1
|
Tang X, Xu S, Yang Z, Wang K, Dai K, Zhang Y, Hu B, Wang Y, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Wen X, Wen Y. EspP2 Regulates the Adhesion of Glaesserella parasuis via Rap1 Signaling Pathway. Int J Mol Sci 2024; 25:4570. [PMID: 38674155 PMCID: PMC11050538 DOI: 10.3390/ijms25084570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Correa GB, Freire CA, Dibo M, Huerta-Cantillo J, Navarro-Garcia F, Barbosa AS, Elias WP, Moraes CTP. Plasmid-encoded toxin of Escherichia coli cleaves complement system proteins and inhibits complement-mediated lysis in vitro. Front Cell Infect Microbiol 2024; 14:1327241. [PMID: 38371299 PMCID: PMC10869522 DOI: 10.3389/fcimb.2024.1327241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.
Collapse
Affiliation(s)
| | | | - Miriam Dibo
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Jazmin Huerta-Cantillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
3
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
4
|
Freire CA, Silva RM, Ruiz RC, Pimenta DC, Bryant JA, Henderson IR, Barbosa AS, Elias WP. Secreted Autotransporter Toxin (Sat) Mediates Innate Immune System Evasion. Front Immunol 2022; 13:844878. [PMID: 35251044 PMCID: PMC8891578 DOI: 10.3389/fimmu.2022.844878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies are used by Escherichia coli to evade the host innate immune system in the blood, such as the cleavage of complement system proteins by secreted proteases. Members of the Serine Proteases Autotransporters of Enterobacteriaceae (SPATE) family have been described as presenting proteolytic effects against complement proteins. Among the SPATE-encoding genes sat (secreted autotransporter toxin) has been detected in high frequencies among strains of E. coli isolated from bacteremia. Sat has been characterized for its cytotoxic action, but the possible immunomodulatory effects of Sat have not been investigated. Therefore, this study aimed to evaluate the proteolytic effects of Sat on complement proteins and the role in pathogenesis of BSI caused by extraintestinal E. coli (ExPEC). E. coli EC071 was selected as a Sat-producing ExPEC strain. Whole-genome sequencing showed that sat sequences of EC071 and uropathogenic E. coli CFT073 present 99% identity. EC071 was shown to be resistant to the bactericidal activity of normal human serum (NHS). Purified native Sat was used in proteolytic assays with proteins of the complement system and, except for C1q, all tested substrates were cleaved by Sat in a dose and time-dependent manner. Moreover, E. coli DH5α survived in NHS pre-incubated with Sat. EC071-derivative strains harboring sat knockout and in trans complementations producing either active or non-active Sat were tested in a murine sepsis model. Lethality was reduced by 50% when mice were inoculated with the sat mutant strain. The complemented strain producing active Sat partially restored the effect caused by the wild-type strain. The results presented in this study show that Sat presents immunomodulatory effects by cleaving several proteins of the three complement system pathways. Therefore, Sat plays an important role in the establishment of bloodstream infections and sepsis.
Collapse
Affiliation(s)
- Claudia A Freire
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rita C Ruiz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, Brazil
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Angela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
5
|
Yang ZR. In silico prediction of Severe Acute Respiratory Syndrome Coronavirus 2 main protease cleavage sites. Proteins 2021; 90:791-801. [PMID: 34739145 PMCID: PMC8661936 DOI: 10.1002/prot.26274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
One of the emerging subjects to combat the SARS-CoV-2 virus is to design accurate and efficient drug such as inhibitors against the viral protease to stop the viral spread. In addition to laboratory investigation of the viral protease, which is fundamental, the in silico research of viral protease such as the protease cleavage site prediction is critically important and urgent. However, this problem has yet to be addressed. This article has, for the first time, investigated this problem using the pattern recognition approaches. The article has shown that the pattern recognition approaches incorporating a specially tailored kernel function for dealing with amino acids has the outstanding performance in the accuracy of cleavage site prediction and the discovery of the prototype cleavage peptides.
Collapse
|
6
|
Rajan A, Robertson MJ, Carter HE, Poole NM, Clark JR, Green SI, Criss ZK, Zhao B, Karandikar U, Xing Y, Margalef-Català M, Jain N, Wilson RL, Bai F, Hyser JM, Petrosino J, Shroyer NF, Blutt SE, Coarfa C, Song X, Prasad BVV, Amieva MR, Grande-Allen J, Estes MK, Okhuysen PC, Maresso AW. Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathog 2020; 16:e1008851. [PMID: 32986782 PMCID: PMC7553275 DOI: 10.1371/journal.ppat.1008851] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.
Collapse
Affiliation(s)
- Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Matthew J. Robertson
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
| | - Hannah E. Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Nina M. Poole
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sabrina I. Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zachary K. Criss
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Umesh Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Mar Margalef-Català
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Nikhil Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Fan Bai
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Noah F. Shroyer
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Cristian Coarfa
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - BV Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Pablo C. Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
7
|
The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nat Commun 2020; 11:3571. [PMID: 32678094 PMCID: PMC7366657 DOI: 10.1038/s41467-020-17391-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation. Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. Here, Tsukamoto et al. show that this effect is caused by a secreted protein that induces cell proliferation and angiogenesis by acting as an analog of the host’s vascular endothelial growth factor (VEGF).
Collapse
|
8
|
Mrnjavac N, Vazdar M, Bertoša B. Molecular dynamics study of functionally relevant interdomain and active site interactions in the autotransporter esterase EstA from Pseudomonas aeruginosa. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1770750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Natalia Mrnjavac
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Pokharel P, Habouria H, Bessaiah H, Dozois CM. Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms 2019; 7:E594. [PMID: 31766493 PMCID: PMC6956023 DOI: 10.3390/microorganisms7120594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Autotransporters are secreted proteins with multiple functions produced by a variety of Gram-negative bacteria. In Enterobacteriaceae, a subgroup of these autotransporters are the SPATEs (serine protease autotransporters of Enterobacteriaceae). SPATEs play a crucial role in survival and virulence of pathogens such as Escherichia coli and Shigella spp. and contribute to intestinal and extra-intestinal infections. These high molecular weight proteases are transported to the external milieu by the type Va secretion system and function as proteases with diverse substrate specificities and biological functions including adherence and cytotoxicity. Herein, we provide an overview of SPATEs and discuss recent findings on the biological roles of these secreted proteins, including proteolysis of substrates, adherence to cells, modulation of the immune response, and virulence in host models. In closing, we highlight recent insights into the regulation of expression of SPATEs that could be exploited to understand fundamental SPATE biology.
