB, or go in between tight junctions. Recent evidence of human brain microvascular endothelial cell responses to transcellular brain invasions includes membrane rearrangements, intracellular signaling pathways and cytoskeletal activations. Several Cryptococcal genes related to the traversal of BBB have been identified, including CPS1, ITR1a, ITR3c, PLB1, MPR1, FNX1 and RUB1. In addition, Cryptococcus neoformans-derived microvesicles may contribute to cryptococcal brain invasion. Paracellularly, Cryptococcus may traverse across BBB using either routes utilizing plasmin, ammonia or macrophages in a Trojan horse mechanism.
Collapse
Affiliation(s)
- Hsiang-Kuang Tseng
- Department of Medicine, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Road, Sanzhi Distric, New Taipei City 25245, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, No. 92, Sec. 2, Zhongshan North Road, Taipei City 10449, Taiwan.,Microbiology Section, Department of Medical Research, MacKay Memorial Hospital, Tamshui Branch, No. 45, Minsheng Road, Tamshui District, New Taipei City 25160, Taiwan
| | - Tseng-Yu Huang
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, No. 92, Sec. 2, Zhongshan North Road, Taipei City 10449, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, No. 92, Sec. 2, Zhongshan North Road, Taipei City 10449, Taiwan
| | - Hsin-Hong Chen
- Microbiology Section, Department of Medical Research, MacKay Memorial Hospital, Tamshui Branch, No. 45, Minsheng Road, Tamshui District, New Taipei City 25160, Taiwan
| | - Chang-Pan Liu
- Department of Medicine, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Road, Sanzhi Distric, New Taipei City 25245, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, No. 92, Sec. 2, Zhongshan North Road, Taipei City 10449, Taiwan.,Microbiology Section, Department of Medical Research, MacKay Memorial Hospital, Tamshui Branch, No. 45, Minsheng Road, Tamshui District, New Taipei City 25160, Taiwan
| | - Ambrose Jong
- Hematology-Oncology/BMT, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
30
|
Bouklas T, Fries BC. Aging: an emergent phenotypic trait that contributes to the virulence of Cryptococcus neoformans. Future Microbiol 2015; 10:191-7. [PMID: 25689531 DOI: 10.2217/fmb.14.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pathogenic fungus, Cryptococcus neoformans, is known to undergo phenotypic variation, which affects its virulence in the host. Recent investigations on C. neoformans cells in humans have validated the concept that phenotypic variation is present and relevant for the outcome of chronic cryptococcosis. The C. neoformans capsule is not the only trait that varies among strains. An emerging variant is the "old cell phenotype" generated when C. neoformans undergoes replicative aging. This phenotype, which other than larger size also exhibits a thickened cell wall, inhibits phagocytosis and killing by antifungals in vitro. In concert with the finding that old cells accumulate in vivo, this emergent trait could have significant impact on cryptococcal virulence and infection, and contribute to treatment failure.
