1
|
Reveglia P, Corso G, Evidente A. Advances on Bioactive Metabolites with Potential for the Biocontrol of Plant Pathogenic Bacteria. Pathogens 2024; 13:1000. [PMID: 39599553 PMCID: PMC11597488 DOI: 10.3390/pathogens13111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The increase in the world population, which will be almost 10 billion by 2050, will require considerable efforts to significantly increase food production. Despite the considerable progress made in agriculture, this need is becoming an emergency due to desertification, environmental pollution and climate changes. Biotic stresses, such as pathogenic bacteria and fungi, primarily contribute to significant losses in agricultural productivity and compromise food safety. These harmful agents are predominantly managed using large quantities of synthetic pesticides. However, this widespread use has led to substantial environmental pollution, increased pest resistance and toxic residues in agricultural produce, which subsequently enter the food supply, posing severe health risks to humans and animals. These challenges have significantly driven the advancement of integrated pest management strategies to reduce or eliminate synthetic pesticides. A practical and viable alternative lies in biopesticides-methods developed from natural products that are safe for human and animal health. This approach aligns with the strong demand from consumers and public authorities for safer pest control solutions. This review was focused on the isolation, chemical and biological characterization of natural products for the biocontrol of phytopathogenic bacteria and, in some cases, fungi with potential eco-friendly applications.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71121 Foggia, Italy; (P.R.); (G.C.)
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71121 Foggia, Italy; (P.R.); (G.C.)
| | - Antonio Evidente
- Institute of Biomoleular Chemistry National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
2
|
Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 2022; 21:359-378. [PMID: 35296832 DOI: 10.1038/s41573-022-00414-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Bacteria provide a rich source of natural products with potential therapeutic applications, such as novel antibiotic classes or anticancer drugs. Bioactivity-guided screening of bacterial extracts and characterization of biosynthetic pathways for drug discovery is now complemented by the availability of large (meta)genomic collections, placing researchers into the postgenomic, big-data era. The progress in next-generation sequencing and the rise of powerful computational tools provide unprecedented insights into unexplored taxa, ecological niches and 'biosynthetic dark matter', revealing diverse and chemically distinct natural products in previously unstudied bacteria. In this Review, we discuss such sources of new chemical entities and the implications for drug discovery with a particular focus on the strategies that have emerged in recent years to identify and access novelty.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Rodrigues O, Shan L. Stomata in a state of emergency: H 2O 2 is the target locked. TRENDS IN PLANT SCIENCE 2022; 27:274-286. [PMID: 34756808 DOI: 10.1016/j.tplants.2021.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Stomatal movements are essential for plants to regulate photosynthesis rate, water status, and immunity. Upon stress stimulation, the production of hydrogen peroxide (H2O2) in the apoplasts and its accumulation within the guard cells are among key determinatives for stomatal closure. The regulatory mechanisms of H2O2 production and transport under plant-pathogen interaction and drought stress response in stomata are important fields of research. Specifically, the regulation of NADPH oxidases and aquaporins appears to be crucial in H2O2-controlled stomatal closure. In this review, we summarize how the calcium-dependent and calcium-independent mechanisms activate RESPIRATORY BURST OXIDASE HOMOLOG (RBOH)D/F NADPH oxidases and the aquaporin PIP2;1 to induce stomatal closure, and highlight how the H2O2 production is targeted by pathogen toxins and effectors to counteract plant immunity.
Collapse
Affiliation(s)
- Olivier Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université Fédérale Toulouse Midi-Pyrénées, INP-PURPAN, F-31076 Toulouse, France.
