1
|
Wang Y, Liu J, Zhang X, Heffernan JM. An HIV stochastic model with cell-to-cell infection, B-cell immune response and distributed delay. J Math Biol 2023; 86:35. [PMID: 36695912 DOI: 10.1007/s00285-022-01863-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023]
Abstract
In this study, a delayed HIV stochastic model with virus-to-cell infection, cell-to-cell transmission and B-cell immune response is proposed. We first transform the stochastic differential equation with distributed delay into a high-dimensional degenerate stochastic differential equation, and then theoretically analyze the dynamic behaviour of the degenerate model. The unique global solution of the model is given by rigorous analysis. By formulating suitable Lyapunov functions, the existence of the stationary Markov process is obtained if the stochastic B-cell-activated reproduction number is greater than one. We also use the law of large numbers theorem and the spectral radius analysis method to deduce that the virus can be cleared if the stochastic B-cell-inactivated reproduction number is less than one. Through uncertainty and sensitivity analysis, we obtain key parameters that determine the value of the stochastic B-cell-activated reproduction number. Numerically, we examine that low level noise can maintain the number of the virus and B-cell populations at a certain range, while high level noise is helpful for the elimination of the virus. Furthermore, the effect of the cell-to-cell infection on model behaviour, and the influence of the key parameters on the size of the stochastic B-cell-activated reproduction number are also investigated.
Collapse
Affiliation(s)
- Yan Wang
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Jun Liu
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Xinhong Zhang
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Centre for Disease Modelling, Department of Mathematics and Statistics, York University, Toronto, M3J 1P3, Canada.
| |
Collapse
|
2
|
Zhao HJ, Zhao XH. Modulatory Effect of the Supplemented Copper Ion on In Vitro Activity of Bovine Lactoferrin to Murine Splenocytes and RAW264.7 Macrophages. Biol Trace Elem Res 2019; 189:519-528. [PMID: 30117046 DOI: 10.1007/s12011-018-1472-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Bovine lactoferrin (LF) was supplemented with Cu2+ at three contents of 0.16, 0.32, and 0.64 mg/g LF, respectively. After then, LF and Cu-supplemented LF products were assessed for immuno-modulation in murine splenocytes and RAW264.7 macrophages, using dose levels of 10-40 μg/mL and four evaluation reflectors including stimulation index of splenocytes, T lymphocyte subpopulations, macrophage phagocytosis, and cytokine secretion. The results indicated that LF and Cu-supplemented LF products had suppression on splenocytes as well as concanavalin A (ConA)- or lipopolysaccharide-stimulated splenocytes; however, using lower Cu-supplementation content (i.e., 0.16 mg/g LF) and lower dose level (10 μg/mL) alleviated this suppression significantly (P < 0.05). Compared to LF, Cu-supplemented LF product of lower Cu-supplementation content at lower dose level yielded slightly enhanced macrophage stimulation, increased CD4+/CD8+ ratio of T lymphocyte subpopulations in ConA-stimulated splenocytes, and significant secretion enhancement for interleukin-2 (IL-2), IL-4, interferon-γ (in splenocytes), IL-1β, and tumor necrosis factor-α (in macrophages) (P < 0.05). Furthermore, Cu-supplemented LF product of higher Cu-supplementation content (i.e., 0.64 mg/g LF) at higher dose level mostly showed opposite effects in the cells, in comparison with its counterpart at lower dose level. It is concluded that Cu-supplementation of LF can alleviate or increase LF's effects on the two immune cells, and moreover, Cu content of supplemented LF is a key factor that modulates these effects.
Collapse
Affiliation(s)
- Hui-Juan Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030, Harbin, People's Republic of China.
| |
Collapse
|
3
|
Requirements for Empirical Immunogenicity Trials, Rather than Structure-Based Design, for Developing an Effective HIV Vaccine. HIV/AIDS: IMMUNOCHEMISTRY, REDUCTIONISM AND VACCINE DESIGN 2019. [PMCID: PMC7122000 DOI: 10.1007/978-3-030-32459-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
|
4
|
Tolbert WD, Gohain N, Alsahafi N, Van V, Orlandi C, Ding S, Martin L, Finzi A, Lewis GK, Ray K, Pazgier M. Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure 2017; 25:1719-1731.e4. [PMID: 29056481 PMCID: PMC5677539 DOI: 10.1016/j.str.2017.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 01/14/2023]
Abstract
Antibodies can have an impact on HIV-1 infection in multiple ways, including antibody-dependent cellular cytotoxicity (ADCC), a correlate of protection observed in the RV144 vaccine trial. One of the most potent ADCC-inducing epitopes on HIV-1 Env is recognized by the C11 antibody. Here, we present the crystal structure, at 2.9 Å resolution, of the C11-like antibody N12-i3, in a quaternary complex with the HIV-1 gp120, a CD4-mimicking peptide M48U1, and an A32-like antibody, N5-i5. Antibody N12-i3 recognizes an epitope centered on the N-terminal "eighth strand" of a critical β sandwich, which our analysis indicates to be emblematic of a late-entry state, after the gp120 detachment. In prior entry states, this sandwich comprises only seven strands, with the eighth strand instead pairing with a portion of the gp120 C terminus. The conformational gymnastics of HIV-1 gp120 thus includes altered β-strand pairing, possibly to reduce immunogenicity, although nevertheless still recognized by the human immune system.
