1
|
Cotta SR, Dias ACF, Mendes R, Andreote FD. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz J Microbiol 2024:10.1007/s42770-024-01583-9. [PMID: 39730778 DOI: 10.1007/s42770-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions. HGT, in particular, holds a pivotal role as it facilitates the generation of metabolic diversity, thus directly or indirectly influencing microorganisms' interactions and functioning within their habitat. In this study, we investigate the correlations between enhanced metabolic diversity through HGT and cooperative behavior in the rhizosphere. Despite the potential drawbacks of cooperative behavior, which renders it susceptible to exploitation by cheaters based on evolutionary theory, HGT emerges as a mitigating factor. It serves as a valuable and adaptive tool for survival in competitive environments, notably the rhizosphere. By initiating a comprehensive discussion on these processes combined, we anticipate achieving a profound understanding of the rhizosphere microbiome, ultimately enhancing soil microbiology management and the exploitation of this ecological niche.
Collapse
Affiliation(s)
- Simone Raposo Cotta
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Armando Cavalcante Franco Dias
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
2
|
Rivas-Santisteban J, Yubero P, Robaina-Estévez S, González JM, Tamames J, Pedrós-Alió C. Quantifying microbial guilds. ISME COMMUNICATIONS 2024; 4:ycae042. [PMID: 38707845 PMCID: PMC11069341 DOI: 10.1093/ismeco/ycae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024]
Abstract
The ecological role of microorganisms is of utmost importance due to their multiple interactions with the environment. However, assessing the contribution of individual taxonomic groups has proven difficult despite the availability of high throughput data, hindering our understanding of such complex systems. Here, we propose a quantitative definition of guild that is readily applicable to metagenomic data. Our framework focuses on the functional character of protein sequences, as well as their diversifying nature. First, we discriminate functional sequences from the whole sequence space corresponding to a gene annotation to then quantify their contribution to the guild composition across environments. In addition, we identify and distinguish functional implementations, which are sequence spaces that have different ways of carrying out the function. In contrast, we found that orthology delineation did not consistently align with ecologically (or functionally) distinct implementations of the function. We demonstrate the value of our approach with two case studies: the ammonia oxidation and polyamine uptake guilds from the Malaspina circumnavigation cruise, revealing novel ecological dynamics of the latter in marine ecosystems. Thus, the quantification of guilds helps us to assess the functional role of different taxonomic groups with profound implications on the study of microbial communities.
Collapse
Affiliation(s)
- Juan Rivas-Santisteban
- Microbiome Analysis Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Calle Darwin no. 3, Madrid, 28049, Spain
| | - Pablo Yubero
- Logic of Genomic Systems Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Spain
| | | | | | - Javier Tamames
- Microbiome Analysis Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Calle Darwin no. 3, Madrid, 28049, Spain
| | - Carlos Pedrós-Alió
- Microbiome Analysis Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Calle Darwin no. 3, Madrid, 28049, Spain
| |
Collapse
|
3
|
Liu W, Cheng Y, Guo J, Duan Y, Wang S, Xu Q, Liu M, Xue C, Guo S, Shen Q, Ling N. Long-term manure inputs induce a deep selection on agroecosystem soil antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129163. [PMID: 35739703 DOI: 10.1016/j.jhazmat.2022.129163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Although the enrichment of antibiotic resistance genes (ARGs) in diverse organic soils have been explored, understanding of the ecological processes governing the composition of ARGs in long-term organically fertilized soils still remains limited across typical agricultural regions. Thus, the distribution and assembly of ARG profile in three typical agricultural soils (black soil, fluvo-aquic soil, and red soil) under long-term contrasting fertilization regimes (chemical-only vs organic-only) were investigated using high-throughput qPCR (HT-qPCR). The application of organic manure significantly increased the abundance and number of ARGs across soils, as compared to those with chemical fertilizer. Organic manure application enriched the abundance of mobile genetic elements (MGEs), which were positively associated with ARGs. In addition, it is long-term organic fertilizer that enriched the number and abundance of opportunist and specialist ARGs in the fluvo-aquic and red soils, but not black soils. The number and abundance of most generalist ARGs did not change significantly among different fertilization or soil types. The assembly process of the ARG profiles tends to be more deterministic in organically fertilized soils than in chemically fertilized soils. These results suggest that long-term organic fertilizer application may contribute to the persistence and health risk of the soil antibiotic resistomes (especially specialist ARGs).
