1
|
Chen Z, Chang X, Ye Q, Gao Y, Deng R. Kidney transplantation and gut microbiota. Clin Kidney J 2024; 17:sfae214. [PMID: 39170931 PMCID: PMC11336673 DOI: 10.1093/ckj/sfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 08/23/2024] Open
Abstract
Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.
Collapse
Affiliation(s)
- Zehuan Chen
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Xinhua Chang
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Qianyu Ye
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Yifang Gao
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Ronghai Deng
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
2
|
Drane K, Sheehan M, Whelan A, Ariel E, Kinobe R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics (Basel) 2024; 13:668. [PMID: 39061350 PMCID: PMC11274174 DOI: 10.3390/antibiotics13070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Antibiotic Resistance Genes (ARGs) are contaminants of emerging concern with marked potential to impact public and environmental health. This review focusses on factors that influence the presence, abundance, and dissemination of ARGs within Wastewater Treatment Plants (WWTPs) and associated effluents. Antibiotic-Resistant Bacteria (ARB) and ARGs have been detected in the influent and the effluent of WWTPs worldwide. Different levels of wastewater treatment (primary, secondary, and tertiary) show different degrees of removal efficiency of ARGs, with further differences being observed when ARGs are captured as intracellular or extracellular forms. Furthermore, routinely used molecular methodologies such as quantitative polymerase chain reaction or whole genome sequencing may also vary in resistome identification and in quantifying ARG removal efficiencies from WWTP effluents. Additionally, we provide an overview of the One Health risk assessment framework, as well as future strategies on how WWTPs can be assessed for environmental and public health impact.
Collapse
Affiliation(s)
- Kezia Drane
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Madoc Sheehan
- College of Science, Technology, and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Anna Whelan
- Townsville Water and Waste, Wastewater Operations, Townsville, QLD 4810, Australia;
| | - Ellen Ariel
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
3
|
Rubio Garcia E, Casadellà M, Parera M, Vila J, Paredes R, Noguera-Julian M. Gut resistome linked to sexual preference and HIV infection. BMC Microbiol 2024; 24:201. [PMID: 38851693 PMCID: PMC11162057 DOI: 10.1186/s12866-024-03335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/16/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND People living with HIV (PLWH) are at increased risk of acquisition of multidrug resistant organisms due to higher rates of predisposing factors. The gut microbiome is the main reservoir of the collection of antimicrobial resistance determinants known as the gut resistome. In PLWH, changes in gut microbiome have been linked to immune activation and HIV-1 associated complications. Specifically, gut dysbiosis defined by low microbial gene richness has been linked to low Nadir CD4 + T-cell counts. Additionally, sexual preference has been shown to strongly influence gut microbiome composition in PLWH resulting in different Prevotella or Bacteroides enriched enterotypes, in MSM (men-who-have-sex-with-men) or no-MSM, respectively. To date, little is known about gut resistome composition in PLWH due to the scarcity of studies using shotgun metagenomics. The present study aimed to detect associations between different microbiome features linked to HIV-1 infection and gut resistome composition. RESULTS Using shotgun metagenomics we characterized the gut resistome composition of 129 HIV-1 infected subjects showing different HIV clinical profiles and 27 HIV-1 negative controls from a cross-sectional observational study conducted in Barcelona, Spain. Most no-MSM showed a Bacteroides-enriched enterotype and low microbial gene richness microbiomes. We did not identify differences in resistome diversity and composition according to HIV-1 infection or immune status. However, gut resistome was more diverse in MSM group, Prevotella-enriched enterotype and gut micorbiomes with high microbial gene richness compared to no-MSM group, Bacteroides-enriched enterotype and gut microbiomes with low microbial gene richness. Additionally, gut resistome beta-diversity was different according to the defined groups and we identified a set of differentially abundant antimicrobial resistance determinants based on the established categories. CONCLUSIONS Our findings reveal a significant correlation between gut resistome composition and various host variables commonly associated with gut microbiome, including microbiome enterotype, microbial gene richness, and sexual preference. These host variables have been previously linked to immune activation and lower Nadir CD4 + T-Cell counts, which are prognostic factors of HIV-related comorbidities. This study provides new insights into the relationship between antibiotic resistance and clinical characteristics of PLWH.
Collapse
Affiliation(s)
- Elisa Rubio Garcia
- Department of Microbiology, CDB, Hospital Clinic, University of Barcelona, Barcelona, Spain.