Collapse
Affiliation(s)
- Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hajer Habouria
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
10
|
Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 2019; 10:1965. [PMID: 31543869 PMCID: PMC6730261 DOI: 10.3389/fmicb.2019.01965] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ángel Cataldi
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| | - Mariano Larzábal
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Meuskens I, Saragliadis A, Leo JC, Linke D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front Microbiol 2019; 10:1163. [PMID: 31214135 PMCID: PMC6555100 DOI: 10.3389/fmicb.2019.01163] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Collapse
Affiliation(s)
| | | | | | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Andrade FB, Abreu AG, Nunes KO, Gomes TA, Piazza RM, Elias WP. Distribution of serine protease autotransporters of Enterobacteriaceae in typical and atypical enteroaggregative Escherichia coli. INFECTION GENETICS AND EVOLUTION 2017; 50:83-86. [DOI: 10.1016/j.meegid.2017.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
13
|
Céspedes S, Saitz W, Del Canto F, De la Fuente M, Quera R, Hermoso M, Muñoz R, Ginard D, Khorrami S, Girón J, Assar R, Rosselló-Mora R, Vidal RM. Genetic Diversity and Virulence Determinants of Escherichia coli Strains Isolated from Patients with Crohn's Disease in Spain and Chile. Front Microbiol 2017; 8:639. [PMID: 28596755 PMCID: PMC5443141 DOI: 10.3389/fmicb.2017.00639] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are genetically variable and virulence factors for AIEC are non-specific. FimH is the most studied pathogenicity-related protein, and there have been few studies on other proteins, such as Serine Protease Autotransporters of Enterobacteriacea (SPATEs). The goal of this study is to characterize E. coli strains isolated from patients with Crohn's disease (CD) in Chile and Spain, and identify genetic differences between strains associated with virulence markers and clonality. We characterized virulence factors and genetic variability by pulse field electrophoresis (PFGE) in 50 E. coli strains isolated from Chilean and Spanish patients with CD, and also determined which of these strains presented an AIEC phenotype. Twenty-six E. coli strains from control patients were also included. PFGE patterns were heterogeneous and we also observed a highly diverse profile of virulence genes among all E. coli strains obtained from patients with CD, including those strains defined as AIEC. Two iron transporter genes chuA, and irp2, were detected in various combinations in 68–84% of CD strains. We found that the most significant individual E. coli genetic marker associated with CD E. coli strains was chuA. In addition, patho-adaptative fimH mutations were absent in some of the highly adherent and invasive strains. The fimH adhesin, the iron transporter irp2, and Class-2 SPATEs did not show a significant association with CD strains. The V27A fimH mutation was detected in the most CD strains. This study highlights the genetic variability of E. coli CD strains from two distinct geographic origins, most of them affiliated with the B2 or D E. coli phylogroups and also reveals that nearly 40% of Chilean and Spanish CD patients are colonized with E.coli with a characteristic AIEC phenotype.
Collapse
Affiliation(s)
- Sandra Céspedes
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Waleska Saitz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Felipe Del Canto
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | | | - Rodrigo Quera
- Gastroenterology Unit, Clínica Las CondesSantiago, Chile
| | - Marcela Hermoso
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Rául Muñoz
- Institut Mediterrani d'Estudis Avançats (CSIC-UIB)Illes Balears, Spain
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son EspasesPalma de Mallorca, Spain
| | - Sam Khorrami
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son EspasesPalma de Mallorca, Spain
| | - Jorge Girón
- Department of Pediatrics, University of Virginia School of MedicineCharlottesville, VA, USA
| | - Rodrigo Assar
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | | | - Roberto M Vidal
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| |
Collapse
|
14
|
Subdomain 2 of the Autotransporter Pet Is the Ligand Site for Recognizing the Pet Receptor on the Epithelial Cell Surface. Infect Immun 2016; 84:2012-2021. [PMID: 27113356 DOI: 10.1128/iai.01528-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/15/2016] [Indexed: 02/02/2023] Open
Abstract
Most autotransporter passenger domains, regardless of their diversity in function, fold or are predicted to fold as right-handed β-helices carrying various loops that are presumed to confer functionality. Our goal here was to identify the subdomain (loop) or amino acid sequence of the Pet passenger domain involved in the receptor binding site on the host cell for Pet endocytosis. Here, we show that d1 and d2 subdomains, as well as the amino acid sequence linking the subdomain d2 and the adjacent β-helix (PDWET), are not required for Pet secretion through the autotransporter system and that none of our deletion mutants altered the predicted long right-handed β-helical structure. Interestingly, Pet lacking the d2 domain (PetΔd2) was unable to bind on the epithelial cell surface, in contrast to Pet lacking d1 (PetΔd1) subdomain or PDWET sequences. Moreover, the purified d1 subdomain, the biggest subdomain (29.8 kDa) containing the serine protease domain, was also unable to bind the cell surface. Thus, d2 sequence (54 residues without the PDWET sequence) was required for Pet binding to eukaryotic cells. In addition, this d2 sequence was also needed for Pet internalization but not for inducing cell damage. In contrast, PetΔd1, which was able to bind and internalize inside the cell, was unable to cause cell damage. Furthermore, unlike Pet, PetΔd2 was unable to bind cytokeratin 8, a Pet receptor. These data indicate that the surface d2 subdomain is essential for the ligand-receptor (Pet-Ck8) interaction for Pet uptake and to start the epithelial cell damage by this toxin.
Collapse
|
15
|
Molecular Characterization of the Vacuolating Autotransporter Toxin in Uropathogenic Escherichia coli. J Bacteriol 2016; 198:1487-98. [PMID: 26858103 DOI: 10.1128/jb.00791-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The vacuolating autotransporter toxin (Vat) contributes to uropathogenic Escherichia coli (UPEC) fitness during systemic infection. Here, we characterized Vat and investigated its regulation in UPEC. We assessed the prevalence of vat in a collection of 45 UPEC urosepsis strains and showed that it was present in 31 (68%) of the isolates. The isolates containing the vat gene corresponded to three major E. coli sequence types (ST12, ST73, and ST95), and these strains secreted the Vat protein. Further analysis of the vat genomic locus identified a conserved gene located directly downstream of vat that encodes a putative MarR-like transcriptional regulator; we termed this gene vatX The vat-vatX genes were present in the UPEC reference strain CFT073, and reverse transcriptase PCR (RT-PCR) revealed that the two genes are cotranscribed. Overexpression of vatX in CFT073 led to a 3-fold increase in vat gene transcription. The vat promoter region contained three putative nucleation sites for the global transcriptional regulator histone-like nucleoid structuring protein (H-NS); thus, the hns gene was mutated in CFT073 (to generate CFT073 hns). Western blot analysis using a Vat-specific antibody revealed a significant increase in Vat expression in CFT073 hns compared to that in wild-type CFT073. Direct H-NS binding to the vat promoter region was demonstrated using purified H-NS in combination with electrophoresis mobility shift assays. Finally, Vat-specific antibodies were detected in plasma samples from urosepsis patients infected by vat-containing UPEC strains, demonstrating that Vat is expressed during infection. Overall, this study has demonstrated that Vat is a highly prevalent and tightly regulated immunogenic serine protease autotransporter protein of Enterobacteriaceae (SPATE) secreted by UPEC during infection. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the major cause of hospital- and community-acquired urinary tract infections. The vacuolating autotransporter toxin (Vat) is a cytotoxin known to contribute to UPEC fitness during murine sepsis infection. In this study, Vat was found to be highly conserved and prevalent among a collection of urosepsis clinical isolates and was expressed at human core body temperature. Regulation of vat was demonstrated to be directly repressed by the global transcriptional regulator H-NS and upregulated by the downstream gene vatX (encoding a new MarR-type transcriptional regulator). Additionally, increased Vat-specific IgG titers were detected in plasma from corresponding urosepsis patients infected with vat-positive isolates. Hence, Vat is a highly conserved and tightly regulated urosepsis-associated virulence factor.