Collapse
Affiliation(s)
- William D. Tolbert
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Neelakshi Gohain
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Nirmin Alsahafi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada,CEA, Joliot, Service d’Ingénierie Moléculaire des Protéines, F-91191 Gif-sur-Yvette, France
| | - Verna Van
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Microbiology and Immunology of University of Maryland School of Medicine, Baltimore, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Loïc Martin
- CEA, Joliot, Service d’Ingénierie Moléculaire des Protéines, F-91191 Gif-sur-Yvette, France
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Microbiology and Immunology of University of Maryland School of Medicine, Baltimore, USA
| | - Krishanu Ray
- Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, Biology of University of Maryland School of Medicine, Baltimore, USA,Department of Biochemistry and Molecular, Biology of University of Maryland School of Medicine, Baltimore, USA,To whom correspondence should be addressed: , 725 West Lombard Street, Baltimore, MD 21201, USA, Tel: (410) 706-4780, Fax: (410) 706-7583
| |
Collapse
|
5
|
Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells. PLoS Pathog 2015; 11:e1005005. [PMID: 26121641 PMCID: PMC4485899 DOI: 10.1371/journal.ppat.1005005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. We here give insight into a substantial novel way of dendritic cell modulation at least during acute HIV-1 infection by triggering integrin receptor signaling. We found that complement-opsonization of the virus is able to relieve SAMHD1 restriction in DCs, thereby initiating strong maturation and co-stimulatory capacity of the cells and stimulating efficient cellular and humoral antiviral immune responses. This newly described way of DC modulation by complement might be exploited to find novel therapeutic targets promoting DC immune functions against HIV.
Collapse
|
6
|
Abstract
Despite the great advances made in controlling human immunodeficiency virus type 1 (HIV-1) infection with antiretroviral drug treatment, a safe and efficacious HIV vaccine has yet to be developed. Here, we discuss why clinical trials and vaccine development for HIV have so far been disappointing, with an emphasis on the lack of protective antibodies. We review approaches for developing appropriate HIV immunogens and the stimulation of long-lasting B-cell responses with antibody maturation. We conclude that candidate reagents in the pipeline for HIV vaccine development are unlikely to be particularly effective. Although the major funders of HIV vaccine research and development are placing increasing emphasis on clinical product development, a genuine breakthrough in preventing HIV infection through vaccines is more likely to come from novel immunogen research.
Collapse
Affiliation(s)
- F Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
7
|
Tseng YS, Agbandje-McKenna M. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors. Front Immunol 2014; 5:9. [PMID: 24523720 PMCID: PMC3906578 DOI: 10.3389/fimmu.2014.00009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.
Collapse
Affiliation(s)
- Yu-Shan Tseng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Madhavi V, Kent SJ, Stratov I. HIV-specific antibody-dependent cellular cytotoxicity: a novel vaccine modality. Expert Rev Clin Immunol 2014; 8:767-74. [DOI: 10.1586/eci.12.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Monoclonal antibodies for prophylactic and therapeutic use against viral infections. ACTA ACUST UNITED AC 2013; 88:T15-T23. [PMID: 32287402 PMCID: PMC7111719 DOI: 10.1016/j.pepo.2013.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/15/2013] [Indexed: 11/21/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
|
10
|
Lindsay RW, Ouellette I, Arendt HE, Martinez J, DeStefano J, Lopez M, Pavlakis GN, Chiuchiolo MJ, Parks CL, King CR. SIV antigen-specific effects on immune responses induced by vaccination with DNA electroporation and plasmid IL-12. Vaccine 2013; 31:4749-58. [PMID: 23954384 DOI: 10.1016/j.vaccine.2013.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/28/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Molecular adjuvants are important for augmenting or modulating immune responses induced by DNA vaccination. Promising results have been obtained using IL-12 expression plasmids in a variety of disease models including the SIV model of HIV infection. We used a mouse model to evaluate plasmid IL-12 (pIL-12) in a DNA prime, recombinant adenovirus serotype 5 (rAd5) boost regimen specifically to evaluate the effect of IL-12 expression on cellular and humoral immunity induced against both SIVmac239 Gag and Env antigens. Priming with electroporated (EP) DNA+pIL-12 resulted in a 2-4-fold enhanced frequency of Gag-specific CD4 T cells which was maintained through the end of the study irrespective of the pIL-12 dose, while memory Env-specific CD4+T cells were maintained only at the low dose of pIL-12. There was little positive effect of pIL-12 on the humoral response to Env, and in fact, high dose pIL-12 dramatically reduced SIV Env-specific IgG. Additionally, both doses of pIL-12 diminished the frequency of CD8 T-cells after DNA prime, although a rAd5 boost recovered CD8 responses regardless of the pIL-12 dose. In this prime-boost regimen, we have shown that a high dose pIL-12 can systemically reduce Env-specific humoral responses and CD4T cell frequency, but not Gag-specific CD4+ T cells. These data indicate that it is important to independently characterize individual SIV or HIV antigen immunogenicity in multi-antigenic vaccines as a function of adjuvant dose.
Collapse
Affiliation(s)
- Ross W Lindsay
- International AIDS Vaccine Initiative, 140 58th Street, Brooklyn, NY 11220, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, Division of Infection and Immunity, University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
12
|
Julien JP, Lee PS, Wilson IA. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol Rev 2013; 250:180-98. [PMID: 23046130 DOI: 10.1111/imr.12005] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) envelope protein (Env) and influenza hemagglutinin (HA) are the surface glycoproteins responsible for viral entry into host cells, the first step in the virus life cycle necessary to initiate infection. These glycoproteins exhibit a high degree of sequence variability and glycosylation, which are used as strategies to escape host immune responses. Nonetheless, antibodies with broadly neutralizing activity against these viruses have been isolated that have managed to overcome these barriers. Here, we review recent advances in the structural characterization of these antibodies with their viral antigens that defines a few sites of vulnerability on these viral spikes. These broadly neutralizing antibodies tend to focus their recognition on the sites of similar function between the two viruses: the receptor-binding site and membrane fusion machinery. However, some sites of recognition are unique to the virus neutralized, such as the dense shield of oligomannose carbohydrates on HIV-1 Env. These observations are discussed in the context of structure-based design strategies to aid in vaccine design or development of antivirals.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
13
|
Both L, Banyard AC, van Dolleweerd C, Wright E, Ma JKC, Fooks AR. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine 2013; 31:1553-9. [PMID: 23370150 PMCID: PMC7115371 DOI: 10.1016/j.vaccine.2013.01.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/01/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
Affiliation(s)
- Leonard Both
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Ashley C. Banyard
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Edward Wright
- School of Life Sciences, University of Westminster, London, UK
| | - Julian K.-C. Ma
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Anthony R. Fooks
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
- National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK
- Corresponding author at: Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey KT15 3NB, UK. Tel.: +44 01932 357840; fax: +44 01932 357239.