- Molecuar Core Facilty, Hospital Clínic de Barcelona, Barcelona, Spain.
- ISGlobal Barcelona Institute for Global Health, Barcelona, Spain.
| | | | | | - Jordi Vila
- Department of Microbiology, CDB, Hospital Clinic, University of Barcelona, Barcelona, Spain
- ISGlobal Barcelona Institute for Global Health, Barcelona, Spain
- Infectious Disease Networking Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Roger Paredes
- IrsiCaixa, Ctra de Canyet S/N, 08916, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Infectious Diseasest &, Lluita Contra La SIDA Foundation, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- Infectious Disease Networking Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Marc Noguera-Julian
- IrsiCaixa, Ctra de Canyet S/N, 08916, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
- Infectious Disease Networking Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
4
|
Flannery DD, Coggins SA, Medoro AK. Antibiotic Stewardship in the Neonatal Intensive Care Unit. J Intensive Care Med 2024:8850666241258386. [PMID: 38835250 DOI: 10.1177/08850666241258386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Antibiotic stewardship is a multidisciplinary, evidence-based approach to optimize antibiotic use and mitigate development of antibiotic resistance. Neonates have high rates of antibiotic exposure, particularly those born preterm and admitted to the NICU, and mounting evidence describes the adverse consequences of such exposures in the absence of infection. Here, we review the general principles of antibiotic stewardship and how they can be applied in NICUs. The unique characteristics of NICUs and patients cared for in this setting, which warrant unique implementation strategies and special considerations are discussed. We summarize current antibiotic use metrics for assessment of responses to stewardship interventions and changes over time, and review evidence-based infection prevention practices in the NICU. Current recommendations for empiric antibiotic use in the NICU and the utility of infection biomarkers are summarized. Lastly, given the growing global threat of increasing antibiotic resistance, specific threats in the NICU are highlighted.
Collapse
Affiliation(s)
- Dustin D Flannery
- Division of Neonatology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah A Coggins
- Division of Neonatology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexandra K Medoro
- Division of Neonatology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
5
|
Panzer JJ, Maples C, Meyer MP, Tillotson G, Theis KR, Chopra T. Gut microbiome alpha diversity decreases in relation to body weight, antibiotic exposure, and infection with multidrug-resistant organisms. Am J Infect Control 2024; 52:707-711. [PMID: 38176539 DOI: 10.1016/j.ajic.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The human gastrointestinal tract is home to a dense and diverse microbiome, predominated by bacteria. Despite the conservation of critical functionality across most individuals, the composition of the gut microbiome is highly individualized, leading to differential responses to perturbations such as oral antibiotics or multidrug-resistant organism (MDRO) infection. Herein, subject responses to these perturbations based on their body weight were evaluated. METHODS Fecal samples were collected from 45 subjects at the Detroit Medical Center to evaluate the effects of perturbations on subjects' gut microbiome composition. Bacterial profiling was completed using 16S rRNA gene sequencing. RESULTS Subjects with multiple MDROs, subjects weighing greater than 80 kg infected with MDRO E coli, and subjects weighing less than 80 kg with exposure to vancomycin and carbapenem antibiotics during hospitalization had significantly decreased gut microbiome richness. CONCLUSIONS Both administration of oral antibiotics and MDRO infections decreased gut microbiome alpha diversity, but the magnitude of these gut microbiome perturbations was body weight dependent.
Collapse
Affiliation(s)
- Jonathan J Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Catherine Maples
- Department of Infectious Diseases, Wayne State University, Detroit, MI
| | | | | | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI.
| | - Teena Chopra
- Department of Infectious Diseases, Wayne State University, Detroit, MI.