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Zhao L, Le Chapelain C, Brachmann AO, Kaiser M, Groll M, Bode HB. Activation, Structure, Biosynthesis and Bioactivity of Glidobactin-like Proteasome Inhibitors from Photorhabdus laumondii. Chembiochem 2021; 22:1582-1588. [PMID: 33452852 PMCID: PMC8248439 DOI: 10.1002/cbic.202100014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 12/22/2022]
Abstract
The glidobactin-like natural products (GLNPs) glidobactin A and cepafungin I have been reported to be potent proteasome inhibitors and are regarded as promising candidates for anticancer drug development. Their biosynthetic gene cluster (BGC) plu1881-1877 is present in entomopathogenic Photorhabdus laumondii but silent under standard laboratory conditions. Here we show the largest subset of GLNPs, which are produced and identified after activation of the silent BGC in the native host and following heterologous expression of the BGC in Escherichia coli. Their chemical diversity results from a relaxed substrate specificity and flexible product release in the assembly line of GLNPs. Crystal structure analysis of the yeast proteasome in complex with new GLNPs suggests that the degree of unsaturation and the length of the aliphatic tail are critical for their bioactivity. The results in this study provide the basis to engineer the BGC for the generation of new GLNPs and to optimize these natural products resulting in potential drugs for cancer therapy.
Collapse
Affiliation(s)
- Lei Zhao
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences210014NanjingP. R. China
| | - Camille Le Chapelain
- Center for Integrated Protein Science Munich (CIPSM)Department of ChemistryTechnical University of Munich85748GarchingGermany
| | - Alexander O. Brachmann
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute4002BaselSwitzerland
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM)Department of ChemistryTechnical University of Munich85748GarchingGermany
| | - Helge B. Bode
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe University Frankfurt60438Frankfurt am MainGermany
- Senckenberg Gesellschaft für Naturforschung60325Frankfurt am MainGermany
- Department of Natural Products in Organismic InteractionsMax-Planck-Institute for Terrestrial Microbiology35043MarburgGermany
| |
Collapse
|
5
|
Li J, Oh J, Kienesberger S, Kim NY, Clarke DJ, Zechner EL, Crawford JM. Making and Breaking Leupeptin Protease Inhibitors in Pathogenic Gammaproteobacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jhe‐Hao Li
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | | | - Nam Yoon Kim
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland University College Cork Cork Ireland
| | - Ellen L. Zechner
- Institute of Molecular Biosciences University of Graz 8010 Graz Austria
- BioTechMed-Graz 8010 Graz Austria
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale University School of Medicine New Haven CT 06536 USA
| |
Collapse
|
6
|
Li JH, Oh J, Kienesberger S, Kim NY, Clarke DJ, Zechner EL, Crawford JM. Making and Breaking Leupeptin Protease Inhibitors in Pathogenic Gammaproteobacteria. Angew Chem Int Ed Engl 2020; 59:17872-17880. [PMID: 32609431 DOI: 10.1002/anie.202005506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Leupeptin is a bacterial small molecule that is used worldwide as a protease inhibitor. However, its biosynthesis and genetic distribution remain unknown. We identified a family of leupeptins in gammaproteobacterial pathogens, including Photorhabdus, Xenorhabdus, and Klebsiella species, amongst others. Through genetic, metabolomic, and heterologous expression analyses, we established their construction by discretely expressed ligases and accessory enzymes. In Photorhabdus species, a hypothetical protein required for colonizing nematode hosts was established as a new class of proteases. This enzyme cleaved the tripeptide aldehyde protease inhibitors, leading to the formation of "pro-pyrazinones" featuring a hetero-tricyclic architecture. In Klebsiella oxytoca, the pathway was enriched in clinical isolates associated with respiratory tract infections. Thus, the bacterial production and proteolytic degradation of leupeptins can be associated with animal colonization phenotypes.