Collapse
Affiliation(s)
- Tejas Bouklas
- Division of Infectious Diseases, Department of Medicine, Health Sciences Center T15-080, Stony Brook University Medical Center, Stony Brook, NY 11794-8153, USA
| | | |
Collapse
|
31
|
Carpenter BL, Situ X, Scholle F, Bartelmess J, Weare WW, Ghiladi RA. Antiviral, Antifungal and Antibacterial Activities of a BODIPY-Based Photosensitizer. Molecules 2015; 20:10604-21. [PMID: 26060922 PMCID: PMC6272413 DOI: 10.3390/molecules200610604] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/30/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) employing the BODIPY-based photosensitizer 2,6-diiodo-1,3,5,7-tetramethyl-8-(N-methyl-4-pyridyl)-4,4'-difluoro-boradiazaindacene (DIMPy-BODIPY) was explored in an in vitro assay against six species of bacteria (eight total strains), three species of yeast, and three viruses as a complementary approach to their current drug-based or non-existent treatments. Our best results achieved a noteworthy 5-6 log unit reduction in CFU at 0.1 μM for Staphylococcus aureus (ATCC-2913), methicillin-resistant S. aureus (ATCC-44), and vancomycin-resistant Enterococcus faecium (ATCC-2320), a 4-5 log unit reduction for Acinetobacter baumannii ATCC-19606 (0.25 μM), multidrug resistant A. baumannii ATCC-1605 (0.1 μM), Pseudomonas aeruginosa ATCC-97 (0.5 μM), and Klebsiella pneumoniae ATCC-2146 (1 μM), and a 3 log unit reduction for Mycobacterium smegmatis mc2155 (ATCC-700084). A 5 log unit reduction in CFU was observed for Candida albicans ATCC-90028 (1 μM) and Cryptococcus neoformans ATCC-64538 (0.5 μM), and a 3 log unit reduction was noted for Candida glabrata ATCC-15545 (1 μM). Infectivity was reduced by 6 log units in dengue 1 (0.1 μM), by 5 log units (0.5 μM) in vesicular stomatitis virus, and by 2 log units (5 μM) in human adenovirus-5. Overall, the results demonstrate that DIMPy-BODIPY exhibits antiviral, antibacterial and antifungal photodynamic inactivation at nanomolar concentrations and short illumination times.
Collapse
Affiliation(s)
- Bradley L Carpenter
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Xingci Situ
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | - Juergen Bartelmess
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Walter W Weare
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
32
|
Guazzelli L, Ulc R, Rydner L, Oscarson S. A synthetic strategy to xylose-containing thioglycoside tri- and tetrasaccharide building blocks corresponding to Cryptococcus neoformans capsular polysaccharide structures. Org Biomol Chem 2015; 13:6598-610. [DOI: 10.1039/c5ob00766f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C. neoformansthiosaccharide building blocks were prepared and their conversion to glycosyl acceptors as well as use as glycosyl donors investigated.
Collapse
Affiliation(s)
- Lorenzo Guazzelli
- Center for Synthesis and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Rebecca Ulc
- Center for Synthesis and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Lina Rydner
- Center for Synthesis and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Stefan Oscarson
- Center for Synthesis and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
33
|
Coelho C, Bocca AL, Casadevall A. The tools for virulence of Cryptococcus neoformans. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:1-41. [PMID: 24581388 DOI: 10.1016/b978-0-12-800261-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes almost half a million deaths each year. It is believed that most humans are infected with C. neoformans, possibly in a form that survives through latency in the lung and can reactivate to cause disease if the host becomes immunosuppressed. C. neoformans has a remarkably sophisticated intracellular survival capacities yet it is a free-living fungus with no requirement for mammalian virulence whatsoever. In this review, we discuss the tools that C. neoformans possesses to achieve survival, latency and virulence within its host. Some of these tools are mechanisms to withstand starvation and others aim to protect against microbicidal molecules produced by the immune system. Furthermore, we discuss how these tools were acquired through evolutionary pressures and perhaps accidental stochastic events, all of which combined to produce an organism with an unusual and unique intracellular pathogenic strategy.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, New York, USA; Centre for Neuroscience and Cell Biology of Coimbra, Institute of Microbiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Anamelia Lorenzetti Bocca
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, New York, USA.
| |
Collapse
|
34
|
Developmental cell fate and virulence are linked to trehalose homeostasis in Cryptococcus neoformans. EUKARYOTIC CELL 2014; 13:1158-68. [PMID: 25001408 DOI: 10.1128/ec.00152-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among pathogenic environmental fungi, spores are thought to be infectious particles that germinate in the host to cause disease. The meningoencephalitis-causing yeast Cryptococcus neoformans is found ubiquitously in the environment and sporulates in response to nutrient limitation. While the yeast form has been studied extensively, relatively little is known about spore biogenesis, and spore germination has never been evaluated at the molecular level. Using genome transcript analysis of spores and molecular genetic approaches, we discovered that trehalose homeostasis plays a key role in regulating sporulation of C. neoformans, is required for full spore viability, and influences virulence. Specifically, we found that genes involved in trehalose metabolism, including a previously uncharacterized secreted trehalase (NTH2), are highly overrepresented in dormant spores. Deletion of the two predicted trehalases in the C. neoformans genome, NTH1 and NTH2, resulted in severe defects in spore production, a decrease in spore germination, and an increase in the production of alternative developmental structures. This shift in cell types suggests that trehalose levels modulate cell fate decisions during sexual development. We also discovered that deletion of the NTH2 trehalase results in hypervirulence in a murine model of infection. Taken together, these data show that the metabolic adaptations that allow this fungus to proliferate ubiquitously in the environment play unexpected roles in virulence in the mammalian host and highlight the complex interplay among the processes of metabolism, development, and pathogenesis.