| |
Collapse
|
6
|
Wu P, Lee PC, Chang TE, Hsieh YC, Chiou JJ, Lin CH, Huang YL, Lin YT, Huo TI, Schnabl B, Lee KC, Hou MC. Fecal Carriage of Multidrug-Resistant Organisms Increases the Risk of Hepatic Encephalopathy in Cirrhotic Patients: Insights from Gut Microbiota and Metabolite Features. RESEARCH SQUARE 2024:rs.3.rs-4328129. [PMID: 38766152 PMCID: PMC11100873 DOI: 10.21203/rs.3.rs-4328129/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Impact of fecal colonization by multidrug-resistant organisms (MDROs) on changes in gut microbiota and associated metabolites, as well as its role in cirrhosis-associated outcomes, has not been thoroughly investigated. Methods Eighty-eight cirrhotic patients and 22 healthy volunteers were prospectively enrolled with analysis conducted on plasma metabolites, fecal MDROs, and microbiota. Patients were followed for a minimum of one year. Predictive factors for cirrhosis-associated outcomes were identified using Cox proportional hazards regression models, and risk factors for fecal MDRO carriage were assessed using logistic regression model. Correlations between microbiota and metabolic profiles were evaluated through Spearman's rank test. Results Twenty-nine (33%) cirrhotic patients exhibited MDRO carriage, with a notably higher rate of hepatic encephalopathy (HE) in MDRO carriers (20.7% vs. 3.2%, p = 0.008). Cox regression analysis identified higher serum lipopolysaccharide levels and fecal MDRO carriage as predictors for HE development. Logistic regression analysis showed that MDRO carriage is an independent risk factor for developing HE. Microbiota analysis showed a significant dissimilarity of fecal microbiota between cirrhotic patients with and without MDRO carriage (p = 0.033). Thirty-two metabolites exhibiting significantly different expression levels among healthy controls, cirrhotic patients with and without MDRO carriage were identified. Six of the metabolites showed correlation with specific bacterial taxa expression in MDRO carriers, with isoaustin showing significantly higher levels in MDRO carriers experiencing HE compared to those who did not. Conclusion Fecal MDRO carriage is associated with altered gut microbiota, metabolite modulation, and an elevated risk of HE occurrence within a year.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Long Huang
- National Yang Ming Chiao Tung University - Yangming Campus
| | | | | | | | | | | |
Collapse
|
7
|
Jeong Y, Ahmad S, Irudayaraj J. Dynamic Effect of β-Lactam Antibiotic Inactivation Due to the Inter- and Intraspecies Interaction of Drug-Resistant Microbes. ACS Biomater Sci Eng 2024; 10:1461-1472. [PMID: 38315631 PMCID: PMC10936524 DOI: 10.1021/acsbiomaterials.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The presence of β-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how β-lactamase positive microorganisms can neutralize the effect of β-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology. Three interactive models for the biological compartmentalization of organisms were demonstrated to evaluate the effect of β-lactam antibiotics on coculture systems. Our model at the intraspecies level attempts to mimic the biofilm matrix more closely as a community-level feature of microorganisms, which acknowledges the impact of nondrug-resistant species in shaping the dynamic response. In particular, the results of intraspecies studies are highly supportive of the biofilm mode of bacterial growth, which can provide structural support and protect the bacteria from an assault on host or environmental factors. Our findings also indicate that β-lactamase positive bacteria can neutralize the cytotoxic effect of β-lactam antibiotics at the interspecies level when cocultured with cancer cells. Results were validated using β-lactamase positive bacteria isolated from environmental niches, which can trigger phenotypical alteration of β-lactams when cocultured with other organisms. Our compartmentalization strategy acts as an independent ecosystem and provides a new avenue for multiscale studies to assess intra- and interspecies interactions.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Carle