Collapse
Affiliation(s)
- Wenbo Liu
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, Zhejiang, China
| | - Yanfen Cheng
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junjie Guo
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Wang
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China
| | - Qicheng Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Manqiang Liu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chao Xue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ning Ling
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
4
|
Zhang Y, Cheng D, Xie J, Zhang Y, Wan Y, Zhang Y, Shi X. Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: A meta-analysis study. CHEMOSPHERE 2022; 300:134529. [PMID: 35395269 DOI: 10.1016/j.chemosphere.2022.134529] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
A meta-analysis of 94 published studies was conducted to explore the impacts of farmland application of antibiotic-contaminated manures on antibiotic concentrations and ARG abundances in manure-amended soil. Forty-nine antibiotics were reported, in which chlortetracycline, oxytetracycline, doxycycline, tetracycline, enrofloxacin, ciprofloxacin and norfloxacin were the most prevalent and had relatively high concentrations. The responses of ARG and mobile genetic element (MGE) abundances to farmland application of antibiotic-contaminated manures varied considerably under different management strategies and environmental settings. On average, compared to unamended treatments, farmland application of antibiotic-contaminated manures significantly increased the total ARG and MGE abundances by 591% and 351%, respectively (P < 0.05). Of all the included ARG classes, the largest increase was found for sulfonamide resistance genes (1121%), followed by aminoglycoside (852%) and tetracycline (763%) resistance genes. Correlation analysis suggested that soil organic carbon (SOC) was significantly negatively correlated with antibiotic concentrations in manured soil (P < 0.05) due to the formation of covalent bonds and nonextractable residues. Soil silt content was significantly positively correlated with antibiotic concentration (P < 0.05), which was attributed to greater sorption capacities. The ARG abundances were significantly positively correlated with soil silt content, antibiotic concentrations, mean annual temperature, SOC, MGEs and soil pH (P < 0.05), suggesting that changes in these factors may shape the ARG profiles. Collectively, these findings advanced our understanding of the occurrence of antibiotics and ARGs in manure-amended soil and potential factors affecting them and will contribute to better management of these contaminants in future agricultural production.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jun Xie
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yu Wan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
5
|
Hariharan J, Buckley DH. Elevational Gradients Impose Dispersal Limitation on Streptomyces. Front Microbiol 2022; 13:856263. [PMID: 35592003 PMCID: PMC9113539 DOI: 10.3389/fmicb.2022.856263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Dispersal governs microbial biogeography, but the rates and mechanisms of dispersal remain poorly characterized for most microbial taxa. Dispersal limitation is driven by limits on dissemination and establishment, respectively. Elevation gradients create striking patterns of biogeography because they produce steep environmental gradients at small spatial scales, and these gradients offer a powerful tool to examine mechanisms of dispersal limitation. We focus on Streptomyces, a bacterial genus common to soil, by using a taxon-specific phylogenetic marker, the RNA polymerase-encoding rpoB gene. By targeting Streptomyces, we assess dispersal limitation at finer phylogenetic resolution than is possible using whole community analyses. We characterized Streptomyces diversity at local spatial scales (100 to 3,000 m) in two temperate forest sites located in the Adirondacks region of New York State: Woods Lake (<100 m elevation change), and Whiteface Mountain (>1,000 m elevation change). Beta diversity varied considerably at both locations, indicative of dispersal limitation acting at local spatial scales, but beta diversity was significantly higher at Whiteface Mountain. Beta diversity varied across elevation at Whiteface Mountain, being lowest at the mountain’s base. We show that Streptomyces taxa exhibit elevational preferences, and these preferences are phylogenetically conserved. These results indicate that habitat preferences influence Streptomyces biogeography and suggest that barriers to establishment structure Streptomyces communities at higher elevations. These data illustrate that Streptomyces biogeography is governed by dispersal limitation resulting from a complex mixture of stochastic and deterministic processes.