Collapse
|
16
|
Gibold L, Garenaux E, Dalmasso G, Gallucci C, Cia D, Mottet-Auselo B, Faïs T, Darfeuille-Michaud A, Nguyen HTT, Barnich N, Bonnet R, Delmas J. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn's disease-associated Escherichia coli. Cell Microbiol 2015; 18:617-31. [PMID: 26499863 DOI: 10.1111/cmi.12539] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
The aetiology of Crohn's disease (CD) involves disorders in host genetic factors and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are receiving increased attention because in studies of mucosa-associated microbiota, they are more prevalent in CD patients than in healthy subjects. AIEC are associated both with ileal and colonic disease phenotypes. In this study, we reported a protease called Vat-AIEC from AIEC that favours the mucosa colonization. The deletion of the Vat-AIEC-encoding gene resulted in an adhesion-impaired phenotype in vitro and affected the colonization of bacteria in contact with intestinal epithelial cells in a murine intestinal loop model, and also their gut colonization in vivo. Furthermore, unlike LF82Δvat-AIEC, wild-type AIEC reference strain LF82 was able to penetrate a mucus column extensively and promoted the degradation of mucins and a decrease in mucus viscosity. Vat-AIEC transcription was stimulated by several chemical conditions found in the ileum environment. Finally, the screening of E. coli strains isolated from CD patients revealed a preferential vat-AIEC association with AIEC strains belonging to the B2 phylogroup. Overall, this study revealed a new component of AIEC virulence that might favour their implantation in the gut of CD patients.
Collapse
Affiliation(s)
- Lucie Gibold
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Estelle Garenaux
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Camille Gallucci
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France
| | - David Cia
- Equipe Biophysique Neurosensorielle, Faculté de Pharmacie, Université d'Auvergne, UMR INSERM 1107, Clermont-Ferrand, France
| | - Benoit Mottet-Auselo
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Richard Bonnet
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Julien Delmas
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| |
Collapse
|
17
|
The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host. Infect Immun 2015; 83:2636-50. [PMID: 25895966 DOI: 10.1128/iai.00025-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system.
Collapse
|
18
|
Guignot J, Segura A, Tran Van Nhieu G. The Serine Protease EspC from Enteropathogenic Escherichia coli Regulates Pore Formation and Cytotoxicity Mediated by the Type III Secretion System. PLoS Pathog 2015; 11:e1005013. [PMID: 26132339 PMCID: PMC4488501 DOI: 10.1371/journal.ppat.1005013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
Type III secretion systems (T3SSs) are specialized macromolecular machines critical for bacterial virulence, and allowing the injection of bacterial effectors into host cells. The T3SS-dependent injection process requires the prior insertion of a protein complex, the translocon, into host cell membranes consisting of two-T3SS hydrophobic proteins, associated with pore-forming activity. In all described T3SS to date, a hydrophilic protein connects one hydrophobic component to the T3SS needle, presumably insuring the continuum between the hollow needle and the translocon. In the case of Enteropathogenic Escherichia coli (EPEC), the hydrophilic component EspA polymerizes into a filament connecting the T3SS needle to the translocon composed of the EspB and EspD hydrophobic proteins. Here, we identify EspA and EspD as targets of EspC, a serine protease autotransporter of Enterobacteriaceae (SPATE). We found that in vitro, EspC preferentially targets EspA associated with EspD, but was less efficient at proteolyzing EspA alone. Consistently, we found that EspC did not regulate EspA filaments at the surface of primed bacteria that was devoid of EspD, but controlled the levels of EspD and EspA secreted in vitro or upon cell contact. While still proficient for T3SS-mediated injection of bacterial effectors and cytoskeletal reorganization, an espC mutant showed increased levels of cell-associated EspA and EspD, as well as increased pore formation activity associated with cytotoxicity. EspP from enterohaemorrhagic E. coli (EHEC) also targeted translocator components and its activity was interchangeable with that of EspC, suggesting a common and important function of these SPATEs. These findings reveal a novel regulatory mechanism of T3SS-mediated pore formation and cytotoxicity control during EPEC/EHEC infection.
Collapse
Affiliation(s)
- Julie Guignot
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Audrey Segura
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
- * E-mail:
| |
Collapse
|
19
|
The Serine Protease Pic From Enteroaggregative Escherichia coli Mediates Immune Evasion by the Direct Cleavage of Complement Proteins. J Infect Dis 2015; 212:106-15. [DOI: 10.1093/infdis/jiv013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023] Open
|
20
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Ayala-Lujan JL, Vijayakumar V, Gong M, Smith R, Santiago AE, Ruiz-Perez F. Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes. PLoS One 2014; 9:e107920. [PMID: 25251283 PMCID: PMC4176022 DOI: 10.1371/journal.pone.0107920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/25/2014] [Indexed: 11/21/2022] Open
Abstract
The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system.
Collapse
Affiliation(s)
- Jorge Luis Ayala-Lujan
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Vidhya Vijayakumar
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Immunology and Microbiology, University of Maryland at Baltimore, Baltimore, Maryland, United States of America
| | - Mei Gong
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Rachel Smith
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Araceli E. Santiago
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
A mortise-tenon joint in the transmembrane domain modulates autotransporter assembly into bacterial outer membranes. Nat Commun 2014; 5:4239. [PMID: 24967730 DOI: 10.1038/ncomms5239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/28/2014] [Indexed: 11/08/2022] Open
Abstract
Bacterial autotransporters comprise a 12-stranded membrane-embedded β-barrel domain, which must be folded in a process that entraps segments of an N-terminal passenger domain. This first stage of autotransporter folding determines whether subsequent translocation can deliver the N-terminal domain to its functional form on the bacterial cell surface. Here, paired glycine-aromatic 'mortise and tenon' motifs are shown to join neighbouring β-strands in the C-terminal barrel domain, and mutations within these motifs slow the rate and extent of passenger domain translocation to the surface of bacterial cells. In line with this, biophysical studies of the autotransporter Pet show that the conserved residues significantly quicken completion of the folding reaction and promote stability of the autotransporter barrel domain. Comparative genomics demonstrate conservation of glycine-aromatic residue pairings through evolution as a previously unrecognized feature of all autotransporter proteins.