| |
Collapse
|
14
|
Yu X, Duval M, Lewis C, Gawron MA, Wang R, Posner MR, Cavacini LA. Impact of IgA constant domain on HIV-1 neutralizing function of monoclonal antibody F425A1g8. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23183895 DOI: 10.4049/jimmunol.1201469] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With the majority of HIV infections resulting from mucosal transmission, induction of an effective mucosal immune response is thought to be pivotal in preventing transmission. HIV-specific IgA, but not IgG, has been detected in the genital tract, seminal fluid, urethral swabs, urine, and vaginal wash samples of HIV-negative sex workers and HIV-status discordant couples. Purified mucosal and plasma IgA from some individuals with highly exposed, persistently seronegative status can neutralize infection and present cross-clade neutralization activity, though present at low levels. We generated a CD4-induced human mAb, F425A1g8, and characterized the impact of its isotype variants on HIV neutralizing activity. The result showed that, in contrast to little neutralization by the F425A1g8 IgG1 in the absence of sCD4, the IgA1 variant of the Ab displayed significant independent neutralization activity against a range of HIV clade B isolates in the absence of sCD4. Studies of the neutralizing function of IgA isotypes, and the functional relationship between different antigenic epitopes and IgA Abs, may also suggest strategies for the intervention of virus transmission and spread within the mucosa of the host, as well as serve to inform the design of vaccine strategies that may be more effective at preventing mucosal transmission. This research clearly suggests that IgA isotype, because of its unique molecular structure, may play an important role in HIV neutralization.
Collapse
Affiliation(s)
- Xiaocong Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Arias MA, Van Roey GA, Tregoning JS, Moutaftsi M, Coler RN, Windish HP, Reed SG, Carter D, Shattock RJ. Glucopyranosyl Lipid Adjuvant (GLA), a Synthetic TLR4 agonist, promotes potent systemic and mucosal responses to intranasal immunization with HIVgp140. PLoS One 2012; 7:e41144. [PMID: 22829921 PMCID: PMC3400629 DOI: 10.1371/journal.pone.0041144] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
Successful vaccine development against HIV will likely require the induction of strong, long-lasting humoral and cellular immune responses in both the systemic and mucosal compartments. Based on the known immunological linkage between the upper-respiratory and urogenital tracts, we explored the potential of nasal adjuvants to boost immunization for the induction of vaginal and systemic immune responses to gp140. Mice were immunized intranasally with HIV gp140 together with micellar and emulsion formulations of a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA) and responses were compared to R848, a TLR7/8 agonist, or chitosan, a non TLR adjuvant. GLA and chitosan but not R848 greatly enhanced serum immunoglobulin levels when compared to antigen alone. Both GLA and chitosan induced high IgG and IgA titers in nasal and vaginal lavage and feces. The high IgA and IgG titers in vaginal lavage were associated with high numbers of gp140-specific antibody secreting cells in the genital tract. Whilst both GLA and chitosan induced T cell responses to immunization, GLA induced a stronger Th17 response and chitosan induced a more Th2 skewed response. Our results show that GLA is a highly potent intranasal adjuvant greatly enhancing humoral and cellular immune responses, both systemically and mucosally.
Collapse
Affiliation(s)
- Mauricio A. Arias
- Centre for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Griet A. Van Roey
- Centre for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - John S. Tregoning
- Centre for Infection and Immunity, St. George’s University of London, London, United Kingdom
- Mucosal Infection and Immunity, Section of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Magdalini Moutaftsi
- Infectious Diseases Research Institute (IDRI), Seattle, Washington, United States of America
| | - Rhea N. Coler
- Infectious Diseases Research Institute (IDRI), Seattle, Washington, United States of America
| | - Hillarie P. Windish
- Infectious Diseases Research Institute (IDRI), Seattle, Washington, United States of America
| | - Steven G. Reed
- Infectious Diseases Research Institute (IDRI), Seattle, Washington, United States of America
| | - Darrick Carter
- Infectious Diseases Research Institute (IDRI), Seattle, Washington, United States of America
| | - Robin J. Shattock
- Centre for Infection and Immunity, St. George’s University of London, London, United Kingdom
- Mucosal Infection and Immunity, Section of Infectious Diseases, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Abstract
HIV type 1 (HIV-1) displays a greater degree of genetic and antigenic variability than any other virus studied. This diversity reflects a high mutation rate during viral replication with a large turnover of virus, and a high tolerance of variation while maintaining reproductive capacity. Generation of diversity is a common property of lentiviruses such as HIV. Differences in virulence and in transmissibility are seen between different HIV-1 strains which may have clinical implications. The great degree of HIV diversity presents challenges to maintaining sensitivity to antiretroviral therapy and to the development of preventive strategies such as microbicides and vaccines.