Collapse
|
35
|
Galiza GJ, Silva TM, Caprioli RA, Tochetto C, Rosa FB, Fighera RA, Kommers GD. Características histomorfológicas e histoquímicas determinantes no diagnóstico da criptococose em animais de companhia. PESQUISA VETERINÁRIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000300011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sete casos de criptococose (seis gatos e um cão) foram estudados para estabelecer as características histomorfológicas e histoquímicas determinantes no diagnóstico histopatológico dessa condição. Os dados complementares relacionados à epidemiologia, aos aspectos clínicos, à localização das lesões e às alterações macroscópicas foram obtidos dos protocolos de necropsias e biópsias. Na histologia, as leveduras foram observadas no interior de macrófagos ou livres no parênquima, associadas à reação inflamatória linfo-histioplasmocítica que variou de escassa a acentuada. Pela técnica de hematoxilina-eosina (HE) as leveduras eram arredondadas, com célula central contendo um núcleo, circundada por um halo claro (cápsula geralmente não corada). As técnicas histoquímicas do ácido periódico de Schiff (PAS), Grocott e Fontana-Masson (FM) foram utilizadas e evidenciaram a parede das células das leveduras. Pelo FM observou-se a melanina presente nessas células. As técnicas do azul Alciano e da mucicarmina de Mayer evidenciaram principalmente a cápsula polissacarídica das leveduras. O diâmetro das células das leveduras variou de 1,67 a 10,00µm e o diâmetro total das leveduras encapsuladas variou entre 4,17 e 34,16µm. Os brotamentos foram melhor visualizados através do PAS e ocorreram em base estreita, de forma única ou múltipla, principalmente em polos opostos das células das leveduras ou formando uma cadeia. O diagnóstico definitivo de criptococose foi estabelecido através do exame histopatológico, baseando-se na morfologia característica do agente (levedura encapsulada) e em suas propriedades tintoriais (histoquímicas), principalmente nos casos em que a cultura micológica não foi realizada.
Collapse
|
36
|
Jong A, Wu CH, Gonzales-Gomez I, Kwon-Chung KJ, Chang YC, Tseng HK, Cho WL, Huang SH. Hyaluronic acid receptor CD44 deficiency is associated with decreased Cryptococcus neoformans brain infection. J Biol Chem 2012; 287:15298-306. [PMID: 22418440 DOI: 10.1074/jbc.m112.353375] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptococcus neoformans is a pathogenic yeast that can invade the brain and cause meningoencephalitis. Our previous in vitro studies suggested that the interaction between C. neoformans hyaluronic acid and human brain endothelial CD44 could be the initial step of brain invasion. In this report, we used a CD44 knock-out (KO or CD44(-/-)) mouse model to explore the importance of CD44 in C. neoformans brain invasion. Our results showed that C. neoformans-infected CD44 KO mice survived longer than the infected wild-type mice. Consistent with our in vitro results, the brain and cerebrospinal fluid fungal burden was reduced in CD44-deficient mice. Histopathological studies showed smaller and fewer cystic lesions in the brains of CD44 KO mice. Interestingly, the cystic lesions contained C. neoformans cells embedded within their polysaccharide capsule and were surrounded by host glial cells. We also found that a secondary hyaluronic acid receptor, RHAMM (receptor of hyaluronan-mediated motility), was present in the CD44 KO mice. Importantly, our studies demonstrated an in vivo blocking effect of simvastatin. These results suggest that the CD44 and RHAMM receptors function on membrane lipid rafts during invasion and that simvastatin may have a potential therapeutic role in C. neoformans infections of the brain.