Collapse
|
23
|
Tapader R, Chatterjee S, Singh AK, Dayma P, Haldar S, Pal A, Basu S. The high prevalence of serine protease autotransporters of Enterobacteriaceae (SPATEs) in Escherichia coli causing neonatal septicemia. Eur J Clin Microbiol Infect Dis 2014; 33:2015-24. [PMID: 24924922 DOI: 10.1007/s10096-014-2161-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/12/2014] [Indexed: 01/02/2023]
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins demonstrating diverse virulence functions. The distribution of SPATEs is studied among diarrheagenic and extraintestinal pathogenic Escherichia coli. However, the contribution of SPATEs to the virulence of neonatal septicemic Escherichia coli (NSEC) has not yet been elucidated. This study was undertaken to evaluate the prevalence and phylogenetic distribution of different subtypes of SPATEs among NSEC. The presence of virulence factors and subtypes of SPATEs among different E. coli isolates was determined by polymerase chain reaction (PCR). E. coli phylogrouping was done by triplex PCR. Clonality of the isolates was assessed by pulsed-field gel electrophoresis (PFGE). The presence of SPATEs was significantly higher among the septicemic isolates (89 %) than the fecal (7.5 %) and environmental isolates (2.5 %). Vat (vacuolating autotransporter toxin) and Sat (secreted autotransporter toxin) were found to be the two most predominant SPATEs. The incidence of SPATEs was high in septicemic isolates of phylogroups A and B1 (87 %), lacking other virulence factors. The high prevalence of SPATEs in the non-B2 phylogroups of septicemic isolates in comparison with fecal and environmental isolates indicates an association of SPATEs with NSEC. The NSEC isolates were found to be clonally distinct, suggesting that the high prevalence of SPATEs was not due to clonal relatedness of the isolates. This study is the first to show the association of SPATEs with NSEC. The presence of SPATEs in the septicemic/NSEC isolates may be considered as the most discriminatory trait studied here.
Collapse
Affiliation(s)
- R Tapader
- Division of Pathophysiology, National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Espinoza-Mellado MDR, López-Villegas EO, Arteaga-Garibay RI, Giono-Cerezo S. Cell vacuolation induced by Haemophilus influenzae supernatants in HEp-2 cells. Mem Inst Oswaldo Cruz 2014; 108:1074-7. [PMID: 24402145 PMCID: PMC4005551 DOI: 10.1590/0074-0276130716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Haemophilus influenzae belongs to respiratory tract microbiota. We
observed vacuoles formation in previous studies with H. influenzae
culture supernatants, so in this work we characterised that cytotoxic effect. We
observed an abundant production of acidic cytoplasmic vacuoles due to the presence of
a “vacuolating factor” in H. influenzae supernatants which was characterised as
thermolabile. Greatest vacuolating activity was observed when utilizing the fraction
> 50 kDa. The presence of a large number of vacuoles in HEp-2 cells was verified
by transmission electron microscopy and some vacuoles were identified with a double
membrane and/or being surrounded by ribosomes. These results suggest similar
behaviour to that of vacuolating effects described by autotransporter proteins an
undescribed cytotoxic effect induced by H. influenzae .
Collapse
|
25
|
Cytokeratin 8 is an epithelial cell receptor for Pet, a cytotoxic serine protease autotransporter of Enterobacteriaceae. mBio 2013; 4:e00838-13. [PMID: 24327340 PMCID: PMC3870265 DOI: 10.1128/mbio.00838-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The group of proteins known as serine protease autotransporters of Enterobacteriaceae (SPATE) is a growing family of serine proteases secreted to the external milieu by the type V secretion system. Pet toxin and some other SPATE belong to the class 1 cytotoxic SPATE, which have comparable protease strength on fodrin. Pet is internalized and is directed to its intracellular substrate by retrograde transport. However, the epithelial cell receptor for Pet has yet to be identified. We show that Pet has affinity for the epithelial cell surface until the saturation of the binding sites at 100 nM Pet. Affinity column assays and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis identified a cytokeratin (CK8) which directly binds to Pet, and both proteins colocalized on the cell surface. Interestingly, CK8 is not present in kidney cell lines, which are not susceptible to Pet. Inhibition experiments by using anti-CK8 and ck8 small interfering RNA (siRNA) blocked the cytotoxic effect induced by Pet, while exogenous CK8 expression in kidney cells made them susceptible to Pet intoxication. Recombinant CK8 showed a Pet-binding pattern similar to that seen by using fixed cells. Remarkably, Pet colocalized with CK8 and clathrin at early times (receptor-mediated endocytosis), and subsequently, Pet colocalized with CK8 and Rab5b in the early endosomes. These data support the idea that CK8 is an important receptor for Pet on epithelial cells for starting its cytotoxic effects. These data suggest that therapeutics that block Pet-CK8 interaction may improve outcome of diseases caused by Pet-secreting Enterobacteriaceae such as enteroaggregative Escherichia coli. Receptor-ligand binding is one mechanism by which cells sense and respond to external cues. Receptors may also be utilized by toxins to mediate their own internalization. Pet toxin is secreted by enteroaggregative Escherichia coli, an organism that causes persistent diarrhea in children, traveler’s diarrhea, and acute and persistent diarrhea in patients with HIV. Pet is a member of the family of serine protease autotransporters of Enterobacteriaceae (SPATE). SPATE in different pathogens are virulence factors, and Pet belongs to the class 1 cytotoxic SPATE, which have comparable protease strength on their biological substrate, fodrin (a cytoskeletal protein important for maintaining cell viability). To cleave fodrin, Pet enters the cells by clathrin-mediated endocytosis. This mechanism includes receptor-mediated endocytosis (a receptor-ligand complex triggers the endocytosis). We show that CK8 is an important receptor for Pet on epithelial cells and that it may be useful for identifying molecules that block the interaction of CK8 with Pet.
Collapse
|
26
|
Carroll IM, Maharshak N. Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications. World J Gastroenterol 2013; 19:7531-7543. [PMID: 24431894 PMCID: PMC3837251 DOI: 10.3748/wjg.v19.i43.7531] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/05/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases.
Collapse
|
27
|
Ruiz-Perez F, Nataro JP. Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol Life Sci 2013; 71:745-70. [PMID: 23689588 DOI: 10.1007/s00018-013-1355-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 01/07/2023]
Abstract
Serine proteases exist in eukaryotic and prokaryotic organisms and have emerged during evolution as the most abundant and functionally diverse group. In Gram-negative bacteria, there is a growing family of high molecular weight serine proteases secreted to the external milieu by a fascinating and widely employed bacterial secretion mechanism, known as the autotransporter pathway. They were initially found in Neisseria, Shigella, and pathogenic Escherichia coli, but have now also been identified in Citrobacter rodentium, Salmonella, and Edwardsiella species. Here, we focus on proteins belonging to the serine protease autotransporter of Enterobacteriaceae (SPATEs) family. Recent findings regarding the predilection of serine proteases to host intracellular or extracellular protein-substrates involved in numerous biological functions, such as those implicated in cytoskeleton stability, autophagy or innate and adaptive immunity, have helped provide a better understanding of SPATEs' contributions in pathogenesis. Here, we discuss their classification, substrate specificity, and potential roles in pathogenesis.
