1
|
Callaghan JO, Ryan MP, Hudson S, Thompson D. Targeting Protein Disorder for the Remediation of Antimicrobial Resistance. ACS OMEGA 2024; 9:50589-50598. [PMID: 39741841 PMCID: PMC11683595 DOI: 10.1021/acsomega.4c08427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The remediation of antimicrobial resistance (AMR) is a fundamental challenge for global healthcare. Intrinsically disordered proteins (IDPs) are recognized drug targets for neurodegeneration and cancer but have not been considered to date for AMR. Here, a novel link between structural disorder and AMR is identified by mapping predicted disorder profiles onto existing transcriptomic data for resistant and susceptible E. coli isolates. The AMR-relevant IDPs fall into two distinct classes, those involved in the bacterial stress response and those differentially expressed between resistant and susceptible strains following antibiotic exposure. A residue-wise conservation analysis of relevant bacterial IDPs identified mutations within intrinsically disordered regions that correlate with pronounced changes in antimicrobial susceptibility, providing valuable insight into the functional importance of bacterial intrinsic disorder in the ESKAPEE pathogens. The identification of susceptibility-inducing IDPs in E. coli highlights the potential of disorder-based antimicrobial drug discovery for the remediation of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jack O’ Callaghan
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
- Bernal
Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Science
Foundation Ireland Research Centre for Pharmaceuticals (SSPC), University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael P Ryan
- Department
of Applied Sciences, TUS Midwest, Limerick V94 EC5T, Ireland
| | - Sarah Hudson
- Bernal
Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Science
Foundation Ireland Research Centre for Pharmaceuticals (SSPC), University of Limerick, Limerick V94 T9PX, Ireland
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
- Bernal
Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Science
Foundation Ireland Research Centre for Pharmaceuticals (SSPC), University of Limerick, Limerick V94 T9PX, Ireland
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135790. [PMID: 39276744 DOI: 10.1016/j.jhazmat.2024.135790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 105 to 1.6 × 106 copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 105 copies/m3, which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
3
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
4
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Critical insights into the Hormesis of antibiotic resistome in saline soil: Implications from salinity regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134616. [PMID: 38754232 DOI: 10.1016/j.jhazmat.2024.134616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
5
|
Kennedy NW, Comstock LE. Mechanisms of bacterial immunity, protection, and survival during interbacterial warfare. Cell Host Microbe 2024; 32:794-803. [PMID: 38870897 PMCID: PMC11216714 DOI: 10.1016/j.chom.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Sturm A, Jóźwiak G, Verge MP, Munch L, Cathomen G, Vocat A, Luraschi-Eggemann A, Orlando C, Fromm K, Delarze E, Świątkowski M, Wielgoszewski G, Totu RM, García-Castillo M, Delfino A, Tagini F, Kasas S, Lass-Flörl C, Gstir R, Cantón R, Greub G, Cichocka D. Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform. Nat Commun 2024; 15:2037. [PMID: 38499536 PMCID: PMC10948838 DOI: 10.1038/s41467-024-46213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.
Collapse
Affiliation(s)
- Alexander Sturm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
| | | | - Marta Pla Verge
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Laura Munch
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Gino Cathomen
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Anthony Vocat
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | - Clara Orlando
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Katja Fromm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Eric Delarze
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | | | - Roxana M Totu
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - María García-Castillo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
| | - Alexandre Delfino
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Florian Tagini
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale (UFAM) & Université de Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Ronald Gstir
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Rafael Cantón
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Sinesio Delgado 4, 28029, Madrid, Spain
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Danuta Cichocka
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| |
Collapse
|
7
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
8
|
Javad Jafari M, Golabi M, Ederth T. Antimicrobial susceptibility testing using infrared attenuated total reflection (IR-ATR) spectroscopy to monitor metabolic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123384. [PMID: 37714109 DOI: 10.1016/j.saa.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Fast and accurate detection of antimicrobial resistance in pathogens remains a challenge, and with the increase in antimicrobial resistance due to mis- and overuse of antibiotics, it has become an urgent public health problem. We demonstrate how infrared attenuated total reflection (IR-ATR) can be used as a simple method for assessment of bacterial susceptibility to antibiotics. This is achieved by monitoring the metabolic activities of bacterial cells via nutrient consumption and using this as an indicator of bacterial viability. Principal component analysis of the obtained spectra provides a tool for fast and simple discrimination of antimicrobial resistance in the acquired data. We demonstrate this concept using four bacterial strains and four different antibiotics, showing that the change in glucose concentration in the growth medium after 2 h, as monitored by IR-ATR, can be used as a spectroscopic diagnostic technique, to reduce detection time and to improve quality in the assessment of antimicrobial resistance in pathogens.
Collapse
Affiliation(s)
- Mohammad Javad Jafari
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Mohsen Golabi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Division of Biosensors and Bioelectronics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
| | - Thomas Ederth
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
9
|
Bren A, Glass DS, Kohanim YK, Mayo A, Alon U. Tradeoffs in bacterial physiology determine the efficiency of antibiotic killing. Proc Natl Acad Sci U S A 2023; 120:e2312651120. [PMID: 38096408 PMCID: PMC10742385 DOI: 10.1073/pnas.2312651120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Antibiotic effectiveness depends on a variety of factors. While many mechanistic details of antibiotic action are known, the connection between death rate and bacterial physiology is poorly understood. A common observation is that death rate in antibiotics rises linearly with growth rate; however, it remains unclear how other factors, such as environmental conditions and whole-cell physiological properties, affect bactericidal activity. To address this, we developed a high-throughput assay to precisely measure antibiotic-mediated death. We found that death rate is linear in growth rate, but the slope depends on environmental conditions. Growth under stress lowers death rate compared to nonstressed environments with similar growth rate. To understand stress's role, we developed a mathematical model of bacterial death based on resource allocation that includes a stress-response sector; we identify this sector using RNA-seq. Our model accurately predicts the minimal inhibitory concentration (MIC) with zero free parameters across a wide range of growth conditions. The model also quantitatively predicts death and MIC when sectors are experimentally modulated using cyclic adenosine monophosphate (cAMP), including protection from death at very low cAMP levels. The present study shows that different conditions with equal growth rate can have different death rates and establishes a quantitative relation between growth, death, and MIC that suggests approaches to improve antibiotic efficacy.
Collapse
Affiliation(s)
- Anat Bren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - David S. Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Yael Korem Kohanim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
10
|
Shen H, Yang M, Yin K, Wang J, Tang L, Lei B, Yang L, Kang A, Sun H. Size- and surface charge-dependent hormetic effects of microplastics on bacterial resistance and their interactive effects with quinolone antibiotic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166580. [PMID: 37633387 DOI: 10.1016/j.scitotenv.2023.166580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
The facilitation of microplastics (MPs) on bacterial resistance has attracted wide concern, due to the widespread presence of MPs in environmental media and their ubiquitous contact with bacteria strains. Furthermore, MPs possibly co-exist with antibiotics to trigger combined stress on bacterial survival. Therefore, it is significant to reveal the dose-responses of MPs and MP-antibiotic mixtures on bacterial endogenous and exogenous resistance. In this study, 0.1 and 5 μm polystyrenes with no surface functionalization (PS-NF, no charge), surface functionalized with amino groups (PS-NH2, positive charge) and carboxyl groups (PS-COOH, negative charge) were selected as the test MPs, and norfloxacin (NOR) was set as the representative of antibiotics. It was found that six types of PS all inhibited the growth of Escherichia coli (E. coli) but induced hormetic dose-responses on the mutation frequency (MF) and conjugative transfer frequency (CTF) of RP4 plasmid in E. coli. Moreover, these hormetic effects exhibited size- and surface charge-dependent features, where 0.1 μm PS-NH2 (100 mg/L) triggered the maximum stimulatory rates on MF (363.63 %) and CTF (74.80 %). The hormetic phenomena of MF and CTF were also observed in the treatments of PS-NOR mixtures, which varied with the particle size and surface charge of PS. In addition, the interactive effects between PS and NOR indicated that the co-existence of PS and NOR might trigger greater resistance risk than the single pollutants. Mechanistic exploration demonstrated that the increase of cellular reactive oxygen species and the variation of cell membrane permeability participated in the hormetic effects of PS and PS-NOR mixtures on bacterial resistance. This study provides new insights into the individual effects of MPs and the combined effects of MP-antibiotic mixtures on bacterial resistance, which will promote the development of environmental risk assessment of MPs from the perspective of bacterial resistance.