Collapse
Affiliation(s)
- Ambrose Jong
- Division of Hematology-Oncology, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tsirilakis K, Kim C, Vicencio AG, Andrade C, Casadevall A, Goldman DL. Methylxanthine inhibit fungal chitinases and exhibit antifungal activity. Mycopathologia 2012; 173:83-91. [PMID: 21968902 PMCID: PMC4289597 DOI: 10.1007/s11046-011-9483-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Chitinases are necessary for fungal cell wall remodeling and cell replication. Methylxanthines have been shown to competitively inhibit family 18 chitinases in vitro. We sought to determine the effects of methylxanthines on fungal chitinases. Fungi demonstrated variable chitinase activity and incubation with methylxanthines (0.5-10 mM) resulted in a dose-dependent decrease in this activity. All fungi tested, except for Candida spp., demonstrated growth inhibition in the presence of methylxanthines at a concentration of 10 mM. India ink staining demonstrated impaired budding and decreased cell size for methylxanthine-treated Cryptococcus neoformans. C. neoformans and Aspergillus fumigatus treated with pentoxifylline also exhibited abnormal cell morphology. In addition, pentoxifylline-treated C. neoformans exhibited increased susceptibility to calcofluor and a leaky melanin phenotype consistent with defective cell wall function. Our data suggest that a variety of fungi express chitinases and that methylxanthines have antifungal properties related to their inhibition of fungal chitinases. Our results highlight the potential utility of targeting chitinases in the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Kalliope Tsirilakis
- Department of Pediatrics, Children's Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
38
|
Araujo GDS, Fonseca FL, Pontes B, Torres A, Cordero RJB, Zancopé-Oliveira RM, Casadevall A, Viana NB, Nimrichter L, Rodrigues ML, Garcia ES, de Souza W, Frases S. Capsules from pathogenic and non-pathogenic Cryptococcus spp. manifest significant differences in structure and ability to protect against phagocytic cells. PLoS One 2012; 7:e29561. [PMID: 22253734 PMCID: PMC3257238 DOI: 10.1371/journal.pone.0029561] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/30/2011] [Indexed: 01/10/2023] Open
Abstract
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.
Collapse
Affiliation(s)
- Glauber de S. Araujo
- Laboratório de Biotecnologia, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda L. Fonseca
- Laboratório de Estudos integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Andre Torres
- Instituto de Pesquisa Clínica Evandro Chagas, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Radames J. B. Cordero
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | - Arturo Casadevall
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nathan B. Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa, Brazil
| | - Leonardo Nimrichter
- Laboratório de Estudos integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Laboratório de Estudos integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eloi S. Garcia
- Laboratório de Biotecnologia, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Biotecnologia, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biotecnologia, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
39
|
Chronological aging is associated with biophysical and chemical changes in the capsule of Cryptococcus neoformans. Infect Immun 2011; 79:4990-5000. [PMID: 21968999 DOI: 10.1128/iai.05789-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Does the age of a microbial cell affect its virulence factors? To our knowledge, this question has not been addressed previously, but the answer is of great relevance for chronic infections where microbial cells persist and age in hosts. Cryptococcus neoformans is an encapsulated human-pathogenic fungus notorious for causing chronic infections where cells of variable age persist in tissue. The major virulence factor for C. neoformans is a polysaccharide (PS) capsule. To understand how chronological age could impact the cryptococcal capsule properties, we compared the elastic properties, permeabilities, zeta potentials, and glycosidic compositions of capsules from young and old cells and found significant differences in all parameters measured. Changes in capsular properties were paralleled by changes in PS molecular mass and density, as well as modified antigenic density and antiphagocytic properties. Remarkably, chronological aging under stationary-phase growth conditions was associated with the expression of α-1,3-glucans in the capsule, indicating a new structural capsular component. Our results establish that cryptococcal capsules are highly dynamic structures that change dramatically with chronological aging under prolonged stationary-phase growth conditions. Changes associated with cellular aging in chronic infections could contribute to the remarkable capacity of this fungus to persist in tissues by generating phenotypically and antigenically different capsules.
