1
|
Chen K, Cao X. Biomolecular condensates: phasing in regulated host-pathogen interactions. Trends Immunol 2024:S1471-4906(24)00295-3. [PMID: 39672748 DOI: 10.1016/j.it.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Biomolecular condensates are membraneless organelles formed through liquid-liquid phase separation. Innate immunity is essential to host defense against infections, but pathogens also harbor sophisticated mechanisms to evade host defense. The formation of biomolecular condensates emerges as a key biophysical mechanism in host-pathogen interactions, playing pivotal roles in regulating immune responses and pathogen life cycles within the host. In this review we summarize recent advances in our understanding of how biomolecular condensates remodel membrane-bound organelles, influence infection-induced cell death, and are hijacked by pathogens for survival, as well as how they modulate mammalian innate immunity. We discuss the implications of dysregulated formation of biomolecular condensates during host-pathogen interactions and infectious diseases and propose future directions for developing potential treatments against such infections.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China; Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China.
| |
Collapse
|
2
|
Snik ME, Stouthamer NE, Hovius JW, van Gool MM. Bridging the gap: Insights in the immunopathology of Lyme borreliosis. Eur J Immunol 2024; 54:e2451063. [PMID: 39396370 PMCID: PMC11628917 DOI: 10.1002/eji.202451063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl) genospecies transmitted by Ixodes spp. ticks, is a significant public health concern in the Northern Hemisphere. This review highlights the complex interplay between Bbsl infection and host-immune responses, impacting clinical manifestations and long-term immunity. Early localized disease is characterized by erythema migrans (EM), driven by T-helper 1 (Th1) responses and proinflammatory cytokines. Dissemination to the heart and CNS can lead to Lyme carditis and neuroborreliosis respectively, orchestrated by immune cell infiltration and chemokine dysregulation. More chronic manifestations, including acrodermatitis chronica atrophicans and Lyme arthritis, involve prolonged inflammation as well as the development of autoimmunity. In addition, dysregulated immune responses impair long-term immunity, with compromised B-cell memory and antibody responses. Experimental models and clinical studies underscore the role of Th1/Th2 balance, B-cell dysfunction, and autoimmunity in LB pathogenesis. Moreover, LB-associated autoimmunity parallels mechanisms observed in other infectious and autoimmune diseases. Understanding immune dysregulation in LB provides insights into disease heterogeneity and could provide new strategies for diagnosis and treatment.
Collapse
Affiliation(s)
- Marijn E. Snik
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Noor E.I.M. Stouthamer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Joppe W. Hovius
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
- Division of Infectious DiseasesDepartment of Internal MedicineAmsterdam UMC Multidisciplinary Lyme borreliosis CenterAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Melissa M.J. van Gool
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamthe Netherlands
| |
Collapse
|
3
|
Alcón-Chino MET, Bonoldi VLN, Pereira RMR, Gazeta GS, Carvalho JPRS, Napoleão-Pêgo P, Durans AM, Souza ALA, De-Simone SG. New Epitopes for the Serodiagnosis of Human Borreliosis. Microorganisms 2024; 12:2212. [PMID: 39597601 PMCID: PMC11596413 DOI: 10.3390/microorganisms12112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lyme disease, a zoonotic infection caused by the bacterium Borrelia burgdorferi, is transmitted to humans through the bites of infected ticks. Its diagnosis primarily relies on serological methods; however, the existing borreliosis techniques have shown a variable sensitivity and specificity. Our study aimed to map IgG epitopes from five outer membrane proteins (Omp) from B. burgdorferi [Filament flagellar 41kD (PI1089), flagellar hook-associated protein (Q44767), Flagellar hook k2 protein (O51173), Putative Omp BURGA03 (Q44849), and 31 kDa OspA (P0CL66)] lipoprotein to find specific epitopes for the development of accurate diagnosis methods. Using the spot synthesis technique, a library of 380 peptides was constructed to identify linear B cell epitopes recognized by human IgG in response to specific B. burgdorferi-associated proteins. The reactivity of this epitope when chemically synthesized was then evaluated using ELISA with a panel of the patient's sera. Cross-reactivity was assessed through data bank access and in vitro analysis. Among the 19 epitopes identified, four were selected for further investigation based on their signal intensity, secondary structure, and peptide matching. Validation was performed using ELISA, and ROC curve analysis demonstrated a sensitivity of ≥85.71%, specificity of ≥92.31, accuracy of ≥90.7, and AUC value of ≥0.91 for all peptides. Our cross-reactivity analysis demonstrated that the Burg/02/huG, Burg/03/huG, and Burg/12/huG peptides were not reactive to antibodies from patients with Leptospirosis and syphilis compared to those from the B. burgdorferi group. These peptides indicated an excellent performance in distinguishing between B. burgdorferi-infected and non-infected individuals and exhibited a neglected reactivity to antibodies in sera from patients with Leptospirosis and syphilis. These peptides are promising targets for recombinant development, potentially leading to more accurate serological tests and vaccines.