Collapse
Affiliation(s)
- Fernando Ruiz-Perez
- Department of Pediatrics, School of Medicine, University of Virginia, P.O.Box 800326, MR4 Room 4012C, 409 Lane Road, Charlottesville, VA, 22908, USA,
| | | |
Collapse
|
28
|
Zhang J, Qian L, Wu Y, Cai X, Li X, Cheng X, Qu D. Deletion of pic results in decreased virulence for a clinical isolate of Shigella flexneri 2a from China. BMC Microbiol 2013; 13:31. [PMID: 23391153 PMCID: PMC3626585 DOI: 10.1186/1471-2180-13-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 01/30/2013] [Indexed: 11/28/2022] Open
Abstract
Background Shigella is a major pathogen responsible for bacillary dysentery, a severe form of shigellosis. Severity of the disease depends on the virulence of the infecting strain. Shigella pathogenicity is a multi-gene phenomenon, involving the participation of genes on an unstable large virulence plasmid and chromosomal pathogenicity islands. Results A multiplex PCR (mPCR) assay was developed to detect S. flexneri 2a from rural regions of Zhengding (Hebei Province, China). We isolated and tested 86 strains using our mPCR assay, which targeted the ipaH, ial and set1B genes. A clinical strain of S. flexneri 2a 51 (SF51) containing ipaH and ial, but lacking set1B was found. The virulence of this strain was found to be markedly decreased. Further testing showed that the SF51 strain lacked pic. To investigate the role of pic in S. flexneri 2a infections, a pic knockout mutant (SF301-∆ pic) and two complementation strains, SF301-∆ pic/pPic and SF51/pPic, were created. Differences in virulence for SF51, SF301-∆ pic, SF301-∆ pic/pPic, SF51/pPic and S. flexneri 2a 301 (SF301) were compared. Compared with SF301, both SF51 and SF301-∆ pic exhibited lower levels of Hela cell invasion and resulted in reduced keratoconjunctivitis, with low levels of tissue damage seen in murine eye sections. The virulence of SF301-∆ pic and SF51 was partially recovered in vitro and in vivo through the addition of a complementary pic gene. Conclusions The pic gene appears to be involved in an increase in pathogenicity of S. flexneri 2a. This gene assists with bacterial invasion into host cells and alters inflammatory reactions.
Collapse
Affiliation(s)
- Junqi Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Kida Y, Taira J, Yamamoto T, Higashimoto Y, Kuwano K. EprS, an autotransporter protein of Pseudomonas aeruginosa, possessing serine protease activity induces inflammatory responses through protease-activated receptors. Cell Microbiol 2013; 15:1168-81. [PMID: 23311922 DOI: 10.1111/cmi.12106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 11/29/2022]
Abstract
PA3535 (EprS), an autotransporter (AT) protein of Pseudomonas aeruginosa, is predicted to contain a serine protease motif. The eprS encodes a 104.5 kDa protein with a 30-amino-acid-long signal peptide, a 51.2 kDa amino-terminal secreted passenger domain and a 50.1 kDa carboxyl-terminal outer membrane channel formed translocator. Although the majority of AT proteins have been reported to be virulence factors, little is known about the functions of EprS in the pathogenicity of P. aeruginosa. In this study, we performed functional analyses of recombinant EprS secreted by Escherichia coli. The proteolytic activity of EprS was markedly decreased by changing Ser to Ala at position 308 or by serine protease inhibitors. EprS preferred to cleave substrates that terminated with arginine or lysine residues. Thus, these results indicate that EprS, a serine protease, displays the substrate specificity, cleaving after basic residues. We demonstrated that EprS activates NF-κB-driven promoters through protease-activated receptor (PAR)-1, -2 or -4 and induces IL-8 production through PAR-2 in a human bronchiole epithelial cell line. Moreover, EprS cleaved the peptides corresponding to the tethered ligand region of PAR-1, -2 and -4 at a specific site with exposure oftheir tethered ligands. Collectively, these results suggest that EprS activates host inflammatory responses through PARs.
Collapse
Affiliation(s)
- Yutaka Kida
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | | | | | | | | |
Collapse
|
30
|
RegR virulence regulon of rabbit-specific enteropathogenic Escherichia coli strain E22. Infect Immun 2013; 81:1078-89. [PMID: 23340312 DOI: 10.1128/iai.01325-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli, enteroaggregative E. coli, and Citrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.
Collapse
|
31
|
Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BIOMED RESEARCH INTERNATIONAL 2012; 2013:374395. [PMID: 23509714 PMCID: PMC3591105 DOI: 10.1155/2013/374395] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.
Collapse
|
32
|
Weiss A, Brockmeyer J. Prevalence, biogenesis, and functionality of the serine protease autotransporter EspP. Toxins (Basel) 2012; 5:25-48. [PMID: 23274272 PMCID: PMC3564066 DOI: 10.3390/toxins5010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) causes severe diseases in humans worldwide. One of its virulence factors is EspP, which belongs to the serine protease autotransporters of Enterobacteriaceae (SPATE) family. In this review we recapitulate the current data on prevalence, biogenesis, structural properties and functionality. EspP has been used to investigate mechanistic details of autotransport, and recent studies indicate that this transport mechanism is not autonomous but rather dependent on additional factors. Currently, five subtypes have been identified (EspPα-EspPε), with EspPα being associated with highly virulent EHEC serotypes and isolates from patients with severe disease. EspPα has been shown to degrade major proteins of the complement cascade, namely C3 and C5 and probably interferes with hemostasis by cleavage of coagulation factor V. Furthermore, EspPα is believed to contribute to biofilm formation perhaps by polymerization to rope-like structures. Together with the proteolytic activity, EspPα might ameliorate host colonization and interfere with host response.
Collapse
Affiliation(s)
- André Weiss
- Institute of Food Chemistry, Corrensstraße 45, Münster 48149, Germany.
| | | |
Collapse
|
33
|
Teh MY, Tran ENH, Morona R. Absence of O antigen suppresses Shigella flexneri IcsA autochaperone region mutations. MICROBIOLOGY-SGM 2012; 158:2835-2850. [PMID: 22936034 DOI: 10.1099/mic.0.062471-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Shigella flexneri IcsA (VirG) protein is a polarly distributed autotransporter protein. IcsA functions as a virulence factor by interacting with the host actin regulatory protein N-WASP, which in turn activates the Arp2/3 complex, initiating actin polymerization. Formation of F-actin comet tails allows bacterial cell-to-cell spreading. Although various accessory proteins such as periplasmic chaperones and the β-barrel assembly machine (BAM) complex have been shown to be involved in the export of IcsA, the IcsA translocation mechanism remains to be fully elucidated. A putative autochaperone (AC) region (amino acids 634-735) located at the C-terminal end of the IcsA passenger domain, which forms part of the self-associating autotransporter (SAAT) domain, has been suggested to be required for IcsA biogenesis, as well as for N-WASP recruitment, based on mutagenesis studies. IcsA(i) proteins with linker insertion mutations within the AC region have a significant reduction in production and are defective in N-WASP recruitment when expressed in smooth LPS (S-LPS) S. flexneri. In this study, we have found that the LPS O antigen plays a role in IcsA(i) production based on the use of an rmlD (rfbD) mutant having rough LPS (R-LPS) and a novel assay in which O antigen is depleted using tunicamycin treatment and then regenerated. In addition, we have identified a new N-WASP binding/interaction site within the IcsA AC region.