R. Woese Institute for Genomic Biology, Beckman Institute, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Chang KC, Nagarajan N, Gan YH. Short-chain fatty acids of various lengths differentially inhibit Klebsiella pneumoniae and Enterobacteriaceae species. mSphere 2024; 9:e0078123. [PMID: 38305176 PMCID: PMC10900885 DOI: 10.1128/msphere.00781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gut microbiota is inextricably linked to human health and disease. It can confer colonization resistance against invading pathogens either through niche occupation and nutrient competition or via its secreted metabolites. Short-chain fatty acids (SCFA) are the primary metabolites in the gut as a result of dietary fiber fermentation by the gut microbiota. In this work, we demonstrate that the interaction of single-species gut commensals on solid media is insufficient for pathogen inhibition, but supernatants from monocultures of these commensal bacteria enriched in acetate confer inhibition against anaerobic growth of the enteric pathogen Klebsiella pneumoniae. The three primary SCFAs (acetate, propionate, and butyrate) strongly inhibit the intestinal commensal Escherichia coli Nissle as well as a panel of enteric pathogens besides K. pneumoniae at physiological pH of the cecum and ascending colon. This inhibition was significantly milder on anaerobic gut commensals Bacteroides thetaiotaomicron and Bifidobacterium adolescentis previously demonstrated to be associated with microbiota recovery after antibiotic-induced dysbiosis. We describe a general suppression of bacterial membrane potential by these SCFAs at physiological cecum and ascending colonic pH. Furthermore, the strength of bacterial inhibition increases with increasing alkyl chain length. Overall, the insights gained in this study shed light on the potential therapeutic use of SCFAs for conferring colonization resistance against invading pathogens in a dysbiotic gut.IMPORTANCERising antimicrobial resistance has made treatment of bacterial infections increasingly difficult. According to the World Health Organization, it has become a burgeoning threat to hospital and public health systems worldwide. This threat is largely attributed to the global rise of carbapenem-resistant Enterobacteriaceae in recent years, with common hospital-acquired pathogens growing increasingly resistant to last-line antibiotics. Antibiotics disrupt the homeostatic balance of the gut microbiota, resulting in the loss of colonization resistance against enteric pathogens. This work describes the ability of short-chain fatty acids (SCFAs) produced by gut microbiota to be effective against a wide panel of enteric pathogens without major impact on common gut commensal species. We also demonstrate a previously undescribed link between alkyl chain length and antibacterial effects of SCFAs. SCFAs, thus, hold promise as an alternative therapeutic option leveraging on the antimicrobial activity of these endogenously produced gut metabolites without disrupting gut microbiota homeostasis.
Collapse
Affiliation(s)
- Kai Chirng Chang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Nooij S, Vendrik KEW, Zwittink RD, Ducarmon QR, Keller JJ, Kuijper EJ, Terveer EM. Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. Genome Med 2024; 16:37. [PMID: 38419010 PMCID: PMC10902993 DOI: 10.1186/s13073-024-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.
Collapse
Affiliation(s)
- Sam Nooij
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands.
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands.
| | - Karuna E W Vendrik
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Quinten R Ducarmon
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Bhattarai SK, Du M, Zeamer AL, Morzfeld BM, Kellogg TD, Firat K, Benjamin A, Bean JM, Zimmerman M, Mardi G, Vilbrun SC, Walsh KF, Fitzgerald DW, Glickman MS, Bucci V. Commensal antimicrobial resistance mediates microbiome resilience to antibiotic disruption. Sci Transl Med 2024; 16:eadi9711. [PMID: 38232140 PMCID: PMC11017772 DOI: 10.1126/scitranslmed.adi9711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Despite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of Mycobacterium tuberculosis, the world's most common infection, represents the longest antimicrobial exposure in humans. Here, we investigate gut microbiome dynamics over 20 months of multidrug-resistant tuberculosis (TB) and 6 months of drug-sensitive TB treatment in humans. We find that gut microbiome dynamics and TB clearance are shared predictive cofactors of the resolution of TB-driven inflammation. The initial severe taxonomic and functional microbiome disruption, pathobiont domination, and enhancement of antibiotic resistance that initially accompanied long-term antibiotics were countered by later recovery of commensals. This resilience was driven by the competing evolution of antimicrobial resistance mutations in pathobionts and commensals, with commensal strains with resistance mutations reestablishing dominance. Fecal-microbiota transplantation of the antibiotic-resistant commensal microbiome in mice recapitulated resistance to further antibiotic disruption. These findings demonstrate that antimicrobial resistance mutations in commensals can have paradoxically beneficial effects by promoting microbiome resilience to antimicrobials and identify microbiome dynamics as a predictor of disease resolution in antibiotic therapy of a chronic infection.