Collapse
Affiliation(s)
- Jhe-Hao Li
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | | | - Nam Yoon Kim
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria.,BioTechMed-Graz, 8010, Graz, Austria
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| |
Collapse
|
7
|
Pierce MR, Robinson RM, Ibarra-Rivera TR, Pirrung MC, Dolloff NG, Bachmann AS. Syrbactin proteasome inhibitor TIR-199 overcomes bortezomib chemoresistance and inhibits multiple myeloma tumor growth in vivo. Leuk Res 2019; 88:106271. [PMID: 31778912 DOI: 10.1016/j.leukres.2019.106271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) and mantle cell lymphoma (MCL) are blood cancers that respond to proteasome inhibitors. Three FDA-approved drugs that block the proteasome are currently on the market, bortezomib, carfilzomib, and ixazomib. While these proteasome inhibitors have demonstrated clinical efficacy against refractory and relapsed MM and MCL, they are also associated with considerable adverse effects including peripheral neuropathy and cardiotoxicity, and tumor cells often acquire drug resistance. TIR-199 belongs to the syrbactin class, which constitutes a novel family of irreversible proteasome inhibitors. In this study, we compare TIR-199 head-to-head with three FDA-approved proteasome inhibitors. We demonstrate that TIR-199 selectively inhibits to varying degrees the sub-catalytic proteasomal activities (C-L/β1, T-L/β2, and CT-L/β5) in three actively dividing MM cell lines, with Ki50 (CT-L/β5) values of 14.61 ± 2.68 nM (ARD), 54.59 ± 10.4 nM (U266), and 26.8 ± 5.2 nM (MM.1R). In most instances, this range was comparable with the activity of ixazomib. However, TIR-199 was more effective than bortezomib, carfilzomib, and ixazomib in killing bortezomib-resistant MM and MCL cell lines, as judged by a low resistance index (RI) between 1.7 and 2.2, which implies that TIR-199 indiscriminately inhibits both bortezomib-sensitive and bortezomib-resistant MM and MCL cells at similar concentrations. Importantly, TIR-199 reduced the tumor burden in a MM mouse model (p < 0.01) confirming its potency in vivo. Given the fact that there is still no cure for MM, the further development of TIR-199 or similar molecules that belong to the syrbactin class of proteasome inhibitors is warranted.
Collapse
Affiliation(s)
- Marquicia R Pierce
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Reeder M Robinson
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA
| | | | - Michael C Pirrung
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA; Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Nathan G Dolloff
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA.
| |
Collapse
|
8
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
9
|
Duong LT, Schwarz S, Gross H, Breitbach K, Hochgräfe F, Mostertz J, Eske-Pogodda K, Wagner GE, Steinmetz I, Kohler C. GvmR - A Novel LysR-Type Transcriptional Regulator Involved in Virulence and Primary and Secondary Metabolism of Burkholderia pseudomallei. Front Microbiol 2018; 9:935. [PMID: 29867844 PMCID: PMC5964159 DOI: 10.3389/fmicb.2018.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/23/2018] [Indexed: 01/22/2023] Open
Abstract
Burkholderia pseudomallei is a soil-dwelling bacterium able to survive not only under adverse environmental conditions, but also within various hosts which can lead to the disease melioidosis. The capability of B. pseudomallei to adapt to environmental changes is facilitated by the large number of regulatory proteins encoded by its genome. Among them are more than 60 uncharacterized LysR-type transcriptional regulators (LTTRs). Here we analyzed a B. pseudomallei mutant harboring a transposon in the gene BPSL0117 annotated as a LTTR, which we named gvmR (globally acting virulence and metabolism regulator). The gvmR mutant displayed a growth defect in minimal medium and macrophages in comparison with the wild type. Moreover, disruption of gvmR rendered B. pseudomallei avirulent in mice indicating a critical role of GvmR in infection. These defects of the mutant were rescued by ectopic expression of gvmR. To identify genes whose expression is modulated by GvmR, global transcriptome analysis of the B. pseudomallei wild type and gvmR mutant was performed using whole genome tiling microarrays. Transcript levels of 190 genes were upregulated and 141 genes were downregulated in the gvmR mutant relative to the wild type. Among the most downregulated genes in the gvmR mutant were important virulence factor genes (T3SS3, T6SS1, and T6SS2), which could explain the virulence defect of the gvmR mutant. In addition, expression of genes related to amino acid synthesis, glyoxylate shunt, iron-sulfur cluster assembly, and syrbactin metabolism (secondary metabolite) was decreased in the mutant. On the other hand, inactivation of GvmR increased expression of genes involved in pyruvate metabolism, ATP synthesis, malleobactin, and porin genes. Quantitative real-time PCR verified the differential expression of 27 selected genes. In summary, our data show that GvmR acts as an activating and repressing global regulator that is required to coordinate expression of a diverse set of metabolic and virulence genes essential for the survival in the animal host and under nutrient limitation.