Collapse
Affiliation(s)
- Min Yan Teh
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Elizabeth Ngoc Hoa Tran
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Renato Morona
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
34
|
A novel virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity. PLoS Pathog 2012; 8:e1002854. [PMID: 22927813 PMCID: PMC3426542 DOI: 10.1371/journal.ppat.1002854] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/26/2012] [Indexed: 12/22/2022] Open
Abstract
The opportunistic human pathogen, Pseudomonas aeruginosa, is a major cause of infections in chronic wounds, burns and the lungs of cystic fibrosis patients. The P. aeruginosa genome encodes at least three proteins exhibiting the characteristic three domain structure of autotransporters, but much remains to be understood about the functions of these three proteins and their role in pathogenicity. Autotransporters are the largest family of secreted proteins in Gram-negative bacteria, and those characterised are virulence factors. Here, we demonstrate that the PA0328 autotransporter is a cell-surface tethered, arginine-specific aminopeptidase, and have defined its active site by site directed mutagenesis. Hence, we have assigned PA0328 with the name AaaA, for arginine-specific autotransporter of P. aeruginosa. We show that AaaA provides a fitness advantage in environments where the sole source of nitrogen is peptides with an aminoterminal arginine, and that this could be important for establishing an infection, as the lack of AaaA led to attenuation in a mouse chronic wound infection which correlated with lower levels of the cytokines TNFα, IL-1α, KC and COX-2. Consequently AaaA is an important virulence factor playing a significant role in the successful establishment of P. aeruginosa infections. We present a new Pseudomonas aeruginosa virulence factor that promotes chronic skin wound infections. We propose the name AaaA for this cell-surface tethered autotransporter. This arginine-specific aminopeptidase confers a growth advantage upon P. aeruginosa, providing a fitness advantage by creating a supply of arginine in chronic wounds where oxygen availability is limited and biofilm formation is involved. To our knowledge, this is the first mechanistic evidence linking the upregulation of genes involved in arginine metabolism with pathogenicity of P. aeruginosa, and we propose potential underlying mechanisms. The superbug P. aeruginosa is the leading cause of morbidity in cystic fibrosis patients. The ineffective host immune response to bacterial colonization is likely to play a critical role in the demise of these patients, making the possibility that AaaA could interface with the innate immune system, influencing the activity of iNOS and consequently the host's defence against invading pathogens. The surface localisation of AaaA makes it accessible to inhibitors that could reduce growth of P. aeruginosa during colonisation and alter biofilm formation, potentially improving the efficacy of current antimicrobials. Indeed, structurally related aminopeptidases play a central role in several disease states (stroke, diabetes, cancer, HIV and neuropsychiatric disorders), and inhibitors alleviate symptoms.
Collapse
|
35
|
Celik N, Webb CT, Leyton DL, Holt KE, Heinz E, Gorrell R, Kwok T, Naderer T, Strugnell RA, Speed TP, Teasdale RD, Likić VA, Lithgow T. A bioinformatic strategy for the detection, classification and analysis of bacterial autotransporters. PLoS One 2012; 7:e43245. [PMID: 22905239 PMCID: PMC3419190 DOI: 10.1371/journal.pone.0043245] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters.
Collapse
Affiliation(s)
- Nermin Celik
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Chaille T. Webb
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Denisse L. Leyton
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Kathryn E. Holt
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Eva Heinz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Rebecca Gorrell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Terence P. Speed
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Vladimir A. Likić
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
36
|
Leo JC, Grin I, Linke D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 2012; 367:1088-101. [PMID: 22411980 PMCID: PMC3297439 DOI: 10.1098/rstb.2011.0208] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autotransport in Gram-negative bacteria denotes the ability of surface-localized proteins to cross the outer membrane (OM) autonomously. Autotransporters perform this task with the help of a β-barrel transmembrane domain localized in the OM. Different classes of autotransporters have been investigated in detail in recent years; classical monomeric but also trimeric autotransporters comprise many important bacterial virulence factors. So do the two-partner secretion systems, which are a special case as the transported protein resides on a different polypeptide chain than the transporter. Despite the great interest in these proteins, the exact mechanism of the transport process remains elusive. Moreover, different periplasmic and OM factors have been identified that play a role in the translocation, making the term ‘autotransport’ debatable. In this review, we compile the wealth of details known on the mechanism of single autotransporters from different classes and organisms, and put them into a bigger perspective. We also discuss recently discovered or rediscovered classes of autotransporters.
Collapse
Affiliation(s)
- Jack C Leo
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | |
Collapse
|
37
|
A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microb Cell Fact 2012; 11:85. [PMID: 22709508 PMCID: PMC3521207 DOI: 10.1186/1475-2859-11-85] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Background The self-sufficient autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a β-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the Escherichia coli AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the Mycobacterium tuberculosis vaccine target ESAT6 as a model protein. Results Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a β-helical core structure (β-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of E. coli. On the other hand, Hbp-ESAT6 fusions containing a truncated β-stem appeared unstable after translocation, demonstrating the importance of an intact β-stem. By interrupting the cleavage site between passenger and β-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated Salmonella typhimurium strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development. Conclusions We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.