Collapse
Affiliation(s)
- Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Muxue Du
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Abigail L Zeamer
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Benedikt M Morzfeld
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Tasia D Kellogg
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kaya Firat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Anna Benjamin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James M Bean
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Gertrude Mardi
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Stalz Charles Vilbrun
- Haitian Study Group for Kaposi’s Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti
| | - Kathleen F Walsh
- Center for Global Health, Weill Cornell Medicine, New York, NY 10065, USA
- Division of General Internal Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA 01605, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Lee I, Jo JW, Woo HJ, Suk KT, Lee SS, Kim BS. Proton pump inhibitors increase the risk of carbapenem-resistant Enterobacteriaceae colonization by facilitating the transfer of antibiotic resistance genes among bacteria in the gut microbiome. Gut Microbes 2024; 16:2341635. [PMID: 38634770 PMCID: PMC11028007 DOI: 10.1080/19490976.2024.2341635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) pose a global health threat; however, there is still limited understanding of the risk factors and underlying mechanisms of CRE colonization in the gut microbiome. We conducted a matched case-control study involving 282 intensive care unit patients to analyze influencing covariates on CRE colonization. Subsequently, their effects on the gut microbiome were analyzed in a subset of 98 patients (47 CRE carriers and 51 non-CRE carriers) using whole metagenome sequences. The concomitant use of proton pump inhibitors (PPIs) and antibiotics was a significant risk factor for CRE colonization. The gut microbiome differed according to PPI administration, even within the CRE and non-CRE groups. Moreover, the transfer of mobile genetic elements (MGEs) harboring carbapenem resistance genes (CRGs) between bacteria was higher in the PPI-treated group than in the PPI-not-treated group among CRE carriers. The concomitant use of PPIs and antibiotics significantly alters the gut microbiome and increases the risk of CRE colonization by facilitating the transfer of CRGs among bacteria of the gut microbiome. Based on these findings, improved stewardship of PPIs as well as antibiotics can provide strategies to reduce the risk of CRE colonization, thereby potentially improving patient prognosis.
Collapse
Affiliation(s)
- Imchang Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Won Jo
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Heung-Jeong Woo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seung Soon Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
12
|
Wu WQ, Zhang YQ, Xu J, Tang ZX, Li SJ, Wei XY, Li L, Wu HQ, Ma X, Liu JS, Wu DP, Wu XJ. Risk Factors for Carbapenem-Resistant Enterobacteriaceae Colonization and the Effect on Clinical Outcomes and Prognosis in Allogeneic Hematopoietic Stem Cell Transplanted Patients. Infect Drug Resist 2023; 16:6821-6831. [PMID: 37904832 PMCID: PMC10613414 DOI: 10.2147/idr.s424048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023] Open
Abstract
Purpose The current study assesses which are the main risk factors, clinical outcome and prognosis following the colonization of CRE in patients that underwent allo-HSCT. Patients and Methods A total of 343 patients subjected to allo-HSCT in the period comprised between June 2021 and June 2022 were enrolled in this retrospective study. The CRE colonization was diagnosed by clinical history and routine microbial culture of perirectal swab. In this regard, a clinical prediction model was designed based on independent risk factors underlying the pre-transplantation CRE colonization using a backward stepwise logistic regression, followed by the evaluation of its discrimination and calibration efficacies, along with clinical usefulness. Furthermore, univariate and multivariate Cox regression analyses were then conducted to assess the risk factors for post-transplantation clinical outcomes. Results Out of 343 patients enrolled in this study, 135 (39.3%) reported CRE colonization. The independent risk factor variables for CRE colonization were incorporated into the nomogram to build a prediction model, which showed an area under the curve of 0.767 (95% CI: 0.716-0.818), and well-fitted calibration curves (χ2 = 1.737, P = 0.9788). The patients with CRE colonization reported a significantly lower platelet engraftment rate with a higher risk of post-transplantation BSI when compared with the non-CRE colonization group (P = 0.02 and P < 0.001; respectively). The non-relapse mortality (NRM) value was higher in the CRE patients (P < 0.05), consistently with a survival probability that was thus significantly lower for the same timeframe (P < 0.05). Conclusion A reliable clinical prediction model for pre-transplantation CRE colonization was developed that demonstrated that the CRE colonization negatively affects platelet engraftment and survival outcomes following allo-HSCT.