Collapse
Affiliation(s)
- Linh Tuan Duong
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University of Tübingen, Tübingen, Germany.,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Katrin Breitbach
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Kristin Eske-Pogodda
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany.,Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
11
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
12
|
Martínez-García PM, López-Solanilla E, Ramos C, Rodríguez-Palenzuela P. Prediction of bacterial associations with plants using a supervised machine-learning approach. Environ Microbiol 2016; 18:4847-4861. [PMID: 27234490 DOI: 10.1111/1462-2920.13389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
Recent scenarios of fresh produce contamination by human enteric pathogens have resulted in severe food-borne outbreaks, and a new paradigm has emerged stating that some human-associated bacteria can use plants as secondary hosts. As a consequence, there has been growing concern in the scientific community about these interactions that have not yet been elucidated. Since this is a relatively new area, there is a lack of strategies to address the problem of food-borne illnesses due to the ingestion of fruits and vegetables. In the present study, we performed specific genome annotations to train a supervised machine-learning model that allows for the identification of plant-associated bacteria with a precision of ∼93%. The application of our method to approximately 9500 genomes predicted several unknown interactions between well-known human pathogens and plants, and it also confirmed several cases for which evidence has been reported. We observed that factors involved in adhesion, the deconstruction of the plant cell wall and detoxifying activities were highlighted as the most predictive features. The application of our strategy to sequenced strains that are involved in food poisoning can be used as a primary screening tool to determine the possible causes of contaminations.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain.,Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain.,Departamento de Biología Vegetal. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida Complutense, 3, Madrid, 28040, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain.,Departamento de Biología Vegetal. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida Complutense, 3, Madrid, 28040, Spain
| |
Collapse
|
13
|
Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 2015; 99:6197-214. [PMID: 26099332 PMCID: PMC4495716 DOI: 10.1007/s00253-015-6745-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/30/2022]
Abstract
The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.
Collapse
|
14
|
Biggins JB, Kang HS, Ternei MA, DeShazer D, Brady SF. The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. J Am Chem Soc 2014; 136:9484-90. [PMID: 24884988 PMCID: PMC4091270 DOI: 10.1021/ja504617n] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Increasing evidence has shown that
small-molecule chemistry in
microbes (i.e., secondary metabolism) can modulate the microbe–host
response in infection and pathogenicity. The bacterial disease melioidosis
is conferred by the highly virulent, antibiotic-resistant pathogen Burkholderia pseudomallei (BP). Whereas
some macromolecular structures have been shown to influence BP virulence (e.g., secretion systems, cellular capsule,
pili), the role of the large cryptic secondary metabolome encoded
within its genome has been largely unexplored for its importance to
virulence. Herein we demonstrate that BP-encoded
small-molecule biosynthesis is indispensible for in vivo BP pathogenicity. Promoter exchange experiments were used to induce
high-level molecule production from two gene clusters (MPN and SYR)
found to be essential for in vivo virulence. NMR
structural characterization of these metabolites identified a new
class of lipopeptide biosurfactants/biofilm modulators (the
malleipeptins) and syrbactin-type proteasome inhibitors, both
of which represent overlooked small-molecule virulence factors for BP. Disruption of Burkholderia virulence by inhibiting the
biosynthesis of these small-molecule biosynthetic pathways may prove
to be an effective strategy for developing novel melioidosis-specific
therapeutics.
Collapse
Affiliation(s)
- John B Biggins
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute , The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | | | | | |
Collapse
|
15
|
Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16. Appl Environ Microbiol 2014; 80:3741-8. [PMID: 24727275 DOI: 10.1128/aem.00395-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.
Collapse
|