Collapse
|
40
|
Zaragoza O. Multiple Disguises for the Same Party: The Concepts of Morphogenesis and Phenotypic Variations in Cryptococcus neoformans. Front Microbiol 2011; 2:181. [PMID: 21922016 PMCID: PMC3167222 DOI: 10.3389/fmicb.2011.00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/17/2011] [Indexed: 01/10/2023] Open
Abstract
Although morphological transitions (such as hyphae and pseudohyphae formation) are a common feature among fungi, the encapsulated pathogenic yeast Cryptococcus neoformans is found during infection as blastoconidia. However, this fungus exhibits striking variations in cellular structure and size, which have important consequences during infection. This review will summarize the main aspects related with phenotypic and morphological variations in C. neoformans, which can be divided in three classes. Two of them are related to changes in the capsule, while the third one involves changes in the whole cell. The three morphological and phenotypic variations in C. neoformans can be classified as: (1) changes in capsule structure, (2) changes in capsule size, and (3) changes in the total size of the cell, which can be achieved by the formation of cryptococcal giant/titan cells or microforms. These changes have profound consequences on the interaction with the host, involving survival, phagocytosis escape and immune evasion and dissemination. This article will summarize the main features of these changes, and highlight their importance during the interaction with the host and how they contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
41
|
Cordero RJB, Frases S, Guimaräes AJ, Rivera J, Casadevall A. Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Mol Microbiol 2011; 79:1101-17. [PMID: 21208301 DOI: 10.1111/j.1365-2958.2010.07511.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The encapsulated fungus Cryptococcus neoformans is a common cause of life-threatening disease in immunocompromised individuals. Its major virulence determinant is the polysaccharide (PS) capsule. An unsolved problem in cryptococcal biology is whether the PSs composing the capsule are linear or complex branched polymers, as well as the implications of this structural composition in pathogenesis. In this study we approached the problem by combining static and dynamic light scattering, viscosity analysis, and high-resolution microscopy and correlated the findings with biological properties. Analysis of the dependence of capsular PS molecular mass and the radius of gyration provided strong evidence against a simple linear PS configuration. Shape factors calculated from light scattering measurements in solution revealed values consistent with polymer branching. Furthermore, viscosity measurements provided complementary evidence for structural branching. Electron microscopy showed PS spherical-like structures similar to other branched PS. Finally, we show that the capacity of capsular PS to interfere in complement-mediated phagocytosis, inhibit nitric oxide production by macrophage-like cells, protect against reactive oxygen species, antibody reactivity and half-life in serum were influenced by the degree of branching, providing evidence for the notion that PS branching is an important parameter in determining the biological activity of C. neoformans PS.
Collapse
Affiliation(s)
- Radames J B Cordero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
42
|
Jesus MD, Nicola AM, Chow SK, Lee IR, Nong S, Specht CA, Levitz SM, Casadevall A. Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence 2010; 1:500-8. [PMID: 21178496 DOI: 10.4161/viru.1.6.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The capsular polysaccharides of Cryptococcus neoformans have historically been divided into three components namely, glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoprotein (MP) but their relative spatial-geographical relationship in the capsule is unknown. To explore this problem would require the capacity for visualizing these components in the capsule. Prior studies have reported serological reagents to GXM and GalXM but no antibodies are available against MPs. Consequently, we immunized Balb/c mice with C. neoformans recombinant mannoprotein 98 and recovered twelve monoclonal antibodies (mAbs) of which one, an IgG2a designated 18F2, bound to intact cells by immunofluorescence. mAb 18F2 bound to the cell wall surface in acapsular and encapsulated cells. Using mAb 18F2 and previously generated antibodies to GXM and GalXM we have established the localization of three capsular components GXM, GalXM and one type of mannoprotein, MP98 on the C. neoformans cell. The results show that MP98, like GalXM, is found near the cell wall and this information allows us to begin to discern the geography of the cryptococcal capsule.