Collapse
|
17
|
McCoy LE, Quigley AF, Strokappe NM, Bulmer-Thomas B, Seaman MS, Mortier D, Rutten L, Chander N, Edwards CJ, Ketteler R, Davis D, Verrips T, Weiss RA. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. ACTA ACUST UNITED AC 2012; 209:1091-103. [PMID: 22641382 PMCID: PMC3371729 DOI: 10.1084/jem.20112655] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A heavy chain–only antibody isolated from a llama repeatedly immunized with trimeric HIV-1 Env neutralizes 96% of tested HIV-1 strains. Llamas (Lama glama) naturally produce heavy chain–only antibodies (Abs) in addition to conventional Abs. The variable regions (VHH) in these heavy chain–only Abs demonstrate comparable affinity and specificity for antigens to conventional immunoglobulins despite their much smaller size. To date, immunizations in humans and animal models have yielded only Abs with limited ability to neutralize HIV-1. In this study, a VHH phagemid library generated from a llama that was multiply immunized with recombinant trimeric HIV-1 envelope proteins (Envs) was screened directly for HIV-1 neutralization. One VHH, L8CJ3 (J3), neutralized 96 of 100 tested HIV-1 strains, encompassing subtypes A, B, C, D, BC, AE, AG, AC, ACD, CD, and G. J3 also potently neutralized chimeric simian-HIV strains with HIV subtypes B and C Env. The sequence of J3 is highly divergent from previous anti–HIV-1 VHH and its own germline sequence. J3 achieves broad and potent neutralization of HIV-1 via interaction with the CD4-binding site of HIV-1 Env. This study may represent a new benchmark for immunogens to be included in B cell–based vaccines and supports the development of VHH as anti–HIV-1 microbicides.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, University College London, London WC1E 6BT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Van Regenmortel MHV. Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit 2012; 24:741-53. [PMID: 21812050 DOI: 10.1002/jmr.1116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In spite of 25 years of intensive research, no effective human immunodeficiency virus type 1 (HIV-1) vaccine has yet been developed. One reason for this is that investigators have concentrated mainly on the structural analysis of HIV-1 antigens because they assumed that it should be possible to deduce vaccine-relevant immunogens from the structure of viral antigens bound to neutralizing monoclonal antibodies. This unwarranted assumption arises from misconceptions regarding the nature of protein epitopes and from the belief that it is justified to extrapolate from the antigenicity to the immunogenicity of proteins. Although the structure of the major HIV-1 antigenic sites has been elucidated, this knowledge has been of little use for designing an HIV-1 vaccine. Little attention has been given to the fact that protective immune responses tend to be polyclonal and involve antibodies directed to several different epitopes. It is concluded that only trial and error, empirical investigations using numerous immunization protocols may eventually allow us to identify which mixtures of immunogens are likely to be the best candidates for an HIV-1 vaccine.
Collapse
|
19
|
Regulation of the susceptibility of HIV-1 to a neutralizing antibody KD-247 by nonepitope mutations distant from its epitope. AIDS 2011; 25:2209-16. [PMID: 21866041 DOI: 10.1097/qad.0b013e32834bab68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE A humanized neutralizing antibody, KD-247, targets the V3 loop of HIV-1 Env. HIV-1 bearing the GPGR sequence at the V3 loop is potentially susceptible to KD-247. However, not all GPGR-positive HIV-1 isolates are neutralized by KD-247. We examined the potential mechanism by which the susceptibility of HIV-1 to KD-247-mediated neutralization is regulated. DESIGN We searched for nonepitope neutralization regulatory (NNR) mutations that sensitize GPGR-bearing HIV-1AD8 to KD-247 and mapped the locations of such mutations relative to the V3 loop. METHODS : We generated a functional HIV-1AD8 Env library, and evaluated the viral susceptibility to KD-247 by measuring the half-inhibitory concentration (IC50) to KD-247 on TZM-bl cell assay. RESULTS We identified nine KD-247-sensitizing NNR mutations from 30 mutations in various regions of gp120, including the V1/V2 loop, C2, V3 loop, C4, and C5. They specifically affected KD-247-mediated neutralization, as they did not affect the b12-mediated neutralization. When combined, the KD-247-sensitizing NNR mutations additively sensitized the virus to KD-247 by up to 10 000 folds. The KD-247-sensitizing NNR mutations increased KD-247 binding to the virion. Notably, the NNR mutation in C4 coincides with the CD4-binding site of gp120. CONCLUSION Given that most of the KD-247-sensitizing NNR mutations are remote from V3 loop, it is reasonable to hypothesize that the steady-state, local conformation of the V3 loop is regulated by the interdomain contact of gp120. Our mutational analysis complements crystallographic studies by helping provide a better understanding of the steady-state conformation and the functional geometry of Env.
Collapse
|
20
|
Harbison CE, Weichert WS, Gurda BL, Chiorini JA, Agbandje-McKenna M, Parrish CR. Examining the cross-reactivity and neutralization mechanisms of a panel of mAbs against adeno-associated virus serotypes 1 and 5. J Gen Virol 2011; 93:347-355. [PMID: 22071509 DOI: 10.1099/vir.0.035113-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neutralizing antibodies play a central role in the prevention and clearance of viral infections, but can be detrimental to the use of viral capsids for gene delivery. Antibodies present a major hurdle for ongoing clinical trials using adeno-associated viruses (AAVs); however, relatively little is known about the antigenic epitopes of most AAV serotypes or the mechanism(s) of antibody-mediated neutralization. We developed panels of AAV mAbs by repeatedly immunizing mice with AAV serotype 1 (AAV1) capsids, or by sequentially immunizing with AAV1 followed by AAV5 capsids, in order to examine the efficiency and mechanisms of antibody-mediated neutralization. The antibodies were not cross-reactive between heterologous AAV serotypes except for a low level of recognition of AAV1 capsids by the AAV5 antibodies, probably due to the initial immunization with AAV1. The neutralization efficiency of different IgGs varied and Fab fragments derived from these antibodies were generally poorly neutralizing. The antibodies appeared to display various alternative mechanisms of neutralization, which included inhibition of receptor-binding and interference with a post-attachment step.
Collapse
Affiliation(s)
- Carole E Harbison
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Brittney L Gurda
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - John A Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, US National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Van Regenmortel MHV. Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch Virol 2011; 157:1-20. [PMID: 22012269 PMCID: PMC7087187 DOI: 10.1007/s00705-011-1145-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/07/2011] [Indexed: 11/29/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
22
|
|
23
|
Aasa-Chapman MMI, Cheney KM, Hué S, Forsman A, O'Farrell S, Pellegrino P, Williams I, McKnight Á. In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies. PLoS One 2011; 6:e23961. [PMID: 21887353 PMCID: PMC3161086 DOI: 10.1371/journal.pone.0023961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. Methodology/Principal Findings Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. Conclusions We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.