Collapse
Affiliation(s)
- Hongyan Shen
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Mingru Yang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kangnian Yin
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lei Yang
- Hebei Technological Innovation Center for Volatile Organic Compounds Detection and Treatment in Chemical Industry, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China.
| | - Aibin Kang
- Hebei Technological Innovation Center for Volatile Organic Compounds Detection and Treatment in Chemical Industry, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Prasad K, Sasi S, Weerasinghe J, Levchenko I, Bazaka K. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 2023; 28:7481. [PMID: 38005203 PMCID: PMC10673009 DOI: 10.3390/molecules28227481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of antibiotic resistant microorganisms possesses a great threat to human health and the environment. Considering the exponential increase in the spread of antibiotic resistant microorganisms, it would be prudent to consider the use of alternative antimicrobial agents or therapies. Only a sustainable, sustained, determined, and coordinated international effort will provide the solutions needed for the future. Plant secondary metabolites show bactericidal and bacteriostatic activity similar to that of conventional antibiotics. However, to effectively eliminate infection, secondary metabolites may need to be activated by heat treatment or combined with other therapies. Cold atmospheric plasma therapy is yet another novel approach that has proven antimicrobial effects. In this review, we explore the physiochemical mechanisms that may give rise to the improved antimicrobial activity of secondary metabolites when combined with cold atmospheric plasma therapy.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Syamlal Sasi
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Janith Weerasinghe
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Igor Levchenko
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| |
Collapse
|
12
|
Lu Y, Fu Y, Chen L, Cui J, Huang M, Fu Y, Liu H. Combined effect of simulated microgravity and low-dose ionizing radiation on structure and antibiotic resistance of a synthetic community model of bacteria isolated from spacecraft assembly room. LIFE SCIENCES IN SPACE RESEARCH 2023; 38:29-38. [PMID: 37481305 DOI: 10.1016/j.lssr.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 07/24/2023]
Abstract
Understanding the structural and antibiotic resistance changes of microbial communities in space environments is critical for identifying potential pathogens that may pose health risks to astronauts and for preventing and controlling microbial contamination. The research to date on microbes under simulated space factors has primarily been carried out on single bacterial species under the individual effects of microgravity or low-dose radiation. However, microgravity (MG) and low-dose ionizing radiation (LDIR) coexist in the actual spacecraft environment, and microorganisms coexist as communities in the spacecraft environment. Thus, the microbial response to the real changes present during space habitation has not been adequately explored. To address this knowledge gap, we compared the dynamics of community composition and antibiotic resistance of synthetic bacterial communities under simulated microgravit, low-dose ionizing radiation, and the conditions combined, as it occurs in spacecraft. To ensure representative bacteria were selected, we co-cultured of 12 bacterial strains isolated from spacecraft cleanrooms. We found that the weakened competition between communities increased the possibility of species coexistence, community diversity, and homogeneity. The number of Bacilli increased significantly, while different species under the combined conditions showed various changes in abundance compared to those under the individual conditions. The resistance of the synthetic community to penicillins increased significantly under low doses of ionizing radiation but did not change significantly under simulated microgravity or the combined conditions. The results of functional predictions revealed that antibiotic biosynthesis and resistance increased dramatically in the community under space environmental stress, which confirmed the results of the drug sensitivity assays. Our results show that combined space environmental factors exert different effects on the microbial community structure and antibiotic resistance, which provides new insights into our understanding of the mechanisms of evolution of microorganisms in spacecraft, and is relevant to effective microbial pollution prevention and control strategies.
Collapse
Affiliation(s)
- Yueying Lu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| | - Yifan Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; 4+4 M D. Program, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Letian Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jingjing Cui
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| | - Min Huang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuming Fu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| | - Hong Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
13
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
14
|
Behera DU, Dixit S, Gaur M, Mishra R, Sahoo RK, Sahoo M, Behera BK, Subudhi BB, Bharat SS, Subudhi E. Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways. Genes (Basel) 2023; 14:1279. [PMID: 37372459 DOI: 10.3390/genes14061279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Morganella morganii is a Gram-negative opportunistic Enterobacteriaceae pathogen inherently resistant to colistin. This species causes various clinical and community-acquired infections. This study investigated the virulence factors, resistance mechanisms, functional pathways, and comparative genomic analysis of M. morganii strain UM869 with 79 publicly available genomes. The multidrug resistance strain UM869 harbored 65 genes associated with 30 virulence factors, including efflux pump, hemolysin, urease, adherence, toxin, and endotoxin. Additionally, this strain contained 11 genes related to target alteration, antibiotic inactivation, and efflux resistance mechanisms. Further, the comparative genomic study revealed a high genetic relatedness (98.37%) among the genomes, possibly due to the dissemination of genes between adjoining countries. The core proteome of 79 genomes contains the 2692 core, including 2447 single-copy orthologues. Among them, six were associated with resistance to major antibiotic classes manifested through antibiotic target alteration (PBP3, gyrB) and antibiotic efflux (kpnH, rsmA, qacG; rsmA; CRP). Similarly, 47 core orthologues were annotated to 27 virulence factors. Moreover, mostly core orthologues were mapped to transporters (n = 576), two-component systems (n = 148), transcription factors (n = 117), ribosomes (n = 114), and quorum sensing (n = 77). The presence of diversity in serotypes (type 2, 3, 6, 8, and 11) and variation in gene content adds to the pathogenicity, making them more difficult to treat. This study highlights the genetic similarity among the genomes of M. morganii and their restricted emergence, mostly in Asian countries, in addition to their growing pathogenicity and resistance. However, steps must be taken to undertake large-scale molecular surveillance and to direct suitable therapeutic interventions.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
- Department of Biotechnology & Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Rukmini Mishra
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Bijay Kumar Behera
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Gwalior Road, Jhansi 284003, Uttar Pradesh, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sutar Suhas Bharat
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| |
Collapse
|
15
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
16
|
Xu Y, You G, Yin J, Zhang M, Peng D, Xu J, Yang S, Hou J. Salt tolerance evolution facilitates antibiotic resistome in soil microbiota: Evidences from dissemination evaluation, hosts identification and co-occurrence exploration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120830. [PMID: 36481466 DOI: 10.1016/j.envpol.2022.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Salinity is considered as one of the vital factors affecting the profiles of antibiotic resistance genes (ARGs) in soils, whereby its roles in shaping the antibiotic resistome were still poorly understood. Here, metagenomic analysis was conducted to track the ARGs distributions and dissemination in soils during salt accumulation and desalinization processes. Neutral-salt accumulation for 45 and 90 days significantly increased the relative abundances of ARGs and mobile genetic elements (MGEs) carrying antibiotic resistance contigs (ARCs). The ARGs within antibiotic efflux and target protection families primarily carried by Streptomyces, Nocardioides, Rhodanobacter and Monashia were largely enriched by salinity. The ARGs subtypes of the resistance-nodulation-division (RND) family, ATP-binding cassette (ABC) family, rRNA methyltransferase and other efflux were closely associated with MGEs, contributing to the enrichment of ARGs. Moreover, the ARGs subtypes and transposons were genetically linked with the salt-tolerance mechanisms of organic osmolyte transporters and K+ uptake proteins on the same ARC, demonstrating the coselection of ARGs and halotolerant genes. Furthermore, the antibiotic resistome could recover to a normal state after the prolonged incubation by alleviating salt stress. Nevertheless, the acquisition of ARGs by opportunistic pathogens after salt treatment was increased, serving to prioritize further efforts on the health risks correlated with resistance propagation and human exposure in saline soils.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098.