Collapse
Affiliation(s)
- Janani Hariharan
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Liu J, Wu P, Guo Q, Lai X, Ruan B, Wang H, Rehman S, Chen M. Kaolinite weakens the co-stress of ampicillin and tetracycline on Escherichia coli through multiple pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25228-25240. [PMID: 33453031 DOI: 10.1007/s11356-021-12356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Ampicillin and tetracycline are common antibiotics and can threaten humans by inducing antibiotic resistance in bacteria. Microorganisms are usually exposed to a mixed antibiotic system in the environment. However, there are few researches on the specific regulatory mechanisms of clay on microorganisms under the stress of complex antibiotics. In this study, tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was employed to recognize and quantify changes in protein expression of Escherichia coli (E. coli) after culture for 15 days, with or without kaolinite in the co-stress of ampicillin and tetracycline. The results indicated that kaolinite could activate metabolic pathways of E. coli such as the energy metabolism, the biosynthesis of other secondary metabolites, and the metabolism of cofactors and vitamins. Particularly, the fatty acid degradation pathway has also been promoted, indicating that in the same unfavorable environment, kaolinite might influence the composition of E. coli cell membranes. This might be due to the change in membrane composition that was a kind of adaptive strategy of bacterial evolution. Moreover, kaolinite could promote multidrug efflux system to export the bacterial intracellular toxic substances, making E. coli survive better in an adverse environment. Consequently, this study not only disclosed the regulation of kaolinite on E. coli in a complex antibiotic environment but also provided new insights into the environmental process of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
| | - Qing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaolin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huimin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
7
|
Liu W, Ling N, Guo J, Ruan Y, Wang M, Shen Q, Guo S. Dynamics of the antibiotic resistome in agricultural soils amended with different sources of animal manures over three consecutive years. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123399. [PMID: 32763695 DOI: 10.1016/j.jhazmat.2020.123399] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The application of animal manure is generally considered an important transmission pathway for antibiotic resistance genes (ARGs) in soil. Nevertheless, the fate of ARGs in soil where manure from different sources has been repeatedly implemented is not fully understood. Thus, the succession of ARGs and bacterial communities following the repeated application of three types of animal manures (pig, chicken, and cow manure) to agricultural soil were investigated using Illumina sequencing analysis and high-throughput qPCR. Results showed that manure application remarkably increased the abundance of soil ARGs by increasing the enrichment of indigenous ARGs and introducing extrinsic ARGs. There were no prominent differences in the abundance or diversity of ARGs among the three different manured soils. The abundance and diversity of ARGs in manured soils increased over three consecutive years. Additionally, the abundance of mobile gene elements (MGEs) and bacteria were positively correlated with ARGs, while the changes in the ARG profiles were dramatically associated with the MGEs and bacterial communities. These findings imply that repeated manure application may facilitate to the accumulation and persistence of the soil resistome by regulation of the bacterial community and horizontal gene transfer, providing better insights into the temporal dynamics of soil ARGs in agro-ecosystems.
Collapse
Affiliation(s)
- Wenbo Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Using Microbial Aggregates to Entrap Aqueous Phosphorus. Trends Biotechnol 2020; 38:1292-1303. [DOI: 10.1016/j.tibtech.2020.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
|
9
|
Li S, Yao Q, Liu J, Wei D, Zhou B, Zhu P, Cui X, Jin J, Liu X, Wang G. Profiles of antibiotic resistome with animal manure application in black soils of northeast China. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121216. [PMID: 31733995 DOI: 10.1016/j.jhazmat.2019.121216] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Black soils (Mollisols) are important soil resources for crop production and maintain food safety in China. For keeping soil fertility, the application of animal manure is commonly practiced in black soils. However, the impact of this application on abundance and diversity of antibiotic resistance genes (ARGs) in black soils of China remains unclear. Here, we surveyed the profiles of ARGs in 72 soil samples collected from four long-term experimental stations with different fertilization regimes and from open farmlands in two sites across northeast China using high-throughput quantitative PCR. Results showed that a total of 178 ARGs including mobile genetic elements (MGEs) were detected, and the diversity and abundance of ARGs were significantly increased with manure application. Additionally, the finding of a significant positive correlation between relative abundance of ARGs and MGEs (P < 0.0001), suggesting that horizontal gene transfer may potentially impact the transmission of ARGs. Furthermore, two genes aadA-1-01 and mexF, encoding resistance to aminoglycoside and multidrug, respectively, were recognized as indicators to estimate the abundance of other co-occurring ARGs. These findings provided insights into the soil resistome in black soils of northeast China and also highlighted the environmental risks caused by manure application should not be ignored.
Collapse
Affiliation(s)
- Sen Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dan Wei
- Institute of Soil and Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Baoku Zhou
- Institute of Soil and Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ping Zhu
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xi'an Cui
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
10
|
Cotta SR, Cadete LL, van Elsas JD, Andreote FD, Dias ACF. Exploring bacterial functionality in mangrove sediments and its capability to overcome anthropogenic activity. MARINE POLLUTION BULLETIN 2019; 141:586-594. [PMID: 30955771 DOI: 10.1016/j.marpolbul.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Mangrove forests are highly productive yet vulnerable ecosystems that act as important carbon sinks ("blue carbon"). The objective of this work was to analyze the impact of anthropogenic activities on microbiome structure and functioning. The metagenomic analysis revealed that the taxonomic compositions were grossly similar across all mangrove microbiomes. Remarkably, these microbiomes, along the gradient of anthropogenic impact, showed fluctuations in the relative abundances of bacterial taxa predicted to be involved in sulfur cycling processes. Functions involved in sulfur metabolism, such as APS pathways (associated with sulfate reduction and sulfur oxidation processes) were prevalent across the microbiomes, being sox and dsrAB genes highly expressed on anthropogenically-impacted areas. Apparently, the oil-impacted microbiomes were more affected in taxonomic than in functional terms, as high functional redundancies were noted across them. The microbial gene diversity found was typical for a functional system, even following the previous disturbance.