Collapse
Affiliation(s)
- Marlén M I Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Enhanced control of pathogenic Simian immunodeficiency virus SIVmac239 replication in macaques immunized with an interleukin-12 plasmid and a DNA prime-viral vector boost vaccine regimen. J Virol 2011; 85:9578-87. [PMID: 21734035 DOI: 10.1128/jvi.05060-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA priming has previously been shown to elicit augmented immune responses when administered by electroporation (EP) or codelivered with a plasmid encoding interleukin-12 (pIL-12). We hypothesized that the efficacy of a DNA prime and recombinant adenovirus 5 boost vaccination regimen (DNA/rAd5) would be improved when incorporating these vaccination strategies into the DNA priming phase, as determined by pathogenic simian immunodeficiency virus SIVmac239 challenge outcome. The whole SIVmac239 proteome was delivered in 5 separate DNA plasmids (pDNA-SIV) by EP with or without pIL-12, followed by boosting 4 months later with corresponding rAd5-SIV vaccine vectors. Remarkably, after repeated low-dose SIVmac239 mucosal challenge, we demonstrate 2.6 and 4.4 log reductions of the median SIV peak and set point viral loads in rhesus macaques (RMs) that received pDNA-SIV by EP with pIL-12 compared to the median peak and set point viral loads in mock-immunized controls (P < 0.01). In 5 out of 6 infected RMs, strong suppression of viremia was observed, with intermittent "blips" in virus replication. In 2 RMs, we could not detect the presence of SIV RNA in tissue and lymph nodes, even after 13 viral challenges. RMs immunized without pIL-12 demonstrated a typical maximum of 1.5 log reduction in virus load. There was no significant difference in the overall magnitude of SIV-specific antibodies or CD8 T-cell responses between groups; however, pDNA delivery by EP with pIL-12 induced a greater magnitude of SIV-specific CD4 T cells that produced multiple cytokines. This vaccine strategy is relevant for existing vaccine candidates entering clinical evaluation, and this model may provide insights into control of retrovirus replication.
Collapse
|
25
|
Wright E, Mugaba S, Grant P, Parkes-Ratanshi R, Van der Paal L, Grosskurth H, Kaleebu P. Coreceptor and cytokine concentrations may not explain differences in disease progression observed in HIV-1 clade A and D infected Ugandans. PLoS One 2011; 6:e19902. [PMID: 21655330 PMCID: PMC3104992 DOI: 10.1371/journal.pone.0019902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/20/2011] [Indexed: 12/04/2022] Open
Abstract
Background The use of cellular coreceptors and modulation of cytokine concentrations by HIV to establish a productive infection is well documented. However, it is unknown whether the expression of these proteins affects the course of HIV clade A and D disease, reported to have different progression rates. Methodology/Principal Findings We investigated whether the number of CD4+ T-cells expressing CCR5 or CXCR4, the density of these coreceptors and concentrations of specific immune proteins linked to HIV pathogenesis vary between individuals infected with HIV clade A or D. We undertook additional analyses stratifying participants by early (CD4>500 cells/µl) or late (CD4<200 cells/µl) disease stage. Whole blood samples were taken from 50 HIV-1 infected individuals drawn from cohorts in rural south-west Uganda. Late stage participants had less than half the number of CD4+/CCR5+ T-cells (p = 0.0113) and 5.6 times fewer CD4+/CXCR4+ cells (p<0.0001) than early stage participants. There was also a statistically significant difference in the density of CXCR4 on CD4+ cells between clade A and D infected early stage participants (142 [A] vs 84 [D]; p = 0.0146). Across all participants we observed significantly higher concentration of Th1 cytokines compared to Th2 (66.4 vs 23.8 pg/ml; p<0.0001). Plasma concentrations of IFNγ and IL-2 were 1.8 and 2.4 fold lower respectively in Late-D infected participants compared to Late-A participants. MIP-1β levels also decreased from 118.0 pg/ml to 47.1 pg/ml (p = 0.0396) as HIV disease progressed. Conclusions/Significance We observed specific alterations in the abundance of CD4+/CCR5+ and CD4+/CXCR4+ T-cells, and concentrations of immune proteins across different HIV clades and as infection progresses. Our results suggest that these changes are unlikely to explain the observed differences in disease progression between subtype A and D infections. However, our observations further the understanding of the natural progression of non-clade B HIV infection and how the virus adapts to exploit the host environment.
Collapse
Affiliation(s)
- Edward Wright
- MRC/UVRI Uganda Research Unit on AIDS, Uganda Virus Research Institute, Entebbe, Uganda.
| | | | | | | | | | | | | |
Collapse
|
26
|
Infection of human peripheral blood mononuclear cells by erythrocyte-bound HIV-1: Effects of antibodies and complement. Virology 2011; 412:441-7. [DOI: 10.1016/j.virol.2011.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/21/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
|
27
|
The broadly neutralizing HIV-1 IgG 2F5 elicits gp41-specific antibody-dependent cell cytotoxicity in a FcγRI-dependent manner. AIDS 2011; 25:751-9. [PMID: 21330910 DOI: 10.1097/qad.0b013e32834507bd] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A role for antibody-dependent cellular cytotoxicity (ADCC) in controlling initial development of HIV-1 infection is supported by a growing number of studies. 2F5, a broadly HIV-1-neutralizing IgG specific for HIV-1 envelope gp41, has been extensively studied in vitro and in vivo for its neutralizing and transcytosis-blocking activities. In the present paper, we have studied the in vitro ADCC potential of 2F5. DESIGN We have developed an ADCC model based on either monocytic cell line THP1 or monocytes, both FcγRI(+) FcγRIII(-) as effector cells, and natural killer resistant-CEM (NKr-CEM) either coated with HIV envelope subunit, or stably expressing an X4 tropic HIV-1 envelope as target cells. Finally, in order to better simulate the in vivo situation, we used R5-tropic JR-CSF HIV-1-infected NKr-CEM as targets. METHODS ADCC was monitored using a fluorescently based, nonradioactive, easy to use assay. RESULTS 2F5 triggered ADCC of HIV-1 envelope subunit coated cells. Remarkably, 2F5 at ng/ml concentration elicited ADCC of both X4-tropic HIV-1 envelope-expressing cells, and R5-HIV-infected cells. ADCC relied on binding to the FcγRI on effector cell and was abolished by preincubation of 2F5 with its cognate epitope ELDKWA. CONCLUSION The capacity of the broadly neutralizing 2F5 to elicit ADCC, and thereby linking adaptive and innate immunity, expands its prophylactic potential. Raising antibodies to the membrane proximal region of HIV-1 envelope with similar ADCC properties, in addition to neutralization, should be taken into account in HIV-1 vaccine design.