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| | - Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| | - Mairan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098
| | - Dengyun Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098
| | - Junzeng Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, People's Republic of China, 210098; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| |
Collapse
|
17
|
Bhowmick S, Pal S, Sunder J, Sujatha T, De AK, Mondal T, Singh AD, Joardar SN, Batabyal K, Dutta TK, Bandyopadhyay S, Tiwari A, Samanta I. Exploring broilers and native fowls of Andaman and Nicobar Islands as a source of β-lactamase-producing Enterobacteriaceae even with limited anthropogenic activities and docking-based identification of catalytic domains in novel β-lactamase variants. Front Vet Sci 2023; 9:1075133. [PMID: 36686169 PMCID: PMC9849777 DOI: 10.3389/fvets.2022.1075133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives The present study was conducted to detect the occurrence of β-lactamase and biofilm-producing Escherichia coli, Salmonella, and Klebsiella in broilers and native fowl reared in the Andaman and Nicobar Islands, India. The study also included molecular docking experiments to confirm the nature of the catalytic domains found in the β-lactamase variants obtained and to reveal the clonal relationship of the isolates with human clinical strains from the database. Materials and methods A total of 199 cloacal swabs were collected from five poultry breeds/varieties (broiler, Vanraja, Desi, Nicobari, and layer) in three districts of the Andaman and Nicobar Islands. E. coli, Salmonella enterica, and Klebsiella pneumoniae were isolated by standard techniques and confirmed by PCR. Phenotypical β-lactamase producers were identified by a double-disc test. The genes (bla CTX, bla SHV, bla TEM , and bla AmpC) were screened, and selected sequences of β-lactamase variants were submitted to DDBJ. Homology modeling, model validation, and active site identification of different β-lactamase variants were done by the SWISS-MODEL. Molecular docking was performed to identify the catalytic domains of the β-lactamase variants. The selected β-lactamase sequences were compared with the Indian ESBL sequences from human clinical strains in NCBI-GenBank. Results In total, 425 Enterobacteriaceae strains were isolated from the collected samples. Klebsiella pneumoniae (42.58%) was found to be the most prevalent, followed by Salmonella enterica (30.82%) and E. coli (26.58%). The phenotypical antibiogram of all 425 isolates showed the highest resistance against oxytetracycline (61-76%) and the lowest against gentamicin (15-20%). Phenotypical production of β-lactamase enzymes was observed in 141 (33.38%) isolates. The isolation rate of β-lactamase producing E. coli, Salmonella enterica, and Klebsiella pneumoniae was significantly higher (p < 0.05) in the birds reared in the South Andaman district (25.6, 17.5, and 18.7%, respectively) than in Nicobar (11.5, 7.6, 7.1%, respectively). Genotyping of the β-lactamase-producing isolates revealed the maximum possession of bla TEM, followed by bla SHV and bla CTX - M. The nucleotide sequences were found to be similar with bla CTX - M-15, bla SHV - 11, bla SHV - 27, bla SHV - 228, bla TEM - 1, and bla AmpC in BLAST search. Distribution of studied biofilm-associated genes in Enterobacteriaceae strains from different varieties of the birds revealed that the layer birds had the maximum possession, followed by Vanraja, Desi, broilers, and Nicobari fowls. The phylogenetic analysis of selected sequences revealed a partial clonal relationship with human clinical strains of the Indian subcontinent. Molecular docking depicted the Gibbs free energy release for 10 different macromolecules (proteins) and ligand (antibiotic) complexes, ranging from -8.1 (SHV-27 + cefotaxime) to -7 (TEM-1 + cefotaxime) kcal/mol. Conclusion and relevance The study revealed β-lactamase variants circulating in the fowl population of the Andaman and Nicobar Islands (India), even in remote places with low anthropogenic activity. Most of the strains possessed bla TEM - 1, followed by bla CTX - M-15. Possession of bla SHV - 11, bla SHV - 27, and bla SHV - 228 in poultry Enterobacteriaceae strains was not reported earlier from any part of the world. The phylogenetic analysis revealed a partial clonal relationship of β-lactamase sequences with the human clinical strains isolated from the Indian subcontinent.
Collapse
Affiliation(s)
- Sneha Bhowmick
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India,Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Surajit Pal
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Jai Sunder
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - T. Sujatha
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Arun Kumar De
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Tousif Mondal
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Abhishek D. Singh
- Department of Veterinary Public Health, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Siddhartha Narayan Joardar
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Kunal Batabyal
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Tapan Kumar Dutta
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, Mizoram, India
| | - Samiran Bandyopadhyay
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, West Bengal, India
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland,Ananda Tiwari ✉
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India,*Correspondence: Indranil Samanta ✉; ✉
| |
Collapse
|
18
|
Depta J, Niedźwiedzka-Rystwej P. The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem. Infect Drug Resist 2023; 16:1979-1995. [PMID: 37034396 PMCID: PMC10081531 DOI: 10.2147/idr.s369023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/02/2022] [Indexed: 04/11/2023] Open
Abstract
The increasing prevalence of antibiotic resistance is a global problem in human and animal health. This leads to a reduction in the therapeutic effectiveness of the measures used so far and to the limitation of treatment options, which may pose a threat to human health and life. The problem of phenomenon of antibiotic resistance affects more and more the polar regions. This is due to the increase in tourist traffic and the number of people staying at research stations, unmodernised sewage systems in inhabited areas, as well as the migration of animals or the movement of microplastics, which may contain resistant bacteria. Research shows that the presence of antibiotic resistance genes is more dominant in zones of human and wildlife influence than in remote areas. In a polluted environment, there is evidence of a direct correlation between human activity and the spread and survival of antibiotic-resistant bacteria. Attention should be paid to the presence of resistance to synthetic and semi-synthetic antibiotics in the polar regions, which is likely to be correlated with human presence and activity, and possible steps to be taken. We need to understand many more aspects of this, such as bacterial epigenetics and environmental stress, in order to develop effective strategies for minimizing the spread of antibiotic resistance genes. Studying the diversity and abundance of antibiotic resistance genes in regions with less anthropogenic activity could provide insight into the diversity of primary genes and explain the historical evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Julia Depta
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
- Correspondence: Paulina Niedźwiedzka-Rystwej, Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland, Tel +48 91 444 15 15, Email
| |
Collapse
|
19
|
Mu S, Zhu Y, Wang Y, Qu S, Huang Y, Zheng L, Duan S, Yu B, Qin M, Xu FJ. Cationic Polysaccharide Conjugates as Antibiotic Adjuvants Resensitize Multidrug-Resistant Bacteria and Prevent Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204065. [PMID: 35962720 DOI: 10.1002/adma.202204065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
In recent years, traditional antibiotic efficacy has rapidly diminished due to the advent of multidrug-resistant (MDR) bacteria, which poses severe threat to human life and globalized healthcare. Currently, the development cycle of new antibiotics cannot match the ongoing MDR infection crisis. Therefore, novel strategies are required to resensitize MDR bacteria to existing antibiotics. In this study, novel cationic polysaccharide conjugates Dextran-graft-poly(5-(1,2-dithiolan-3-yl)-N-(2-guanidinoethyl)pentanamide) (Dex-g-PSSn ) is synthesized using disulfide exchange polymerization. Critically, bacterial membranes and efflux pumps are disrupted by a sub-inhibitory concentration of Dex-g-PSS30 , which enhances rifampicin (RIF) accumulation inside bacteria and restores its efficacy. Combined Dex-g-PSS30 and RIF prevents bacterial resistance in bacteria cultured over 30 generations. Furthermore, Dex-g-PSS30 restores RIF effectiveness, reduces inflammatory reactions in a pneumonia-induced mouse model, and exhibits excellent in vivo biological absorption and degradation capabilities. As an antibiotic adjuvant, Dex-g-PSS30 provides a novel resensitizing strategy for RIF against MDR bacteria and bacterial resistance. This Dex-g-PSS30 research provides a solid platform for future MDR applications.
Collapse
Affiliation(s)
- Shaowei Mu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Wang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuang Qu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yichun Huang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Zheng
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Qin
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
20
|
Ji X, Pan X. Intra-/extra-cellular antibiotic resistance responses to sewage sludge composting and salinization of long-term compost applied soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156263. [PMID: 35644396 DOI: 10.1016/j.scitotenv.2022.156263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Municipal sewage sludge, a reservoir of antibiotic resistance genes (ARGs), is usually composted as fertilizer for agricultural application especially in arid and semi-arid areas. The evolution patterns of intracellular ARGs (iARGs) and extracellular ARGs (eARGs) during composting and their responses to soil salinization after long-term compost application kept unclear previously, which were systematically studied in the current study. The variation and dissemination risk of eARGs and iARGs with the salinization of farmland soils was also evaluated. Extra/intra-cellular ARGs relative abundance varied drastically through composting process. Generally, the relative abundance of the cell-free eARGs (f-eARGs) and the cell-adsorbed eARGs (a-eARGs) were 4.62 and 3.54 folds (median) higher than that of iARGs, respectively, during the entire composting process, which held true even before the sludge composting (false discovery rate, FDR p < 0.05). There was no significant difference in relative abundance between f-eARGs and a-eARGs. The relative abundance of eARGs gradually decreased with composting time but was relatively higher than iARGs. It was worth noting that iARGs rebounded in the maturation phase. However, an over ten-year application of the eARG-rich compost led to much more severe contamination of iARGs than eARGs in soil. Soil salinization caused remarkable rise of eARGs by 943.34-fold (FDR p < 0.05). The variation of ARGs during composting and soil salinization was closely related to the change of microbial community structure. In compost, the bacterial communities mainly interacting with ARGs were the Firmicutes (54 unique and 35 shared core genera); and the bacterial communities playing major roles in ARGs during soil salinization were Proteobacteria (116 unique and 53 shared core genera) and Actinobacteria (52 unique and 27 shared core genera). These findings are important for assessing the transmission risk of ARGs in compost application to farmland in arid and semi-arid areas.