Collapse
Affiliation(s)
- Wen-Qi Wu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Yu-Qi Zhang
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Jie Xu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Zai-Xiang Tang
- Department of Epidemiology and Statistics, School of Public Health, Faculty of Medicine, Soochow University, Suzhou, People’s Republic of China
| | - Shi-Jia Li
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Xi-Ya Wei
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Ling Li
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - He-Qing Wu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Xiao Ma
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Ji-Sheng Liu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - De-Pei Wu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Xiao-Jin Wu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, People’s Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
13
|
Santos ES, Lima ACM, Breda GL, Tomaz APDO, Nabhan SK, Funke VAM, Loth G, Nogueira KDS. Colonization by multidrug-resistant bacteria in hematological patients undergoing hematopoietic stem cell transplantation and clinical outcomes: A single-center retrospective cohort study. Transpl Infect Dis 2023; 25:e14119. [PMID: 37561358 DOI: 10.1111/tid.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Bloodstream infections are a leading cause of death in patients who undergo hematopoietic stem cell transplantation (HSCT) and are more severe when caused by multidrug-resistant (MDR) bacteria. This study proposed to investigate if colonization by MDR bacteria negatively affects the clinical outcomes in hematological patients after HSCT, as well as to evaluate possible risk factors for death due to bacteremia by the same colonizing agent. METHODS A single-center retrospective cohort study was conducted with 405 hematological patients submitted to a single HSCT procedure between 2015 and 2021. Patients were classified as colonized (n = 132) or noncolonized (n = 273) based on the surveillance cultures from D-30 to D+30 of transplantation, and their relevant clinical and laboratory data were collected until D+100. RESULTS Colonization by MDR bacteria increased blood culture positivity by all micro-organisms and also specifically by MDR bacteria, with a more pronounced effect when caused by carbapenemase-producing Klebsiella pneumoniae. Patients colonized with carbapenem-resistant K. pneumoniae had increased overall mortality (HR = 4.07, 95% CI 1.85-8.91, P = .0005) and had prolonged hospital length of stay in the context of autologous transplantation. Risk factors for death due to bacteremia by the same colonizing agent were neutropenia, colonization by carbapenem-resistant K. pneumoniae and use of high-dose total body irradiation in conditioning. CONCLUSION Hematological patients colonized by MDR bacteria presented a higher incidence of bloodstream infections, and colonization by carbapenemase-producing K. pneumoniae was associated with reduced overall survival.
Collapse
Affiliation(s)
- Eduardo Sbrana Santos
- Clinical Analysis and Pathological Anatomy Unit, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Alberto Cardoso Martins Lima
- Clinical Analysis and Pathological Anatomy Unit, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Giovanni Luís Breda
- Infectious Diseases Division, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Ana Paula de Oliveira Tomaz
- Clinical Analysis and Pathological Anatomy Unit, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Samir Kanaan Nabhan
- Bone Marrow Transplantation Unit, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Vaneuza Araújo Moreira Funke
- Bone Marrow Transplantation Unit, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Gisele Loth
- Bone Marrow Transplantation Unit, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Keite da Silva Nogueira
- Clinical Analysis and Pathological Anatomy Unit, Complexo do Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
14
|
Gupta U, Dey P. Rise of the guardians: Gut microbial maneuvers in bacterial infections. Life Sci 2023; 330:121993. [PMID: 37536616 DOI: 10.1016/j.lfs.2023.121993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
AIMS Bacterial infections are one of the major causes of mortality globally. The gut microbiota, primarily comprised of the commensals, performs an important role in maintaining intestinal immunometabolic homeostasis. The current review aims to provide a comprehensive understanding of how modulation of the gut microbiota influences opportunistic bacterial infections. MATERIALS AND METHODS Primarily centered around mechanisms related to colonization resistance, nutrient, and metabolite-associated factors, mucosal immune response, and commensal-pathogen reciprocal interactions, we discuss how gut microbiota can promote or prevent bacterial infections. KEY FINDINGS Opportunistic infections can occur directly due to obligate pathogens or indirectly due to the overgrowth of opportunistic pathobionts. Gut microbiota-centered mechanisms of altered intestinal immunometabolic and metabolomic homeostasis play a significant role in infection promotion and prevention. Depletion in the population of commensals, increased abundance of pathobionts, and overall decrease in gut microbial diversity and richness caused due to prolonged antibiotic use are risk factors of opportunistic bacterial infections, including infections from multidrug-resistant spp. Gut commensals can limit opportunistic infections by mechanisms including the production of antimicrobials, short-chain fatty acids, bile acid metabolism, promoting mucin formation, and maintaining immunological balance at the mucosa. Gut microbiota-centered strategies, including the administration of probiotics and fecal microbiota transplantation, could help attenuate opportunistic bacterial infections. SIGNIFICANCE The current review discussed the gut microbial population and function-specific aspects contributing to bacterial infection susceptibility and prophylaxis. Collectively, this review provides a comprehensive understanding of the mechanisms related to the dual role of gut microbiota in bacterial infections.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
15
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
16
|
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y, Dong D, Xiang H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv 2023; 13:7798-7817. [PMID: 36909750 PMCID: PMC9994607 DOI: 10.1039/d3ra00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.