Collapse
|
28
|
Willey S, Aasa-Chapman MMI, O'Farrell S, Pellegrino P, Williams I, Weiss RA, Neil SJD. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 2011; 8:16. [PMID: 21401915 PMCID: PMC3065417 DOI: 10.1186/1742-4690-8-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Non-neutralising antibodies to the envelope glycoprotein are elicited during acute HIV-1 infection and are abundant throughout the course of disease progression. Although these antibodies appear to have negligible effects on HIV-1 infection when assayed in standard neutralisation assays, they have the potential to exert either inhibitory or enhancing effects through interactions with complement and/or Fc receptors. Here we report that non-neutralising antibodies produced early in response to HIV-1 infection can enhance viral infectivity. RESULTS We investigated this complement-mediated antibody-dependent enhancement (C'-ADE) of early HIV infection by carrying out longitudinal studies with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2; CD21). The C'-ADE was consistently observed and in some cases achieved infection-enhancing levels of greater than 350-fold, converting a low-level infection to a highly destructive one. C'-ADE activity declined as a neutralising response to the early virus emerged, but later virus isolates that had escaped the neutralising response demonstrated an increased capacity for enhanced infection by autologous antibodies. Moreover, sera with autologous enhancing activity were capable of C'ADE of heterologous viral isolates, suggesting the targeting of conserved epitopes on the envelope glycoprotein. Ectopic expression of CR2 on cell lines expressing HIV-1 receptors was sufficient to render them sensitive to C'ADE. CONCLUSIONS Taken together, these results suggest that non-neutralising antibodies to the HIV-1 envelope that arise during acute infection are not 'passive', but in concert with complement and complement receptors may have consequences for HIV-1 dissemination and pathogenesis.
Collapse
Affiliation(s)
- Suzanne Willey
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| | - Marlén MI Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stephen O'Farrell
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Robin A Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stuart JD Neil
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
29
|
Jia L, Xu Y, Zhang C, Wang Y, Chong H, Qiu S, Wang L, Zhong Y, Liu W, Sun Y, Qiao F, Tomlinson S, Song H, Zhou Y, He Y. A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement. Virol J 2010; 7:142. [PMID: 20584336 PMCID: PMC2904741 DOI: 10.1186/1743-422x-7-142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/29/2010] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV), however, possesses several mechanisms to evade complement-mediated lysis (CoML) and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH) through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. PRESENTATION OF THE HYPOTHESIS Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively) linked to a complement-activating human IgG1 Fc domain ((anti-gp120 x anti-C3d)-Fc), can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. TESTING THE HYPOTHESIS Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 x anti-C3d)-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of (anti-gp120 x anti-C3d)-Fc lysis of HIV compared to untreated virus. IMPLICATIONS OF THE HYPOTHESIS The targeted complement activator, (anti-gp120 x anti-C3d)-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells.
Collapse
Affiliation(s)
- Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yuanyong Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Chuanfu Zhang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yanwei Zhong
- The 302nd Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Weijing Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Fei Qiao
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuxian He
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
30
|
Koh WWL, Steffensen S, Gonzalez-Pajuelo M, Hoorelbeke B, Gorlani A, Szynol A, Forsman A, Aasa-Chapman MMI, de Haard H, Verrips T, Weiss RA. Generation of a family-specific phage library of llama single chain antibody fragments that neutralize HIV-1. J Biol Chem 2010; 285:19116-24. [PMID: 20400507 PMCID: PMC2885190 DOI: 10.1074/jbc.m110.116699] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, we described llama antibody fragments (VHH) that can neutralize human immunodeficiency virus, type 1 (HIV-1). These VHH were obtained after selective elution of phages carrying an immune library raised against gp120 of HIV-1 subtype B/C CN54 with soluble CD4. We describe here a new, family-specific approach to obtain the largest possible diversity of related VHH that compete with soluble CD4 for binding to the HIV-1 envelope glycoprotein. The creation of this family-specific library of homologous VHH has enabled us to isolate phages carrying similar nucleotide sequences as the parental VHH. These VHH displayed varying binding affinities and neutralization phenotypes to a panel of different strains and subtypes of HIV-1. Sequence analysis of the homologs showed that the C-terminal three amino acids of the CDR3 loop were crucial in determining the specificity of these VHH for different subtype C HIV-1 strains. There was a positive correlation between affinity of VHH binding to gp120 of HIV-1 IIIB and the breadth of neutralization of diverse HIV-1 envelopes. The family-specific approach has therefore allowed us to better understand the interaction of the CD4-binding site antibodies with virus strain specificity and has potential use for the bioengineering of antibodies and HIV-1 vaccine development.