Collapse
Affiliation(s)
- Xiaonan Ji
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Huang YF, Li Y, Chen JY, Lin JH, Liu L, Ye JZ, Su YB. Promoting effect of Fe3+ on gentamicin resistance in Escherichia coli. Biochem Biophys Res Commun 2022; 625:134-139. [DOI: 10.1016/j.bbrc.2022.07.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
|
22
|
Patra SK, Sinha N, Molla F, Sengupta A, Chakraborty S, Roy S, Ghosh S. In-vivo protein nitration facilitates Vibrio cholerae cell survival under anaerobic, nutrient deprived conditions. Arch Biochem Biophys 2022; 728:109358. [PMID: 35872323 DOI: 10.1016/j.abb.2022.109358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Protein tyrosine nitration (PTN), a highly selective post translational modification, occurs in both prokaryotic and eukaryotic cells under nitrosative stress. However, its physiological function is not yet clear. Like many gut pathogens, Vibrio cholerae also faces nitrosative stress, which makes proteome more vulnerable to PTN. Here, we report for the first time in-vivo PTN in V. cholerae by immunoblotting and LC-ESI-MS/MS proteomic analysis. Our results indicated that in-vivo PTN in V. cholerae was culture media independent. Surprisingly, in-vivo PTN was reduced in V. cholerae proteome under anaerobic or hypoxic condition in a nutrient deprived state. Interestingly, intracellular nitrate content was more than the nitrite content in V. cholerae under anaerobic conditions. Additionally, biochemical measurement of GSH/GSSG ratio, activities of catalase and SOD, ROS and RNS imaging by confocal microscopy confirmed a relative intracellular oxidizing environment in V. cholerae under anaerobic conditions. This altered redox environment favors the oxidation of nitrite which may be generated from protein denitration enriching the intracellular nitrate pool. The cell survival of V. cholerae can finally be facilitated by nitrate reductase (NapA) utilizing that nitrate pool. Our cell viability study using wild type and ΔnapA strain of V. cholerae also supported the role of NapA mediated cell survival under nutrient deprived anaerobic conditions. In spite of having nitrate reductase (NapA), V. cholerae lacks any nitrite reductase (NiR). Hence, in-vivo nitration may provide an avenue for toxic nitrite storage and also may help in nitrosative stress tolerance mechanism preventing further unnecessary protein nitration in V. cholerae proteome.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Nilanjan Sinha
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Firoz Molla
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Ayantika Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Souvik Roy
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
23
|
Amieva R, Gil-Gil T, Martínez JL, Alcalde-Rico M. The MexJK Multidrug Efflux Pump Is Not Involved in Acquired or Intrinsic Antibiotic Resistance in Pseudomonas aeruginosa, but Modulates the Bacterial Quorum Sensing Response. Int J Mol Sci 2022; 23:7492. [PMID: 35886841 PMCID: PMC9323910 DOI: 10.3390/ijms23147492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022] Open
Abstract
Multidrug efflux pumps are critical elements in both intrinsic and acquired antibiotic resistance of bacterial populations. Consequently, most studies regarding these protein machineries focus on this specific phenotype. Nevertheless, different works show that efflux pumps participate in other aspects of bacterial physiology too. Herein, we study the Pseudomonas aeruginosa multidrug efflux pump MexJK. Previous studies, using model strains lacking MexAB-OprM and MexCD-OprJ efflux pumps, support that MexJK can extrude erythromycin, tetracycline, and triclosan. However, the results here reported indicate that this potential increased extrusion, in a mutant overexpressing mexJK, does not alter the antibiotics susceptibility in a wild-type genetic background where all intrinsic multidrug efflux pumps remain functional. Nevertheless, a clear impact on the quorum sensing (QS) response, mainly in the Pqs-dependent QS regulation network and in the expression of Pqs-regulated virulence factors, was observed linked to mexJK overexpression. The production of the siderophore pyoverdine strongly depended on the level of mexJK expression, suggesting that MexJK might participate in P. aeruginosa pyoverdine-dependent iron homeostasis. All in all, the results presented in the current article support that the functions of multidrug efflux pumps, as MexJK, go beyond antibiotic resistance and can modulate other relevant aspects of bacterial physiology.
Collapse
Affiliation(s)
- Rafael Amieva
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- SALUVET Group, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Luis Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
| | - Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile
| |
Collapse
|
24
|
Liu Y, Cai Y, Li G, Wang W, Wong PK, An T. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. WATER RESEARCH 2022; 218:118407. [PMID: 35453030 DOI: 10.1016/j.watres.2022.118407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO2 system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Aimbetov R, Ogryzko V. Proteomic profiling of the carbon-starved Escherichia coli reveals upregulation of stress-inducible pathways implicated in biological adhesion and methylglyoxal metabolism. Res Microbiol 2022; 173:103968. [PMID: 35738311 DOI: 10.1016/j.resmic.2022.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
Starvation in bacteria is a complex adaptive response to deprivation of nutrients that has been shown to implicate a number of stress networks that modulate pathogenicity and antibiotic resistance. Starvation in nature is qualitatively different from in-culture late stationary phase energy source depletion. To look into proteome-level alterations elicited by complete elimination of carbon source, we used Escherichia coli HT115-derived SLE1 strain cells and a combination of label-free and metabolic isotope labeling approaches. We isolated pathways differentially affected by carbon starvation and observed robust upregulation of proteins implicated in networks belonging to Gene Ontology terms 'Biological adhesion' and 'Methylglyoxal metabolism'.
Collapse
Affiliation(s)
- Rakhan Aimbetov
- Nazarbayev University, 53 Kabanbay batyr avenue, 010000, Nur-Sultan, Kazakhstan.
| | - Vasily Ogryzko
- UMR 8126, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| |
Collapse
|
26
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
27
|
High Osmotic Stress Increases OmpK36 Expression through the Regulation of KbvR to Decrease the Antimicrobial Resistance of Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0050722. [PMID: 35658577 PMCID: PMC9241633 DOI: 10.1128/spectrum.00507-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a pathogen known for its high frequency of antimicrobial resistance. Responses to various environmental stresses during its life can influence the resistance to antibiotics. Here, we demonstrate the role and mechanism of KbvR regulator in the response to environmental osmotic stress and in the effect of osmotic stress on antimicrobial resistance. The kbvR mutant strain exhibited increasing tolerance to high osmotic stress and certain antibiotics, including β-lactams. The expression levels of KbvR and outer membrane porin OmpK36 were upregulated in response to high osmotic stress in the wild type (WT), and the deletion of kbvR decreased the expression level of ompK36. The membrane permeability of the kbvR mutant strain was decreased, which was partly restored through the upregulated expression of OmpK36. The DNA affinity purification sequencing (DAP-seq) and microscale thermophoresis (MST) assay disclosed the binding of KbvR to the promoter of the ompK36 gene, indicating that KbvR directly and positively regulated the expression of OmpK36. The high osmotic stress increased the susceptibility to β-lactams and the expression of ompK36 in the WT strain. However, the increased ompK36 expression and the susceptibility to β-lactams in the kbvR mutant strain under high osmotic stress were lower than those of WT. In conclusion, our study has identified that high osmotic stress in the environment influenced the resistance of K. pneumoniae to antibiotics and that the regulation of KbvR with OmpR on the expression of OmpK36 was involved in countering high osmotic stress to change the antimicrobial resistance. IMPORTANCEKlebsiella pneumoniae is considered a global threat because of the rising prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. The sensing and adaption abilities of bacteria to the environmental osmotic stress can change the expression of their outer membrane porins, membrane permeability, and resistance to antibiotics. This study reports that KbvR is a newly found regulator that can be upregulated under high osmotic stress and directly regulate the expression of OmpK36 to change the resistance of K. pneumoniae to β-lactam antibiotics. The results demonstrate how adaptation to high osmotic stress changes the sensitivity of K. pneumoniae to antibiotics. The mechanism can be used to sensitize bacteria to antibiotics and highlight new potential strategies for exploiting shared constraints in governing adaptation to diverse environmental challenges.