Collapse
Affiliation(s)
- Simone Raposo Cotta
- Department of Soil Science, ESALQ/USP, University of São Paulo, Piracicaba, Brazil
| | - Luana Lira Cadete
- Department of Soil Science, ESALQ/USP, University of São Paulo, Piracicaba, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology Group, Institute for Evolutionary Life Sciences, University of Groningen, AG, Groningen, the Netherlands
| | | | | |
Collapse
|
11
|
Goñi-Moreno A, de la Cruz F, Rodríguez-Patón A, Amos M. Dynamical Task Switching in Cellular Computers. Life (Basel) 2019; 9:E14. [PMID: 30691149 PMCID: PMC6463194 DOI: 10.3390/life9010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 01/23/2019] [Indexed: 01/24/2023] Open
Abstract
We present a scheme for implementing a version of task switching in engineered bacteria, based on the manipulation of plasmid copy numbers. Our method allows for the embedding of multiple computations in a cellular population, whilst minimising resource usage inefficiency. We describe the results of computational simulations of our model, and discuss the potential for future work in this area.
Collapse
Affiliation(s)
- Angel Goñi-Moreno
- School of Computing, Newcastle University, Newcastle Upon Tyne NE4 5TG, UK.
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, 39011 Santander, Spain.
| | - Alfonso Rodríguez-Patón
- Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, 28660 Madrid, Spain.
| | - Martyn Amos
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
12
|
Wu Q, Li S, Zhao X, Zhao X. Interaction between typical sulfonamides and bacterial diversity in drinking water. JOURNAL OF WATER AND HEALTH 2018; 16:914-920. [PMID: 30540265 DOI: 10.2166/wh.2018.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The abuse of antibiotics is becoming more serious as antibiotic use has increased. The sulfa antibiotics, sulfamerazine (SM1) and sulfamethoxazole (SMZ), are frequently detected in a wide range of environments. The interaction between SM1/SMZ and bacterial diversity in drinking water was investigated in this study. The results showed that after treatment with SM1 or SMZ at four different concentrations, the microbial community structure of the drinking water changed statistically significantly compared to the blank sample. At the genus level, the proportions of the different bacteria in drinking water may affect the degradation of the SM1/SMZ. The growth of bacteria in drinking water can be inhibited after the addition of SM1/SMZ, and bacterial community diversity in drinking water declined in this study. Furthermore, the resistance gene sul2 was induced by SM1 in the drinking water.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China E-mail:
| | - Shuqun Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China E-mail:
| | - Xiaofei Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China E-mail:
| | - Xinhua Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China E-mail:
| |
Collapse
|
13
|
How Microbial Aggregates Protect against Nanoparticle Toxicity. Trends Biotechnol 2018; 36:1171-1182. [DOI: 10.1016/j.tibtech.2018.06.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
|
14
|
Hernández-González IL, Moreno-Hagelsieb G, Olmedo-Álvarez G. Environmentally-driven gene content convergence and the Bacillus phylogeny. BMC Evol Biol 2018; 18:148. [PMID: 30285626 PMCID: PMC6171248 DOI: 10.1186/s12862-018-1261-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background Members of the Bacillus genus have been isolated from a variety of environments. However, the relationship between potential metabolism and the niche from which bacteria of this genus have been isolated has not been extensively studied. The existence of a monophyletic aquatic Bacillus group, composed of members isolated from both marine and fresh water has been proposed. Here, we present a phylogenetic/phylogenomic analysis to investigate the potential relationship between the environment from which group members have been isolated and their evolutionary origin. We also carried out hierarchical clustering based on functional content to test for potential environmental effects on the genetic content of these bacteria. Results The phylogenetic reconstruction showed that Bacillus strains classified as aquatic have evolutionary origins in different lineages. Although we observed the presence of a clade consisting exclusively of aquatic Bacillus, it is not comprised of the same strains previously reported. In contrast to phylogeny, clustering based on the functional categories of the encoded proteomes resulted in groups more compatible with the environments from which the organisms were isolated. This evidence suggests a detectable environmental influence on bacterial genetic content, despite their different evolutionary origins. Conclusion Our results suggest that aquatic Bacillus species have polyphyletic origins, but exhibit convergence at the gene content level. Electronic supplementary material The online version of this article (10.1186/s12862-018-1261-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ismael L Hernández-González
- Department of Genetic Engineering, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Carr. Irapuato-Leon, Irapuato, 36824, Guanajuato, Mexico
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Ave. W., Waterloo, N2L 3C5, Ontario, Canada.
| | - Gabriela Olmedo-Álvarez
- Department of Genetic Engineering, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Carr. Irapuato-Leon, Irapuato, 36824, Guanajuato, Mexico.
| |
Collapse
|