Collapse
Affiliation(s)
- Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
17
|
Zheng Z, Hu Y, Tang J, Xu W, Zhu W, Zhang W. The implication of gut microbiota in recovery from gastrointestinal surgery. Front Cell Infect Microbiol 2023; 13:1110787. [PMID: 36926517 PMCID: PMC10011459 DOI: 10.3389/fcimb.2023.1110787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Recovery from gastrointestinal (GI) surgery is often interrupted by the unpredictable occurrence of postoperative complications, including infections, anastomotic leak, GI dysmotility, malabsorption, cancer development, and cancer recurrence, in which the implication of gut microbiota is beginning to emerge. Gut microbiota can be imbalanced before surgery due to the underlying disease and its treatment. The immediate preparations for GI surgery, including fasting, mechanical bowel cleaning, and antibiotic intervention, disrupt gut microbiota. Surgical removal of GI segments also perturbs gut microbiota due to GI tract reconstruction and epithelial barrier destruction. In return, the altered gut microbiota contributes to the occurrence of postoperative complications. Therefore, understanding how to balance the gut microbiota during the perioperative period is important for surgeons. We aim to overview the current knowledge to investigate the role of gut microbiota in recovery from GI surgery, focusing on the crosstalk between gut microbiota and host in the pathogenesis of postoperative complications. A comprehensive understanding of the postoperative response of the GI tract to the altered gut microbiota provides valuable cues for surgeons to preserve the beneficial functions and suppress the adverse effects of gut microbiota, which will help to enhance recovery from GI surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Cao T, Guo Y, Wang D, Liu Z, Huang S, Peng C, Wang S, Wang Y, Lu Q, Xiao F, Liang Z, Zheng S, Shen J, Wu Y, Lv Z, Ke Y. Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Antibiotics (Basel) 2022; 11:1584. [PMID: 36358236 PMCID: PMC9686891 DOI: 10.3390/antibiotics11111584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2023] Open
Abstract
Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); we also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; we also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. We found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. The resistance genes vanRG, tetW/N/W, acrD, and evgS were significantly upregulated in the test group compared with the control group. Efflux pumping was the primary mechanism of drug resistance in the Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia, Synergistetes, Spirochaetes, and Actinobacteria found in the mouse intestine. Our findings indicate that changes in the abundance of the intestinal microbiota are closely related to the presence of antibiotic-resistant bacteria in the intestinal tract and the metabolic health of the host.
Collapse
Affiliation(s)
- Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Dan Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiyang Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Qi Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Fan Xiao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zhaoyi Liang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Sijia Zheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yongning Wu
- Food Safety Research Unit (2019RU014), Chinese Academy of Medical Science, NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Fu Y, He Y, Xiang K, Zhao C, He Z, Qiu M, Hu X, Zhang N. The Role of Rumen Microbiota and Its Metabolites in Subacute Ruminal Acidosis (SARA)-Induced Inflammatory Diseases of Ruminants. Microorganisms 2022; 10:1495. [PMID: 35893553 PMCID: PMC9332062 DOI: 10.3390/microorganisms10081495] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in ruminants. In the early stage of SARA, ruminants do not exhibit obvious clinical symptoms. However, SARA often leads to local inflammatory diseases such as laminitis, mastitis, endometritis and hepatitis. The mechanism by which SARA leads to inflammatory diseases is largely unknown. The gut microbiota is the totality of bacteria, viruses and fungi inhabiting the gastrointestinal tract. Studies have found that the gut microbiota is not only crucial to gastrointestinal health but also involved in a variety of disease processes, including metabolic diseases, autoimmune diseases, tumors and inflammatory diseases. Studies have shown that intestinal bacteria and their metabolites can migrate to extraintestinal distal organs, such as the lung, liver and brain, through endogenous pathways, leading to related diseases. Combined with the literature, we believe that the dysbiosis of the rumen microbiota, the destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of SARA lead to the entry of rumen bacteria and/or metabolites into the body through blood or lymphatic circulation and place the body in the "chronic low-grade" inflammatory state. Meanwhile, rumen bacteria and/or their metabolites can also migrate to the mammary gland, uterus and other organs, leading to the occurrence of related inflammatory diseases. The aim of this review is to describe the mechanism by which SARA causes inflammatory diseases to obtain a more comprehensive and profound understanding of SARA and its related inflammatory diseases. Meanwhile, it is also of great significance for the joint prevention and control of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| |
Collapse
|