Collapse
|
28
|
Huang H, Feng G, Wang M, Liu C, Wu Y, Dong L, Feng L, Zheng X, Chen Y. Nitric Oxide: A Neglected Driver for the Conjugative Transfer of Antibiotic Resistance Genes among Wastewater Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6466-6478. [PMID: 35512279 DOI: 10.1021/acs.est.2c01889] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) in wastewater is becoming an urgent concern. Previous studies mainly focused on the effects of coexisting contaminants on plasmid conjugation, but ignored the potential contribution of some byproducts inevitably released from wastewater treatment processes. Herein, we demonstrate for the first time that nitric oxide (NO), an intermediate of the wastewater nitrogen cycle, can significantly boost the conjugative transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella typhimurium, and wastewater microbiota). Phenotypic and genotypic tests confirmed that NO-induced promotion was not attributed to the SOS response, a well-recognized driver for horizontal gene transfer. Instead, NO exposure increased the outer membrane permeability of both the donor and recipient by inhibiting the expression of key genes involved in lipopolysaccharide biosynthesis (such as waaJ), thereby lowering the membrane barrier for conjugation. On the other hand, NO exposure not only resulted in the accumulation of intracellular tryptophan but also triggered the deficiency of intracellular methionine, both of which were validated to play key roles in regulating the global regulatory genes (korA, korB, and trbA) of plasmid RP4, activating its encoding transfer apparatus (represented by trfAp and trbBp). Overall, our findings highlighted the risks of NO in spreading ARGs among wastewater microbiota and updated the regulation mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guanqun Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Wang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Municipal Engn Design Inst Grp Co. Ltd., 901 Zhongshan North Second Road, Shanghai 200092, P. R. China
| | - Leiyu Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiong Zheng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinguang Chen
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
29
|
Zahedi S, Gros M, Petrović M, Balcazar JL, Pijuan M. Anaerobic treatment of swine manure under mesophilic and thermophilic temperatures: Fate of veterinary drugs and resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151697. [PMID: 34793799 DOI: 10.1016/j.scitotenv.2021.151697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The effect of anaerobic treatment of swine manure at 35 °C (mesophilic) and 55 °C (thermophilic) on methane production, microbial community and contaminants of emerging concern was investigated. Pasteurization pretreatment and post treatment was also investigated in combination with anaerobic treatment at 35 °C. Specific methane production (SMP), 26 pharmaceutical compounds (PhACs) and five antibiotic resistance genes (ARGs) (qnrS, tetW, ermB, sul1 and blaTEM) were evaluated. Mesophilic treatment resulted in the highest SMP regardless of whether pasteurization was applied. Marbofloxacin was the most abundant antibiotic in swine manure. In general, all groups of PhACs showed higher removals under thermophilic temperatures as compared to mesophilic. In general, pasteurization pretreatment followed by mesophilic anaerobic digestion provided the highest removals of ARGs. Finally, the genera Streptococcus, Clostridium and Pseudomonas which contain pathogenic species, were present in the swine manure. Streptococcus, which was the most abundant, was decreased during all the treatments, while the others only decreased under certain treatments.
Collapse
Affiliation(s)
- S Zahedi
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - M Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Petrović
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - J L Balcazar
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Pijuan
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
30
|
Inactivation of Listeria monocytogenes and Salmonella spp. in Milano-Type Salami Made with Alternative Formulations to the Use of Synthetic Nitrates/Nitrites. Microorganisms 2022; 10:microorganisms10030562. [PMID: 35336137 PMCID: PMC8953279 DOI: 10.3390/microorganisms10030562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/29/2022] Open
Abstract
During the manufacture of Italian salami, a traditional meat product, a sequence of hurdles like meat fermentation, air-drying, and long ripening processes are generally sufficient to inhibit the growth of most pathogens. Furthermore, Italian salami are traditionally produced by adding synthetic nitrates/nitrites to raw meat with safety and technological aims, even if controversial opinions about their use still remain, particularly in relation to the consumer demand for natural food products. In this context, the aim of the study was to investigate the inactivation of Listeria monocytogenes and Salmonella spp. during the manufacturing process of Milano-type salami made with different formulations to evaluate the contribution of the hurdles and the vegetable or synthetic additives on the inactivation of pathogens. Thus, a challenge study was performed dividing ca. 400 kg of Milano-type salami batter into three batches: Batch (A) without nitrates/nitrites; Batch (B) with vegetable nitrates, and Batch (C) with synthetic nitrates/nitrites. The batches were separately inoculated with L. monocytogenes and Salmonella spp. and the pathogens’ survival was evaluated during the fermentation, draining, and 70-day ripening of the Milano-type salami. The pathogen counts decreased in all tested conditions, even though the highest inactivation of L. monocytogenes and Salmonella spp. (p < 0.05) was observed when nitrates or nitrites were added to the batter. This study shows how the safety of these products cannot exclude the aspect of the hurdle technology during the process, which plays a major role in the reduction of pathogens, but additives like nitrates and nitrites allow for a greater margin of safety. Thus, further studies are needed to validate the use of natural compounds as alternatives to conventional preservatives in meat products. These results may provide new information to support food business operators in producing traditional foods with alternative preservatives and competent authorities in verifying the safety of the products made with natural compounds, and to control the process parameters responsible for the synergistic effect against pathogens such as L. monocytogenes and Salmonella spp.
Collapse
|
31
|
Apostolopoulou NG, Smeti E, Lamorgese M, Varkitzi I, Whitfield P, Regnault C, Spatharis S. Microalgae show a range of responses to exometabolites of foreign species. ALGAL RES 2022; 62:None. [PMID: 35311224 PMCID: PMC8924005 DOI: 10.1016/j.algal.2021.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022]
Abstract
Studies on microalgae interspecific interactions have so far focused either on nutrient competition or allelopathic effects due to excreted substances from Harmful Algal Bloom (HAB) species. Evidence from plants, bacteria and specific microalgae groups, point to a range of responses mediated by sensing or direct chemical impact of exometabolites from foreign species. Such processes remain under-investigated, especially in non-HAB microalgae, despite the importance of such knowledge in ecology and industrial applications. Here, we study the directional effect of exometabolites of 4 "foreign" species Heterosigma akashiwo, Phaeocystis sp., Tetraselmis sp. and Thalassiosira sp. to each of three "target" species across a total of 12 treatments. We disentangle these effects from nutrient competition by adding cell free medium of each "foreign" species into our treatment cultures. We measured the biomass response, to the foreign exometabolites, as cell number and photosynthetic biomass (Chla), whereas nutrient use was measured as residual phosphorus (PO4) and intracellular phosphorus (P). Exometabolites from filtrate of foreign species were putatively annotated by untargeted metabolomics analysis and were discussed in association to observed responses of target species. Among others, these metabolites included L-histidinal, Tiliacorine and dimethylsulfoniopropionate (DMSP). Our findings show that species show a range of responses with the most common being biomass suppression, and less frequent biomass enhancement and intracellular P storage. Filtrate from the green microalgae Tetraselmis caused the most pronounced negative effects suggesting that non-HAB species can also cause negative chemical interference. A candidate metabolite inducing this response is L-histidinal which was measured in high abundance uniquely in Tetraselmis and its L-histidine form derived from bacteria was previously confirmed as a microalgal algicidal. H. akashiwo also induced biomass suppression on other microalgae and a candidate metabolite for this response is Tiliacorine, a plant-derived alkaloid with confirmed cytotoxic activity.