Collapse
Affiliation(s)
- Willie W L Koh
- Division of Infection and Immunity, University College London, Medical Research Council/University College London Centre for Medical Molecular Virology, London W1T 4JF, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The complement system, a key component of innate immunity, is a first-line defender against foreign pathogens such as HIV-1. The role of the complement system in HIV-1 pathogenesis appears to be multifaceted. Although the complement system plays critical roles in clearing and neutralizing HIV-1 virions, it also represents a critical factor for the spread and maintenance of the virus in the infected host. In addition, complement regulators such as human CD59 present in the envelope of HIV-1 prevent complement-mediated lysis of HIV-1. Some novel approaches are proposed to combat HIV-1 infection through the enhancement of antibody-dependent complement activity against HIV-1. In this paper, we will review these diverse roles of complement in HIV-1 infection.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Because complement is present in all fluids of the body, including serum, saliva and seminal fluid, and is found at mucosal surfaces and in the brain, all pathogens have to deal with complement proteins. Thus, immediately upon entering the host, independent on the route of infection, HIV activates the complement system. Although a first line of immune defense, complement cannot eliminate retroviral infections completely. RECENT FINDINGS Recent data indicate that complement, in concert with non-neutralizing antibodies, contributes to the control of HIV replication at early stages of infection. In parallel or at later stages, complement and non-neutralizing antibodies may counteract the immune response by enhancing HIV infection via complement and Fc-receptor-positive cells in 'cis' and 'trans'. SUMMARY This review highlights current knowledge in this field and emphasizes the contribution of complement and non-neutralizing antibodies in controlling versus and enhancing infection.
Collapse
|
33
|
Antibody-Mediated Fcγ Receptor-Based Mechanisms of HIV Inhibition: Recent Findings and New Vaccination Strategies. Viruses 2009; 1:1265-94. [PMID: 21994593 PMCID: PMC3185537 DOI: 10.3390/v1031265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/01/2009] [Accepted: 12/08/2009] [Indexed: 01/11/2023] Open
Abstract
The HIV/AIDS pandemic is one of the most devastating pandemics worldwide. Today, the major route of infection by HIV is sexual transmission. One of the most promising strategies for vaccination against HIV sexual infection is the development of a mucosal vaccine, which should be able to induce strong local and systemic protective immunity. It is believed that both humoral and cellular immune responses are needed for inducing a sterilizing protection against HIV. Recently, passive administration of monoclonal neutralizing antibodies in macaques infected by vaginal challenge demonstrated a crucial role of FcγRs in the protection afforded by these antibodies. This questioned about the role of innate and adaptive immune functions, including ADCC, ADCVI, phagocytosis of opsonized HIV particles and the production of inflammatory cytokines and chemokines, in the mechanism of HIV inhibition in vivo. Other monoclonal antibodies - non-neutralizing inhibitory antibodies - which recognize immunogenic epitopes, have been shown to display potent FcγRs-dependent inhibition of HIV replication in vitro. The potential role of these antibodies in protection against sexual transmission of HIV and their biological relevance for the development of an HIV vaccine therefore need to be determined. This review highlights the potential role of FcγRs-mediated innate and adaptive immune functions in the mechanism of HIV protection.
Collapse
|
34
|
Beck Z, Brown BK, Wieczorek L, Peachman KK, Matyas GR, Polonis VR, Rao M, Alving CR. Human erythrocytes selectively bind and enrich infectious HIV-1 virions. PLoS One 2009; 4:e8297. [PMID: 20011536 PMCID: PMC2788743 DOI: 10.1371/journal.pone.0008297] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/23/2009] [Indexed: 11/30/2022] Open
Abstract
Although CD4(+) cells represent the major target for HIV infection in blood, claims of complement-independent binding of HIV-1 to erythrocytes and the possible role of Duffy blood group antigen, have generated controversy. To examine the question of binding to erythrocytes, HIV-1 was incubated in vitro with erythrocytes from 30 healthy leukapheresis donors, and binding was determined by p24 analysis and adsorption of HIV-1 with reduction of infectivity for CD4(+) target cells. All of the cells, regardless of blood group type, bound HIV-1 p24. A typical preparation of erythrocytes bound <2.4% of the added p24, but erythrocytes selectively removed essentially all of the viral infectivity as determined by decreased infection of CD4(+) target cells; however, cell-associated HIV-1 was approximately 100-fold more efficient, via trans infection, than unadsorbed virus for infection of CD4(+) cells. All of the bound HIV-1 p24 was released by treatment of the cells with EDTA, and binding was optimized by adding Ca2+ and Mg2+ during the washing of erythrocytes containing bound HIV-1. Although the small number of contaminating leukocytes in the erythrocyte preparation also bound HIV-1 p24, there was no significant binding to CD4, and it thus appears that the binding occurred on leukocytes at non-CD4 sites. Furthermore, binding occurred to erythrocyte ghosts from which contaminating leukocytes had been previously removed. The results demonstrate that erythrocytes incubated in vitro with HIV-1 differentially adsorb all of the infectious HIV-1 virions (as opposed to non-infectious or degraded virions) in the absence of complement and independent of blood group, and binding is dependent on divalent cations. By analogy with HIV-1 bound to DC-SIGN on dendritic cells, erythrocyte-bound HIV-1 might comprise an important surface reservoir for trans infection of permissive cells.
Collapse
Affiliation(s)
- Zoltan Beck
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland, United States of America
| | - Bruce K. Brown
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland, United States of America
| | - Lindsay Wieczorek
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland, United States of America
| | - Kristina K. Peachman
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland, United States of America
| | - Gary R. Matyas
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Victoria R. Polonis
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Mangala Rao
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Carl R. Alving
- Division of Retrovirology, United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Freissmuth D, Hiltgartner A, Stahl-Hennig C, Fuchs D, Tenner-Racz K, Racz P, Uberla K, Strasak A, Dierich MP, Stoiber H, Falkensammer B. Analysis of humoral immune responses in rhesus macaques vaccinated with attenuated SIVmac239Deltanef and challenged with pathogenic SIVmac251. J Med Primatol 2009; 39:97-111. [PMID: 20015159 DOI: 10.1111/j.1600-0684.2009.00398.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND To determine the correlation between protection and humoral immune response against simian immunodeficiency virus (SIVmac251), 11 macaques were immunized with live-attenuated SIVmac239Deltanef either intravenously or via the tonsils and exposed to SIVmac251 after either 6 or 15 months along with unvaccinated controls. RESULTS Independent of the route of vaccine application, viremia was significantly reduced in vaccinees compared with controls 2 weeks post-challenge. Concomitantly, viremia correlated inversely with SIV-specific IgG, complement-mediated lysis and neutralizing antibodies and these parameters seemed to contribute to reduced viremia. During chronic infection, six monkeys controlled viremia in the circulation (two or fewer infectious units per 10(6) PBMCs) and showed no signs of trapping in lymphatic tissues (Appendix S1). CONCLUSIONS As no significant differences were observed throughout the study, with respect to the humoral immune response and viremia control, between the two vaccinated cohorts, mucosal immunization strategies are recommended due to more simplified application.