Collapse
|
38
|
Zhang NZ, Chu YF, Gao PC, Zhao P, He Y, Lu ZX. Immunological identification and characterization of extracellular serine protease-like protein encoded in a putative espP2 gene of Haemophilus parasuis. J Vet Med Sci 2012; 74:983-7. [PMID: 22446405 DOI: 10.1292/jvms.11-0260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Haemophilus parasuis is known to produce a group of virulence-associated autotransporter (AT) proteins, VtaAs; however, no other ATs have been characterized yet. On the basis of the reported sequence of a putative espP2 gene for extracellular serine protease (ESP)-like protein of H. parasuis, this putative AT gene was successfully amplified from H. parasuis serotype 5 field strain HPS0819, cloned and sequenced. The confirmed ORF sequence showed 100% identity with the reported putative espP2 gene. The recombinant ESP-like protein purified from Escherichia coli with a pET expression system was used for immunological characterization. An approximately 85 kDa antigen was detected in cultured H. parasuis by using antiserum to the purified ESP-like protein, and antibodies against the recombinant ESP-like protein were detected in a selected serum from pigs with experimental H. parasuis infection. The results indicated that H. parasuis could produce ESP-like protein in vitro and in vivo. In an immune protection study using guinea pigs, 6 out of 10 animals immunized with the recombinant ESP-like protein survived after challenge with 5 × 10(9) bacteria of strain HPS0819, whereas 7 out of 10 animals immunized with formalin-inactivated H0819 bacterin survived after challenge. The results suggest that ESP-like protein could be one of the vaccine antigen candidates for H. parasuis infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | |
Collapse
|
39
|
Tame JR. Autotransporter protein secretion. Biomol Concepts 2011; 2:525-36. [DOI: 10.1515/bmc.2011.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/16/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractAutotransporter proteins are a large family of virulence factors secreted from Gram-negative bacteria by a unique mechanism. First described in the 1980s, these proteins have a C-terminal region that folds into a β-barrel in the bacterial outer membrane. The so-called passenger domain attached to this barrel projects away from the cell surface and may be liberated from the cell by self-cleavage or surface proteases. Although the majority of passenger domains have a similar β-helical structure, they carry a variety of subdomains, allowing them to carry out widely differing functions related to pathogenesis. Considerable biochemical and structural characterisation of the barrel domain has shown that ‘autotransporters’ in fact require a conserved and essential protein complex in the outer membrane for correct folding. Although the globular domains of this complex projecting into the periplasmic space have also been structurally characterised, the overall secretion pathway of the autotransporters remains highly puzzling. It was presumed for many years that the passenger domain passed through the centre of the barrel domain to reach the cell surface, driven at least in part by folding. This picture is complicated by conflicting data, and there is currently little hard information on the true nature of the secretion intermediates. As well as their medical importance therefore, autotransporters are proving to be an excellent system to study the folding and membrane insertion of outer membrane proteins in general. This review focuses on structural aspects of autotransporters; their many functions in pathogenesis are beyond its scope.
Collapse
Affiliation(s)
- Jeremy R.H. Tame
- 1Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
40
|
Structures and functions of autotransporter proteins in microbial pathogens. Int J Med Microbiol 2011; 301:461-8. [DOI: 10.1016/j.ijmm.2011.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 12/23/2022] Open
|
41
|
Filloux A. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol 2011; 2:155. [PMID: 21811488 PMCID: PMC3140646 DOI: 10.3389/fmicb.2011.00155] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/01/2011] [Indexed: 12/25/2022] Open
Abstract
Protein secretion systems are molecular nanomachines used by Gram-negative bacteria to thrive within their environment. They are used to release enzymes that hydrolyze complex carbon sources into usable compounds, or to release proteins that capture essential ions such as iron. They are also used to colonize and survive within eukaryotic hosts, causing acute or chronic infections, subverting the host cell response and escaping the immune system. In this article, the opportunistic human pathogen Pseudomonas aeruginosa is used as a model to review the diversity of secretion systems that bacteria have evolved to achieve these goals. This diversity may result from a progressive transformation of cell envelope complexes that initially may not have been dedicated to secretion. The striking similarities between secretion systems and type IV pili, flagella, bacteriophage tail, or efflux pumps is a nice illustration of this evolution. Differences are also needed since various secretion configurations call for diversity. For example, some proteins are released in the extracellular medium while others are directly injected into the cytosol of eukaryotic cells. Some proteins are folded before being released and transit into the periplasm. Other proteins cross the whole cell envelope at once in an unfolded state. However, the secretion system requires conserved basic elements or features. For example, there is a need for an energy source or for an outer membrane channel. The structure of this review is thus quite unconventional. Instead of listing secretion types one after each other, it presents a melting pot of concepts indicating that secretion types are in constant evolution and use basic principles. In other words, emergence of new secretion systems could be predicted the way Mendeleïev had anticipated characteristics of yet unknown elements.
Collapse
Affiliation(s)
- Alain Filloux
- Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Imperial College London London, UK
| |
Collapse
|
42
|
The autotransporter protein from Bordetella avium, Baa1, is involved in host cell attachment. Microbiol Res 2011; 167:55-60. [PMID: 21632225 DOI: 10.1016/j.micres.2011.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 11/23/2022]
Abstract
Bordetella avium is a Gram negative upper respiratory tract pathogen of birds. B. avium infection of commercially raised turkeys is an agriculturally significant problem. Here we describe the functional analysis of the first characterized B. avium autotransporter protein, Baa1. Autotransporters comprise a large family of proteins found in all groups of Gram negative bacteria. Although not unique to pathogenic bacteria, autotransporters have been shown to perform a variety of functions implicated in virulence. To test the hypothesis that Baa1 is a B. avium virulence factor, unmarked baa1 deletion mutants (Δbaa1) were created and tested phenotypically. It was found that baa1 mutants have wild-type levels of serum sensitivity and infectivity, yet significantly lower levels of turkey tracheal cell attachment in vitro. Likewise, semi-purified recombinant His-tagged Baa1, expressed in Escherichia coli, was shown to bind specifically to turkey tracheal cells via western blot analysis. Taken together, we conclude that Baa1 acts as a host cell attachment factor and thus plays a role B. avium virulence.
Collapse
|
43
|
Haiko J, Laakkonen L, Westerlund-Wikström B, Korhonen TK. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla. BMC Evol Biol 2011; 11:43. [PMID: 21310089 PMCID: PMC3048539 DOI: 10.1186/1471-2148-11-43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/11/2011] [Indexed: 02/02/2023] Open
Abstract
Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens.
Collapse
Affiliation(s)
- Johanna Haiko
- Division of General Microbiology, Department of Biosciences, P,O, Box 56, FI 00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, Marshall MJ, Lipton MS, Beyenal H. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 2011; 13:1018-31. [PMID: 21251176 DOI: 10.1111/j.1462-2920.2010.02407.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The composition of extracellular polymeric substances (EPS) from Shewanella sp. HRCR-1 biofilms was investigated using infrared spectroscopy and proteomics to provide insight into potential ecophysiological functions and redox activity of the EPS. Both bound and loosely associated EPS were extracted from Shewanella sp. HRCR-1 biofilms prepared using a hollow-fibre membrane biofilm reactor. Fourier transform infrared spectra revealed the presence of proteins, polysaccharides, nucleic acids, membrane lipids and fatty acids in the EPS fractions. Using a global proteomic approach, a total of 58 extracellular and outer membrane proteins were identified in the EPS. These included homologues of multiple Shewanella oneidensis MR-1 proteins that potentially contribute to key physiological biofilm processes, such as biofilm-promoting protein BpfA, surface-associated serine protease, nucleotidases (CpdB and UshA), an extracellular lipase, and oligopeptidases (PtrB and a M13 family oligopeptidase lipoprotein). In addition, 20 redox proteins were found in extracted EPS. Among the detected redox proteins were the homologues of two S. oneidensis MR-1 c-type cytochromes, MtrC and OmcA, which have been implicated in extracellular electron transfer. Given their detection in the EPS of Shewanella sp. HRCR-1 biofilms, c-type cytochromes may contribute to the possible redox activity of the biofilm matrix and play important roles in extracellular electron transfer reactions.