Collapse
Affiliation(s)
- Natalia G. Apostolopoulou
- Department of Ecology and Systematics, National and Kapodistrian University of Athens, 10679, Greece
- School of Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Evangelia Smeti
- Institute of Marine Biological Resources and Inland Waters, HCMR Hellenic Centre for Marine Research, PO Box 713, Anavyssos 19013, Greece
| | | | - Ioanna Varkitzi
- Institute of Oceanography, HCMR Hellenic Centre for Marine Research, PO Box 713, Anavyssos 19013, Greece
| | | | | | - Sofie Spatharis
- School of Life Sciences, University of Glasgow, G12 8QQ, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
32
|
Xu Y, You G, Zhang M, Peng D, Jiang Z, Qi S, Yang S, Hou J. Antibiotic resistance genes alternation in soils modified with neutral and alkaline salts: interplay of salinity stress and response strategies of microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152246. [PMID: 34896144 DOI: 10.1016/j.scitotenv.2021.152246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Growing evidence points to the pivotal roles of salt accumulation in mediating antibiotic resistance genes (ARGs) spread in soil, whereas how salt mediates ARGs dissemination remains unknown. Herein, the effects of neutral or alkaline (Ne/Al) salt at low, moderate and high levels (Ne/Al-L, Ne/Al-M, Ne/Al-H) on the dissemination of ten typical ARGs in soils were explored, by simultaneously considering the roles of salinity stress and response strategies of microbes. In the soils amended with Ne/Al-L and Al-M salt, the dissemination of ARGs was negligible and the relative abundances of ARGs and mobile genetic elements (MGEs) were decreased. However, Ne-M and Al-H salt contributed to the dissemination of ARGs in soils, with the significantly increased absolute and relative abundances of ARGs and MGEs. In Ne-H soil, although the absolute abundance of ARGs declined drastically due to serious oxidative damage, their relative abundances were promoted. The facilitated ARGs transfer was potentially related to the excessive generation of intracellular reactive oxygen species and increased activities of DNA repair enzymes involved in SOS system. In addition, the activated intracellular protective response including quorum sensing and energy metabolism largely provided essential factors for ARGs dissemination. The co-occurrence of ARGs and over-expressed salt-tolerant genes in specific halotolerant bacteria further suggested the selection of salt stress on ARGs. Moreover, less disturbance of alkaline salt than neutral salt on ARGs evolution was observed, due to the lower abiotic stress and selective pressure on microbes. This study highlights that soil salinity-sodicity could dose-dependently reshape the dissemination of ARGs and community structure of microbes, which may increase the ecological risks of ARGs in agricultural environment.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| | - Mairan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Dengyun Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Suting Qi
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| |
Collapse
|
33
|
Ning Q, Wang D, An J, Ding Q, Huang Z, Zou Y, Wu F, You J. Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126858. [PMID: 34419845 DOI: 10.1016/j.jhazmat.2021.126858] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 05/06/2023]
Abstract
Toxicological effects of nanoplastics have been demonstrated in a variety of organisms, yet their impacts on bacteria, especially on the antibiotic resistance evolution remain under explored. Herein, we report individual and combined effects of nano-polystyrene (nano-PS) and erythromycin (ERY) on growth and resistance mutations of Escherichia coli. The toxicity of nano-PS was dependent on size and functional modifications, with 30 nm and amino-modified PS (PS-NH2, 200 nm) showing the greatest toxicity. Adsorption of nano-PS onto bacterial surface and the subsequent increase of intracellular ROS or the probable mechanical damage were considered as the primary toxic mechanisms. Furthermore, nano-PS increased the bacterial resistance mutations, which was due to the oxidative damage to DNA and the SOS response. In addition, PS-NH2 presented synergistic effects with ERY while non-modified PS had no impact, although both of them showed adsorption capacity to ERY. This was likely because the positively charged PS-NH2 acted as a carrier of ERY and enhanced the interactions between ERY and the bacteria. Our findings raised the concerns about the risk of nanoplastics in accelerating the bacterial resistance evolution, and highlighted the necessity of including combined effects of nanoplastics and co-contaminants in risk assessment.
Collapse
Affiliation(s)
- Qing Ning
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jiahui An
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qi Ding
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhiyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yue Zou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Fan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
34
|
Transcriptional Response of Multidrug-Resistant Klebsiella pneumoniae Clinical Isolates to Ciprofloxacin Stress. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:5570963. [PMID: 34876946 PMCID: PMC8645360 DOI: 10.1155/2021/5570963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
Background The term “persisters” refers to a small bacterial population that persists during treatment with high antibiotic concentration or dose in the absence of genetic resistance. The present study was designed to investigate the transcriptional response in indigenous Klebsiella pneumoniae under the ciprofloxacin stress. Methods Isolation and identification of K. pneumoniae were carried out through standard microbiological protocols. The characterization of quinolone resistance was performed by estimating the quinolone susceptibility testing, MIC estimation, and detecting the QRDR and PMQR. Transcriptional response of the isolates to ciprofloxacin was determined using qPCR. Results Among 34 isolates, 23 (67%) were resistant to ciprofloxacin. Both QRDR (gyrA and gyrB) and PMQR (qnrA, qnrB, and qnrS) were detected in the isolates, and all were found resistant to ciprofloxacin. The mRNA levels of both mutS and euTu under the influence of ciprofloxacin were significantly increased. On ciprofloxacin exposure, the mRNA levels of the DNA damage response element (mutS) were raised in a time-dependent fashion. K. pneumoniae showed high-level resistance to ciprofloxacin in the presence of mutations in QRDR and PMQR genes. Conclusion The transcriptional response revealed the upregulation of DNA repair and protein folding elements (mutS and euTu) in ciprofloxacin stress and delayed cell division. The ciprofloxacin was found to trigger various stress responses in a time- and concentration-dependent manner.
Collapse
|
35
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Tuning Microbial Activity via Programmatic Alteration of Cell/Substrate Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004655. [PMID: 34028885 PMCID: PMC10167751 DOI: 10.1002/adma.202004655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Indexed: 05/11/2023]
Abstract
A wide portfolio of advanced programmable materials and structures has been developed for biological applications in the last two decades. Particularly, due to their unique properties, semiconducting materials have been utilized in areas of biocomputing, implantable electronics, and healthcare. As a new concept of such programmable material design, biointerfaces based on inorganic semiconducting materials as substrates introduce unconventional paths for bioinformatics and biosensing. In particular, understanding how the properties of a substrate can alter microbial biofilm behavior enables researchers to better characterize and thus create programmable biointerfaces with necessary characteristics on demand. Herein, the current status of advanced microorganism-inorganic biointerfaces is summarized along with types of responses that can be observed in such hybrid systems. This work identifies promising inorganic material types along with target microorganisms that will be critical for future research on programmable biointerfacial structures.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dennis R LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina-Greensboro, Greensboro, NC, 27401, USA
| | - Ramon Collazo
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
36
|
Akhova A, Nesterova L, Shumkov M, Tkachenko A. Cadaverine biosynthesis contributes to decreased Escherichia coli susceptibility to antibiotics. Res Microbiol 2021; 172:103881. [PMID: 34543694 DOI: 10.1016/j.resmic.2021.103881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Some bacterial stress responses are involved in survival under antibiotic treatment and contribute to less susceptible microbial forms selection. Here, we tested the role of cadaverine, one of the biogenic polyamines considered as universal adaptogens, in the processes. The expression of ldcC and cadA genes, encoding cadaverine-producing lysine decarboxylase, increased in Escherichia coli cells exposed to β-lactams and fluoroquinolones but not aminoglycosides. The transcriptional regulators RpoS and SoxS controlled the expression of ldcC and cadA, respectively, in response to antibiotics. Exogenous cadaverine had little effect on E. coli antibiotic susceptibility, whereas non-antibiotic-induced endogenous cadaverine contributed to its tolerance to β-lactams, fluoroquinolones, and aminoglycosides. Antibiotic-induced cadaverine synthesis promoted bacterial survival under fluoroquinolone exposure, as well as could contribute to low-resistant bacterial forms development. Selection under the fluoroquinolone levofloxacin exposure toward bacteria with an increased ability to synthesize cadaverine and negative correlation between LdcC activity and fluoroquinolone susceptibility in the selected forms were demonstrated. The same correlation in a special group of low-level resistant clinical E. coli isolates was revealed. So, cadaverine biosynthesis appeared to be a significant player in decreased E. coli antibiotic susceptibility development.