Collapse
Affiliation(s)
- Magdia De Jesus
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rodrigues ML, Fonseca FL, Frases S, Casadevall A, Nimrichter L. The still obscure attributes of cryptococcal glucuronoxylomannan. Med Mycol 2010; 47:783-8. [PMID: 19343609 DOI: 10.3109/13693780902788621] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucuronoxylomannan (GXM) is the major capsular polysaccharide of Cryptococcus neoformans. It is essential for fungal virulence and causes a number of deleterious effects to host cells. During the last decades, most of the experimental models designed to study the roles of GXM during cryptococcal infection were based on the stimulation of animal cells. This most commonly involved macrophages or other effector cells, with polysaccharide fractions obtained by precipitation with cationic detergents. More recently, it has been demonstrated that GXM interferes with the physiological state of other target cells, such as the epithelium. In addition, recent studies indicate that the structure of the polysaccharide and, consequently, its functions vary according with the method used for its purification. This raises questions as to what is native GXM and the significance of prior studies. In this paper, we discuss some of the aspects of GXM that are still poorly explored in the current literature, including the relevance of the polysaccharide in the interaction of cryptococci with non-phagocytic cells and the relationship between its structure and biological activity.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
44
|
Immunomodulatory effects of serotype B glucuronoxylomannan from Cryptococcus gattii correlate with polysaccharide diameter. Infect Immun 2010; 78:3861-70. [PMID: 20547742 DOI: 10.1128/iai.00111-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glucuronoxylomannan (GXM), the major capsular component in the Cryptococcus complex, interacts with the immune system in multiple ways, which include the activation of Toll-like receptors (TLRs) and the modulation of nitric oxide (NO) production by phagocytes. In this study, we analyzed several structural parameters of GXM samples from Cryptococcus neoformans (serotypes A and D) and Cryptococcus gattii (serotypes B and C) and correlated them with the production of NO by phagocytes and the activation of TLRs. GXM fractions were differentially recognized by TLR2/TLR1 (TLR2/1) and TLR2/6 heterodimers expressed on TLR-transfected HEK293A cells. Higher NF-kappaB luciferase reporter activity induced by GXM was observed in cells expressing TLR2/1 than in cells transfected with TLR2/6 constructs. A serotype B GXM from C. gattii was the most effective polysaccharide fraction activating the TLR-mediated response. This serotype B polysaccharide, which was also highly efficient at eliciting the production of NO by macrophages, was similar to the other GXM samples in monosaccharide composition, zeta potential, and electrophoretic mobility. However, immunofluorescence with four different monoclonal antibodies and dynamic light-scattering analysis revealed that the serotype B GXM showed particularities in serological reactivity and had the smallest effective diameter among the GXM samples analyzed in this study. Fractionation of additional serotype B GXMs, followed by exposure of these fractions to macrophages, revealed a correlation between NO production and reduced effective diameters. Our results demonstrate a great functional diversity in GXM samples from different isolates and establish their abilities to differentially activate cellular responses. We propose that serological properties as well as physical chemical parameters, such as the diameter of polysaccharide molecules, may potentially influence the inflammatory response against Cryptococcus spp. and may contribute to the differences in granulomatous inflammation between cryptococcal species.
Collapse
|
45
|
Guimarães AJ, Frases S, Cordero RJB, Nimrichter L, Casadevall A, Nosanchuk JD. Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo. Cell Microbiol 2010; 12:740-53. [PMID: 20070311 DOI: 10.1111/j.1462-5822.2010.01430.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polysaccharide capsule of the fungus Cryptococcus neoformans is its main virulence factor. In this study, we determined the effects of mannitol and glucose on the capsule and exopolysaccharide production. Growth in mannitol significantly increased capsular volume compared with cultivation in glucose. However, cells grown in glucose concentrations higher than 62.5 mM produced more exopolysaccharide than cells grown in mannitol. The fibre lengths and glycosyl composition of capsular polysaccharide from yeast grown in mannitol was structurally different from that of yeast grown in glucose. Furthermore, mannitol treatment of mice infected intratracheally with C. neoformans resulted in fungal cells with significantly larger capsules and the mice had reduced fungal dissemination to the brain. Our results demonstrate the capacity of carbohydrate source and concentration to modify the expression of a major virulence factor of C. neoformans. These findings may impact the clinical management of cryptococcosis.