Collapse
Affiliation(s)
- Bin Cao
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering and Center for Environmental, Sediment and Aquatic Research (CESAR), Washington State University, Pullman, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Soprova Z, Sauri A, van Ulsen P, Tame JRH, den Blaauwen T, Jong WSP, Luirink J. A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J Biol Chem 2010; 285:38224-33. [PMID: 20923769 DOI: 10.1074/jbc.m110.180505] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autotransporters are bacterial virulence factors that share a common mechanism by which they are transported to the cell surface. They consist of an N-terminal passenger domain and a C-terminal β-barrel, which has been implicated in translocation of the passenger across the outer membrane (OM). The mechanism of passenger translocation and folding is still unclear but involves a conserved region at the C terminus of the passenger domain, the so-called autochaperone domain. This domain functions in the stepwise translocation process and in the folding of the passenger domain after translocation. In the autotransporter hemoglobin protease (Hbp), the autochaperone domain consists of the last rung of the β-helix and a capping domain. To examine the role of this region, we have mutated several conserved aromatic residues that are oriented toward the core of the β-helix. We found that non-conservative mutations affected secretion with Trp(1015) in the cap region as the most critical residue. Substitution at this position yielded a DegP-sensitive intermediate that is located at the periplasmic side of the OM. Further analysis revealed that Trp(1015) is most likely required for initiation of processive folding of the β-helix at the cell surface, which drives sequential translocation of the Hbp passenger across the OM.
Collapse
Affiliation(s)
- Zora Soprova
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Importance of conserved residues of the serine protease autotransporter beta-domain in passenger domain processing and beta-barrel assembly. Infect Immun 2010; 78:3516-28. [PMID: 20515934 DOI: 10.1128/iai.00390-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Serine protease autotransporters of the family Enterobacteriaceae (SPATE) comprise a family of virulence proteins secreted by enteric Gram-negative bacteria via the autotransporter secretion pathway. A SPATE polypeptide contains a C-terminal translocator domain that inserts into the bacterial outer membrane as a beta-barrel structure and mediates secretion of the passenger domain to the extracellular environment. In the present study, we examined the role of conserved residues located in the SPATE beta-barrel-forming region in passenger domain secretion. Thirty-nine fully conserved residues in Tsh were mutated by single-residue substitution, and defects in their secretion phenotypes were assessed by cell fractionation and immunochemistry. A total of 22 single mutants exhibited abnormal phenotypes in different cellular compartments. Most mutants affecting secretion are charged residues with side chains pointing into the beta-barrel interior. Seven mutants showed notable abnormalities in processing (constructs with the E1231A, E1249A, and R1374A mutations) and beta-barrel assembly or insertion into the outer membrane (constructs with the G1158Y, F1360A, Y1375A, and F1377A mutations). The phenotypes of the beta-barrel assembly/insertion mutants and the presence of a processed Tsh passenger domain in the periplasm support the possibility that the translocator domain must undergo extensive folding prior to insertion into the outer membrane. Results from double-mutation experiments further demonstrate that F1360 and F1377 affect beta-barrel insertion/assembly at different times. In light of these new data, a more refined model for the mechanism of SPATE secretion is presented.
Collapse
|
47
|
Dautin N. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function. Toxins (Basel) 2010; 2:1179-206. [PMID: 22069633 PMCID: PMC3153244 DOI: 10.3390/toxins2061179] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins.
Collapse
Affiliation(s)
- Nathalie Dautin
- Department of Biology, The Catholic University of America, 620 Michigan Avenue N.E., Washington, DC, 20064, USA.
| |
Collapse
|
48
|
Intramolecular interactions between the protease and structural domains are important for the functions of serine protease autotransporters. Infect Immun 2010; 78:3335-45. [PMID: 20479079 DOI: 10.1128/iai.00129-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporter (AT) is a protein secretion pathway found in Gram-negative bacteria featuring a multidomain polypeptide with a signal sequence, a passenger domain, and a translocator domain. An AT subfamily named serine protease ATs of the family Enterobacteriaceae (SPATEs) is characterized by the presence of a conserved serine protease motif in the passenger domain which contributes to bacterial pathogenesis. The goal of the current study is to determine the importance of the passenger domain conserved residues in the SPATE proteolytic and adhesive functions using the temperature-sensitive hemagglutinin (Tsh) protein as our model. To begin, mutations of 21 fully conserved residues in the four passenger domain conserved motifs were constructed by PCR-based site-directed mutagenesis. Seventeen mutants exhibited a wild-type secretion level; among these mutants, eight displayed reduced proteolytic activities in Tsh-specific oligopeptide and mucin cleavage assays. These eight mutants also demonstrated lower affinities to extracellular matrix proteins, collagen IV, and fibronectin. These eight conserved residues were analyzed by molecular graphics modeling to demonstrate their intramolecular interactions with the catalytic triad and other key residues. Additional mutations were made to confirm the above interactions in order to demonstrate their significance to the SPATE functions. Altogether our data suggest that certain conserved residues in the SPATE passenger domain are important for both the proteolytic and adhesive activities of SPATE by maintaining the proper protein structure via intramolecular interactions between the protease and beta-helical domains. Here, we provide new insight into the structure-function relationship of the SPATEs and the functional roles of their conserved residues.
Collapse
|
49
|
Navarro-Garcia F, Sonnested M, Teter K. Host-Toxin Interactions Involving EspC and Pet, Two Serine Protease Autotransporters of the Enterobacteriaceae. Toxins (Basel) 2010; 2:1134-1147. [PMID: 21243083 PMCID: PMC3020798 DOI: 10.3390/toxins2051134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 12/11/2022] Open
Abstract
EspC and Pet are toxins secreted by the diarrheagenic enteropathogenic and enteroaggregative Escherichia coli pathotypes, respectively. Both toxins have a molecular mass around 110 kDa and belong to the same protein family called Serine Protease Autotransporters of the Enterobacteriaceae (SPATE). Furthermore, both toxins act within the cytosol of intoxicated epithelial cells to disrupt the architecture of the actin cytoskeleton. This cytopathic and enterotoxic effect results from toxin cleavage of the actin-binding protein fodrin, although the two toxins recognize different cleavage sites on fodrin. EspC and Pet also have dramatically different mechanisms of entering the target cell which appear dependent upon the E. coli pathotype. In this review, we compare/contrast EspC and Pet in regards to their mode of delivery into the target cell, their effects on fodrin and the actin cytoskeleton, and their possible effects on the physiology of the intestinal epithelial cell.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-Zacatenco), Ap. Postal 14-740, 07000 México DF, Mexico;
| | - Michael Sonnested
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-Zacatenco), Ap. Postal 14-740, 07000 México DF, Mexico;
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA;
| |
Collapse
|
50
|
Autotransporter passenger proteins: virulence factors with common structural themes. J Mol Med (Berl) 2010; 88:451-8. [DOI: 10.1007/s00109-010-0600-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 01/20/2023]
|