Collapse
Affiliation(s)
- Anna Akhova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences, 13, Golev st, Perm, 614081, Russia; Perm State University, 15, Bukirev st, 614068, Perm, Russia.
| | - Larisa Nesterova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences, 13, Golev st, Perm, 614081, Russia; Perm State University, 15, Bukirev st, 614068, Perm, Russia.
| | - Mikhail Shumkov
- Group of Microbial Genomes Editing, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Leninsky prospect, 119071, Moscow, Russia.
| | - Alexander Tkachenko
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences, 13, Golev st, Perm, 614081, Russia; Perm State University, 15, Bukirev st, 614068, Perm, Russia.
| |
Collapse
|
37
|
Tan X, Qiao J, Li H, Huang D, Hu X, Wang X. Global metabolic regulation in Vibrio parahaemolyticus under polymyxin B stimulation. Microb Pathog 2021; 161:105260. [PMID: 34688850 DOI: 10.1016/j.micpath.2021.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
Vibrio parahaemolyticus is responsible for infection diseases of people who consume the contaminated seafood, but its metabolic regulation profile in response to colistin, the last treatment option for multidrug-resistant Gram-negative bacteria, remains unclear. In this study, the metabolic regulation profile of V. parahaemolyticus ATCC33846 under polymyxin B stimulation has been investigated. V. parahaemolyticus exposed to polymyxin B resulted in 4597 differentially transcribed genes, including 673 significantly up-regulated genes and 569 significantly down-regulated genes. In V. parahaemolyticus under polymyxin B stimulation, the cellular antioxidant systems to prevent bacteria from oxidant stress was activated, the synthesis of some nonessential macromolecules was reduced, and the assembly and modification of lipopolysaccharide and peptidoglycan to resist the attack from other antibiotics were promoted. These findings provide new insights into polymyxin B-related stress response in V. parahaemolyticus which should be useful for developing novel drugs for infection.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
38
|
Liang H, Wang F, Mu R, Huang J, Zhao R, Li X, Yu K, Li B. Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148262. [PMID: 34380279 DOI: 10.1016/j.scitotenv.2021.148262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Although antimicrobial resistance genes (ARGs) in dozens of environments have been well documented, the distribution of ARGs in salt lake ecosystems has been less intensively investigated. In this study, the broad-spectrum ARG profiles, microbial community composition and the comprehensive associations between microbiome and antimicrobial resistome in four salt lakes were investigated using a metagenomic approach. A total of 175 ARG subtypes affiliated with 19 ARG types were detected, and ARGs conferring resistance to multidrug, bacitracin, and macrolide-lincosamide-streptogramin (MLS) accounted for 71.2% of the total ARG abundance. However, the abundance of ARGs significantly decreased with the increasing salinity in the lakes. Both ARG profiles and microbial community structure presented remarkable discrepancies in different lakes, as well as in different sample types. Microbes such as genera Azoarcus, Aeromonas, Pseudomonas, and Kocuria, significantly co-occurred with multiple ARGs, indicating that these bacteria are potential ARG hosts in salt lake ecosystems. Collectively, this work provides new insights into the occurrence and distribution of ARGs in salt lake ecosystems.
Collapse
Affiliation(s)
- Hebin Liang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Rong Mu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jin Huang
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
39
|
Ciprofloxacin induced antibiotic resistance in Salmonella Typhimurium mutants and genome analysis. Arch Microbiol 2021; 203:6131-6142. [PMID: 34585273 DOI: 10.1007/s00203-021-02577-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Antibiotic resistance of Salmonella species is well reported. Ciprofloxacin is the frontline antibiotic for salmonellosis. The repeated exposure to ciprofloxacin leads to resistant strains. After 20 cycles of antibiotic exposure, resistant bacterial clones were evaluated. The colony size of the mutants was small and had an extended lag phase compared to parent strain. The whole genome sequencing showed 40,513 mutations across the genome. Small percentage (5.2%) of mutations was non-synonymous. Four-fold more transitions were observed than transversions. Ratio of < 1 transition vs transversion showed a positive selection for antibiotic resistant trait. Mutation distribution across the genome was uniform. The native plasmid was an exception and 2 mutations were observed on 90 kb plasmid. The important genes like dnaE, gyrA, iroC, metH and rpoB involved in antibiotic resistance had point mutations. The genome analysis revealed most of the metabolic pathways were affected.
Collapse
|
40
|
Huang YY, Liu DM, Jia XZ, Liang MH, Lu Y, Liu J. Whole genome sequencing of Lactobacillus plantarum DMDL 9010 and its effect on growth phenotype under nitrite stress. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, Chuan Sean T, Norbert Michael E, Yeok Mun C, Xiao Qi N, Ling Mok P, Kumar SS. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-A Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:839. [PMID: 34441045 PMCID: PMC8401077 DOI: 10.3390/medicina57080839] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Amira Abubakar Mohamed
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Etel Faradjeva
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Lee Si Jie
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chin Hooi Sze
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Akasha Arif
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Emmanuel Norbert Michael
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chua Yeok Mun
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Ng Xiao Qi
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Suresh S. Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Agharam Road Selaiyur, Chennai 600 073, Tamil Nadu, India
| |
Collapse
|
42
|
Huang L, Ahmed S, Gu Y, Huang J, An B, Wu C, Zhou Y, Cheng G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021; 26:molecules26144277. [PMID: 34299552 PMCID: PMC8303546 DOI: 10.3390/molecules26144277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the extensive application of antibiotics in medical and farming practices, the continued diversification and development of antimicrobial resistance (AMR) has attracted serious public concern. With the emergence of AMR and the failure to treat bacterial infections, it has led to an increased interest in searching for novel antibacterial substances such as natural antimicrobial substances, including microbial volatile compounds (MVCs), plant-derived compounds, and antimicrobial peptides. However, increasing observations have revealed that AMR is associated not only with the use of antibacterial substances but also with tolerance to heavy metals existing in nature and being used in agriculture practice. Additionally, bacteria respond to environmental stresses, e.g., nutrients, oxidative stress, envelope stress, by employing various adaptive strategies that contribute to the development of AMR and the survival of bacteria. Therefore, we need to elucidate thoroughly the factors and conditions affecting AMR to take comprehensive measures to control the development of AMR.
Collapse
Affiliation(s)
- Lulu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Yufeng Gu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Junhong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Boyu An
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Cuirong Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Yujie Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
- Correspondence:
| |
Collapse
|
43
|
Duang-Nkern J, Nontaleerak B, Udomkanarat T, Saninjuk K, Sukchawalit R, Mongkolsuk S. NieR is the repressor of a NaOCl-inducible efflux system in Agrobacterium tumefaciens C58. Microbiol Res 2021; 251:126816. [PMID: 34273784 DOI: 10.1016/j.micres.2021.126816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
The Agrobacterium tumefaciens atu4217 gene, which encodes a TetR family transcription regulator, is a repressor of the atu4218-atu4219-atu4220 operon. The Atu4218 and Atu4219 proteins belong to the HlyD family (membrane fusion protein) and the AcrB/AcrD/AcrF family (inner membrane transporter), respectively, and may form an efflux pump. The atu4220 gene encodes a short-chain dehydrogenase. Quantitative real-time PCR analysis showed induction of atu4217 and atu4218 by NaOCl but not by N-ethylmaleimide or reactive oxygen species (ROS) including H2O2, menadione and cumene hydroperoxide; therefore, the atu4218 and atu4219 were named NaOCl-inducible efflux genes nieA and nieB, respectively. The atu4217 gene, which was named nieR, serves as a repressor of nieA and nieB. DNase I footprinting assays identified 20-bp imperfect inverted repeat (IR, underlined) motifs 5'-TAGATTTAGGATGCAATCTA-3' (box A) and 5'-TAGATTTCACTTGACATCTA-3' (box R) in the intergenic region of the divergent nieA and nieR genes; these motifs were recognized by the NieR protein. Electrophoretic mobility shift assays demonstrated that NieR specifically binds to the 20-bp IR motifs and that NaOCl prevents this NieR-DNA interaction. Promoter-lacZ fusions and mutagenesis of the NieR boxes (A and R) showed a more dominant role for box A than for box R in the repression of the nieA and nieR promoters. However, full repression of either promoter required both operators. The nieR mutant strain exhibited a small colony phenotype and was more sensitive than the wild-type to NaOCl and antibiotics, including ciprofloxacin, nalidixic acid, novobiocin, and tetracycline. By contrast, the nieAB mutant strain showed no phenotype changes under the tested conditions.
Collapse
Affiliation(s)
- Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Benya Nontaleerak
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Tham Udomkanarat
- Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand
| | - Kritsakorn Saninjuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
44
|
Yang X, Ye W, Qi Y, Ying Y, Xia Z. Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. Front Bioeng Biotechnol 2021; 9:696514. [PMID: 34307323 PMCID: PMC8297506 DOI: 10.3389/fbioe.2021.696514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems.
Collapse
Affiliation(s)
- Xinfu Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Pepi M, Focardi S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5723. [PMID: 34073520 PMCID: PMC8198758 DOI: 10.3390/ijerph18115723] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a 'hot spot' in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO2 emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area.