Collapse
|
46
|
De Wit PJGM, Mehrabi R, Van den Burg HA, Stergiopoulos I. Fungal effector proteins: past, present and future. MOLECULAR PLANT PATHOLOGY 2009; 10:735-47. [PMID: 19849781 PMCID: PMC6640362 DOI: 10.1111/j.1364-3703.2009.00591.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene-for-gene hypothesis. It took nearly 50 years before the first fungal avirulence (Avr) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and map-based cloning from model organisms, but, currently, the availability of many sequenced fungal genomes allows their cloning from additional fungi by a combination of comparative and functional genomics. It is believed that most Avr genes encode effectors that facilitate virulence by suppressing pathogen-associated molecular pattern-triggered immunity and induce effector-triggered immunity in plants containing cognate resistance proteins. In resistant plants, effectors are directly or indirectly recognized by cognate resistance proteins that reside either on the plasma membrane or inside the plant cell. Indirect recognition of an effector (also known as the guard model) implies that the virulence target of an effector in the host (the guardee) is guarded by the resistance protein (the guard) that senses manipulation of the guardee, leading to activation of effector-triggered immunity. In this article, we review the literature on fungal effectors and some pathogen-associated molecular patterns, including those of some fungi for which no gene-for-gene relationship has been established.
Collapse
Affiliation(s)
- Pierre J G M De Wit
- Wageningen University and Research Centre, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | | | | | | |
Collapse
|
47
|
Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol 2009; 63:223-47. [PMID: 19575556 DOI: 10.1146/annurev.micro.62.081307.162753] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryptococcus neoformans is a pathogenic fungus responsible for severe opportunistic infections. The most prominent feature of this yeast is its elaborate polysaccharide capsule, a complex structure that is required for virulence. The capsule is intimately associated with the cell wall, which underlies the capsule and offers the organism strength and flexibility in potentially hostile environments. Both structures are primarily composed of polysaccharides, offering a glimpse of the tremendous variation inherent in natural carbohydrate structures and their multiple biological functions. The steps in cell wall and capsule biosynthesis and assembly pose fascinating questions of metabolism, enzymology, cell biology, and regulation; the answers have potential application to treatment of a deadly infection. This article reviews current knowledge of cryptococcal cell wall and capsule biosynthesis and outstanding questions for the future.
Collapse
Affiliation(s)
- Tamara Lea Doering
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, USA.
| |
Collapse
|
48
|
Frases S, Pontes B, Nimrichter L, Rodrigues ML, Viana NB, Casadevall A. The elastic properties of the Cryptococcus neoformans capsule. Biophys J 2009; 97:937-45. [PMID: 19686640 DOI: 10.1016/j.bpj.2009.04.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 11/29/2022] Open
Abstract
Microbial capsules are important for virulence, but their architecture and physical properties are poorly understood. The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide capsule that is necessary for virulence and is the target of protective antibody responses. To study the C. neoformans capsule we developed what we believe is a new approach whereby we probed the capsular elastic properties by applying forces using polystyrene beads manipulated with optical tweezers. This method allowed us to determine the Young's modulus for the capsule in various conditions that affect capsule growth. The results indicate that the Young's modulus of the capsule decreases with its size and increases with the Ca(2+) concentration in solution. Also, capsular polysaccharide manifests an unexpected affinity for polystyrene beads, a property that may function in attachment to host cells and environmental structures. Bead probing with optical tweezers provides a new, nondestructive method that may have wide applicability for studying the effects of growth conditions, immune components, and drugs on capsular properties.