Collapse
Affiliation(s)
- Doris Freissmuth
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu W, Yu Q, Hu N, Byrd D, Amet T, Shikuma C, Shiramizu B, Halperin JA, Qin X. A high-affinity inhibitor of human CD59 enhances complement-mediated virolysis of HIV-1: implications for treatment of HIV-1/AIDS. THE JOURNAL OF IMMUNOLOGY 2009; 184:359-68. [PMID: 19955519 DOI: 10.4049/jimmunol.0902278] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many pathogenic enveloped viruses, including HIV-1, escape complement-mediated virolysis by incorporating host cell regulators of complement activation into their own viral envelope. The presence of complement regulators including CD59 on the external surface of the viral envelope confers resistance to complement-mediated virolysis, which may explain why human pathogenic viruses such as HIV-1 are not neutralized by complement in human fluids, even in the presence of high Ab titers against the viral surface proteins. In this study, we report the development of a recombinant form of the fourth domain of the bacterial toxin intermedilysin (the recombinant domain 4 of intermedilysin [rILYd4]), a 114 aa protein that inhibits human CD59 function with high affinity and specificity. In the presence of rILYd4, HIV-1 virions derived from either cell lines or peripheral blood mononuclear cells of HIV-1-infected patients became highly sensitive to complement-mediated lysis activated by either anti-HIV-1 gp120 Abs or by viral infection-induced Abs present in the plasma of HIV-1-infected individuals. We also demonstrated that rILYd4 together with serum or plasma from HIV-1-infected patients as a source of anti-HIV-1 Abs and complement did not mediate complement-mediated lysis of either erythrocytes or peripheral blood mononuclear cells. These results indicate that rILYd4 may represent a novel therapeutic agent against HIV-1/AIDS.
Collapse
Affiliation(s)
- Weiguo Hu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Crystallographic definition of the epitope promiscuity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5: vaccine design implications. J Virol 2009; 83:11862-75. [PMID: 19740978 DOI: 10.1128/jvi.01604-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab'. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate's negative charge, the hydrophobic alkyl-pi stacking arrangement between the beta-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.
Collapse
|
38
|
Xu Y, Zhang C, Jia L, Wen C, Liu H, Wang Y, Sun Y, Huang L, Zhou Y, Song H. A novel approach to inhibit HIV-1 infection and enhance lysis of HIV by a targeted activator of complement. Virol J 2009; 6:123. [PMID: 19671191 PMCID: PMC3224960 DOI: 10.1186/1743-422x-6-123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/12/2009] [Indexed: 02/02/2023] Open
Abstract
Background The complement system is one of the most potent weapons of innate immunity. It is not only a mechanism for direct protection against invading pathogens but it also interacts with the adaptive immunity to optimize the pathogen-specific humoral and cellular defense cascades in the body. Complement-mediated lysis of HIV is inefficient but the presence of HIV particles results in complement activation by the generation of many C3-fragments, such as C3dg and C3d. It has been demonstrated that activation of complement can enhance HIV infection through the binding of special complement receptor type 2 expression on the surface of mature B cells and follicular dendritic cells. Presentation of the hypothesis Previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that a new activator of complement, consisting of a target domain (C3-binding region of complement receptor type 2) linked to a complement-activating human IgG1 Fc domain (CR2-Fc), can target and amplify complement deposition on HIV virions and enhance the efficiency of HIV lysis. Testing the hypothesis Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified CR2-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of CR2-Fc-enhanced lysis of HIV compared to untreated virus. Implications of the hypothesis The targeted complement activator, CR2-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells.
Collapse
Affiliation(s)
- Yuanyong Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bosch V, Pfeiffer T, Devitt G, Allespach I, Ebensen T, Emerson V, Guzman CA, Keppler OT. HIV pseudovirion vaccine exposing Env "fusion intermediates"-response to immunisation in human CD4/CCR5-transgenic rats. Vaccine 2009; 27:2202-12. [PMID: 19428834 DOI: 10.1016/j.vaccine.2009.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 12/11/2022]
Abstract
Immune responses to a pseudovirion-based HIV vaccine enriched in Env conformations, which have been induced to an authentic intermediate fusion stage by interaction with the cellular HIV receptor complex, have been analysed in human CD4/CCR5-transgenic rats. High titre Env-binding antibodies were elicited. However, these immune sera failed to neutralise HIV-1, but rather led to an enhancement of infection in vitro. This enhancing activity appeared to be directed towards contaminating cellular proteins in the vaccine and was able to mask neutralisation of potent, mixed-in neutralising antibodies. The induced Env-specific antibodies, purified on the basis of binding to monomeric Env, retained high-binding activity, but failed to be neutralising. Thus, it remains unclear whether vaccines based on induced HIV Env fusion intermediates can elicit broadly neutralising responses.
Collapse
Affiliation(s)
- Valerie Bosch
- Forschungsschwerpunkt Infektion und Krebs, F020, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Why is HIV a pathogen? Trends Microbiol 2008; 16:555-60. [DOI: 10.1016/j.tim.2008.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/19/2022]
|