Collapse
Affiliation(s)
- Milva Pepi
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Silvano Focardi
- Department of Environmental Sciences, Università di Siena, Via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
46
|
Ma J, Wang P, Gu W, Su Y, Wei H, Xie B. Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143846. [PMID: 33250254 DOI: 10.1016/j.scitotenv.2020.143846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 05/25/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in food waste (FW) disposal can pose severe threats to public health. Lipid is a primary composition in FW, while whether lipid stress can affect ARGs dynamics during anaerobic digestion (AD) process of FW is uncertain. This study focused on the impacts of lipid stress on methane production, fate of ARGs and its microbial mechanisms during AD of FW. Results showed that high lipid content increased methane yield but prolonged hydrolysis and lag time of methane production compared to AD of FW without oil. Moreover, variations of ARGs were more susceptible to lipid stress. Lipid stress could facilitate the reduction of total ARGs abundances compared to the group without oil, particularly restraining the proliferation of sul1, aadA1 and mefA in AD systems (P < 0.05). Mantel test suggested that integrons (intl1 and intl2) were significantly correlated with all detected ARGs (r: 0.33, P < 0.05), indicating that horizontal gene transfer mediated by integrons could be the driving force on ARGs dissemination. Network analysis suggested that Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria were the main potential hosts of ARGs. In addition, under the lipid stress, the reduction of host bacteria was responsible for the elimination of several specific ARGs, thereby affecting ARGs profiles. These findings firstly deciphered ARGs dynamics and their driving factors responding to lipid stress during anaerobic biological treatment of FW.
Collapse
Affiliation(s)
- Jiaying Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenchao Gu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huawei Wei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
47
|
Jin X, Zhou J, Richey G, Wang M, Hong SMC, Hong SH. Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation. J Microbiol Biotechnol 2021; 31:130-136. [PMID: 33046677 PMCID: PMC8513074 DOI: 10.4014/jmb.2008.08027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023]
Abstract
Persister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration. Fatty acids may be promising candidates as antipersister or antibiofilm agents, because some fatty acids exhibit antimicrobial effects. We previously reported that fatty acid ethyl esters effectively inhibit Escherichia coli persister formation by regulating an antitoxin. In this study, we screened a fatty acid library consisting of 65 different fatty acid molecules for altered persister formation. We found that undecanoic acid, lauric acid, and N-tridecanoic acid inhibited E. coli BW25113 persister cell formation by 25-, 58-, and 44-fold, respectively. Similarly, these fatty acids repressed persisters of enterohemorrhagic E. coli EDL933. These fatty acids were all medium-chain saturated forms. Furthermore, the fatty acids repressed Enterohemorrhagic E. coli (EHEC) biofilm formation (for example, by 8-fold for lauric acid) without having antimicrobial activity. This study demonstrates that medium-chain saturated fatty acids can serve as antipersister and antibiofilm agents that may be applied to treat bacterial infections.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jiacheng Zhou
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Gabriella Richey
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mengya Wang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sung Min Choi Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
48
|
Houshmandyar S, Eggleston IM, Bolhuis A. Biofilm-specific uptake of a 4-pyridone-based iron chelator by Pseudomonas aeruginosa. Biometals 2021; 34:315-328. [PMID: 33428087 PMCID: PMC7940164 DOI: 10.1007/s10534-020-00281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
Iron is an essential nutrient for virtually all microbes and limiting the concentration of available iron is a potential strategy to be used as an alternative to antibiotic treatment. In this study we analysed the antimicrobial activity of two chelators, specifically 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (deferiprone, DFP), which is clinically approved for the treatment of iron overload disorders, and its 1,2-diethyl homologue, CP94. Both compounds showed moderate activity towards planktonically growing P. aeruginosa cells, and the mechanism of action of these chelators was indeed by limiting the amount of free iron. Surprisingly, the compounds behaved very differently when the cells were grown in biofilms. DFP also showed inhibitory effects on biofilm formation but in contrast, CP94 stimulated this process, in particular at high concentrations. We hypothesised that CP94 behaves as an iron carrier, which was confirmed by our observation that it had antimicrobial synergy with the toxic metals, gallium and copper. This suggests that P. aeruginosa produces a biofilm-specific transport protein that recognises CP94 but not the closely related compound DFP.
Collapse
Affiliation(s)
| | - Ian M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
49
|
Huang YY, Liang MH, Zhao S, Chen SM, Liu JS, Liu DM, Lu YZ. Isolation, expression, and biochemical characterization: nitrite reductase from Bacillus cereus LJ01. RSC Adv 2020; 10:37871-37882. [PMID: 35515171 PMCID: PMC9057199 DOI: 10.1039/d0ra06129h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Biological remediation of toxic oxygen-containing anions such as nitrate that are common in the environment is of great significance. Therefore, it is necessary to understand the specific role of nitrate and nitrite reductase in the bioremediation process. Bacillus cereus LJ01, which was isolated from traditional Chinese soybean paste, effectively degraded nitrite (such as NaNO2) at 0–15 mmol L−1 in LB medium. Moreover, the nitrite-degrading active substance (ASDN) was isolated and purified from B. cereus LJ01. The nitrite-degrading activity of nitrite reductase (named LJ01-NiR) was 4004.89 U mg−1. The gene encoding the assimilation of nitrite reductase in B. cereus LJ01 was cloned and overexpressed in E. coli. The purified recombinant LJ01-NiR has a wide range of activities under temperature (20–60 °C), pH (6.5–8.0) and metal ions (Fe3+, Fe2+, Cu2+, Mn2+, and Al3+). Kinetic parameters of LJ01-NiR, including the values of Km and Vmax were 1.38 mM and 2.00 μmol g−1 min−1, respectively. The results showed that LJ01-NiR could degrade nitrite with or without an electron donor. In addition, sequence analysis revealed that LJ01-NiR was a ferredoxin-dependent nitrite reductase given the presence of conserved [Fe4–S4] cluster and heme-binding domain. The nitrite ion binds to the LJ01-NiR active site by forming three hydrogen bonds with the residues ASN72, ALA133 and ASN140. Due to its high nitrite-degrading activity, LJ01-NiR could potentially be used for environmental pollution treatment. Biological remediation of toxic oxygen-containing anions such as nitrite in the environment is of great significance. Bacillus cereus LJ01 showed the activity of degradation for nitrite. the enzyme NiR from LJ01 can degrade the nitrite in vitro.![]()
Collapse
Affiliation(s)
- Yan-Yan Huang
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 People's Republic of China
| | - Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 People's Republic of China
| | - Shan Zhao
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 People's Republic of China
| | - Si-Min Chen
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 People's Republic of China
| | - Jin-Song Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences 190 Kaiyuan Avenue, Science Park, Huangpu District Guangzhou 510530 People's Republic of China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 People's Republic of China
| | - Yong-Zhi Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences 190 Kaiyuan Avenue, Science Park, Huangpu District Guangzhou 510530 People's Republic of China
| |
Collapse
|
50
|
Li T, He L, Li C, Kang M, Song Y, Zhu Y, Shen Y, Zhao N, Zhao C, Yang J, Huang Q, Mou X, Tong A, Yang J, Wang Z, Ji C, Li H, Tang H, Bao R. Molecular basis of the lipid-induced MucA-MucB dissociation in Pseudomonas aeruginosa. Commun Biol 2020; 3:418. [PMID: 32747658 PMCID: PMC7400510 DOI: 10.1038/s42003-020-01147-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
MucA and MucB are critical negative modulators of sigma factor AlgU and regulate the mucoid conversion of Pseudomonas aeruginosa. Previous studies have revealed that lipid signals antagonize MucA-MucB binding. Here we report the crystal structure of MucB in complex with the periplasmic domain of MucA and polyethylene glycol (PEG), which unveiled an intermediate state preceding the MucA-MucB dissociation. Based on the biochemical experiments, the aliphatic side chain with a polar group was found to be of primary importance for inducing MucA cleavage. These results provide evidence that the hydrophobic cavity of MucB is a primary site for sensing lipid molecules and illustrates the detailed control of conformational switching within MucA-MucB in response to lipophilic effectors.
Collapse
Affiliation(s)
- Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lihui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Changcheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yibo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yalin Shen
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ninglin Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chang Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing Yang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qin Huang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xingyu Mou
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinliang Yang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhenling Wang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chengjie Ji
- Clinical Laboratory of Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Hong Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|