Collapse
Affiliation(s)
- Susana Frases
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, New York, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Kruppa MD, Lowman DW, Chen YH, Selander C, Scheynius A, Monteiro MA, Williams DL. Identification of (1-->6)-beta-D-glucan as the major carbohydrate component of the Malassezia sympodialis cell wall. Carbohydr Res 2009; 344:2474-9. [PMID: 19853245 DOI: 10.1016/j.carres.2009.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/24/2009] [Accepted: 09/28/2009] [Indexed: 02/06/2023]
Abstract
Members of the genus Malassezia are commensal fungi found on the skin of both human and domestic animals and are associated with skin diseases including dandruff/seborrheic dermatitis, pityriasis versicolor, and atopic eczema (AE) in humans. In this study we have characterized the cell-wall carbohydrates of Malassezia sympodialis, one of the species most frequently isolated from both AE patients and healthy individuals. Cells were grown in liquid Dixon media at 32 degrees C, harvested, and processed using a standard Fehling's precipitation methodology for the isolation of mannan and a standard base/acid extraction for (1-->3)-beta-D-glucans. Using these classic extraction methods we were unable to isolate precipitable mannan or insoluble (1-->3)-beta-D-glucan. However, acidification and addition of methanol to the remaining Fehling's-treated sample resulted in a very clean precipitate. This material was characterized by GPC-MALLS, 1D and 2D NMR, and GC-MS for monomer-type and linkage-type composition. We determined that trace amounts of both mannan and branched (1-->3, 1-->6)-beta-D-glucan were present in the recovered precipitate, but not linear (1-->3)-beta-D-glucan. Surprisingly, NMR analysis indicated that (1-->6)-beta-D-glucan was the major carbohydrate component isolated from M. sympodialis cell wall. GC-MS linkage analysis confirmed the (1-->6)-beta-D-glucan structure. Based on these studies we have determined that the M. sympodialis cell wall contains (1-->6)-beta-D-glucan as the major carbohydrate component along with trace amounts of mannan and (1-->3, 1-->6)-beta-d-glucan. In addition, these data indicate that modification of the classic mannan isolation methodology may be useful in the simultaneous isolation of both mannan and (1-->6)-beta-D-glucan from other fungi.
Collapse
Affiliation(s)
- Michael D Kruppa
- Department of Microbiology, East Tennessee State University, James H Quillen College of Medicine, Johnson City, TN 37614-1708, United States.
| | | | | | | | | | | | | |
Collapse
|
50
|
Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A. Vesicle-associated melanization in Cryptococcus neoformans. MICROBIOLOGY-SGM 2009; 155:3860-3867. [PMID: 19729402 DOI: 10.1099/mic.0.032854-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, several pathogenic fungi were shown to produce extracellular vesicles that contain various components associated with virulence. In the human pathogenic fungus Cryptococcus neoformans, these components included laccase, an enzyme that catalyses melanin synthesis. Spherical melanin granules have been observed in the cell wall of C. neoformans. Given that melanin granules have dimensions that are comparable to those of extracellular vesicles, and that metazoan organisms produce melanin in vesicular structures known as melanosomes, we investigated the role of vesicles in cryptococcal melanization. Extracellular vesicles melanized when incubated with the melanin precursor L-3,4-dihydroxyphenylalanine (L-DOPA). The kinetics of substrate incorporation into cells and vesicles was analysed using radiolabelled L-DOPA. The results indicated that substrate incorporation was different for cells and isolated vesicles. Acid-generated melanin ghosts stained with lipophilic dyes, implying the presence of associated lipid. A model for C. neoformans melanization is proposed that accounts for these observations and provides a mechanism for the assembly of melanin into relatively uniform spherical particles stacked in an orderly arrangement in the cell wall.
Collapse
Affiliation(s)
- Helene C Eisenman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Susana Frases
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - André M Nicola
- Departamento de Biologia Celular, Universidade de Brasília, Brazil.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Marcio L Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|