Collapse
Affiliation(s)
- Mônica E. T. Alcón-Chino
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Virgínia L. N. Bonoldi
- Clinical Hospital, Faculty of Medicine, São Paulo University, São Paulo 05403-000, SP, Brazil;
| | - Rosa M. R. Pereira
- Faculty of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - Gilberto S. Gazeta
- Laboratory of Ticks and Other Wingless Arthropods-National Reference for Vectors of Rickettsioses, Instituto Oswaldo Cruz-IOC, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil;
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
| | - Andressa M. Durans
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
| | - André L. A. Souza
- Multidisciplinary Biochemistry Teaching Laboratory, UNIG, Nova Iguaçu 26260-045, RJ, Brazil;
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics, Oswaldo Cruz Institut, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
4
|
Thompson C, Waldron C, George S, Ouyang Z. Assessment of the hypothetical protein BB0616 in the murine infection of Borrelia burgdorferi. Infect Immun 2024; 92:e0009024. [PMID: 38700336 PMCID: PMC11237664 DOI: 10.1128/iai.00090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Soni J, Sinha S, Pandey R. Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Front Microbiol 2024; 15:1370818. [PMID: 38444801 PMCID: PMC10912505 DOI: 10.3389/fmicb.2024.1370818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria are the most prevalent form of microorganisms and are classified into two categories based on their mode of existence: intracellular and extracellular. While most bacteria are beneficial to human health, others are pathogenic and can cause mild to severe infections. These bacteria use various mechanisms to evade host immunity and cause diseases in humans. The susceptibility of a host to bacterial infection depends on the effectiveness of the immune system, overall health, and genetic factors. Malnutrition, chronic illnesses, and age-related vulnerabilities are the additional confounders to disease severity phenotypes. The impact of bacterial pathogens on public health includes the transmission of these pathogens from healthcare facilities, which contributes to increased morbidity and mortality. To identify the most significant threats to public health, it is crucial to understand the global burden of common bacterial pathogens and their pathogenicity. This knowledge is required to improve immunization rates, improve the effectiveness of vaccines, and consider the impact of antimicrobial resistance when assessing the situation. Many bacteria have developed antimicrobial resistance, which has significant implications for infectious diseases and favors the survival of resilient microorganisms. This review emphasizes the significance of understanding the bacterial pathogens that cause this health threat on a global scale.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sristi Sinha
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
6
|
Van Wyk CL, Mtshali S, Ramatla T, Lekota KE, Xuan X, Thekisoe O. Distribution of Rhipicephalus sanguineus and Heamaphysalis elliptica dog ticks and pathogens they are carrying: A systematic review. Vet Parasitol Reg Stud Reports 2024; 47:100969. [PMID: 38199685 DOI: 10.1016/j.vprsr.2023.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
The role of ixodid ticks especially Rhipicephalus sanguineus and Heamaphysalis elliptica in the epidemiology of several diseases of veterinary and public health importance have been documented. This study conducted a systematic review focusing on the distribution of R. sanguineus and H. elliptica, as well as the common tick-borne pathogens they harbour. The Scopus, ScienceDirect, PubMed, and Web of Science databases were used to search for English journal articles published between January 1990 and June 2021. The articles were assessed by following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This systematic review was registered on PROSPERO [(ID no: CRD42022327372). Of the studies included in the systematic review, 247 and 19 articles had identified R. sanguineus and H. elliptica respectively, whereas 15 articles had identified both tick species. There is a reported worldwide distribution of R. sanguineus from 64 countries, whereas H. elliptica was only reported in the African continent from 6 countries. In total, 120 articles that were included in this systematic review reported detection of tick-borne pathogens from R. sanguineus (n = 118 articles) and/or H. elliptica (n = 2 articles) ticks. According to the studies tick-borne pathogens harboured by R. sanguineus included protozoa such as Babesia spp., Hepatozoon spp., Leishmania spp., and Theileria spp., as well as bacteria such as Acinetobacter spp. Anaplasma spp., Bacillus spp., Borrelia spp., Brucella spp., Coxiella spp., and Staphylococcus spp. The H. elliptica was reported to be harbouring Babesia spp., Ehrlichia spp. and Rickettsia spp. Most of the studies (50%) used the conventional polymerase chain reaction (PCR) technique for the detection of tick-borne pathogens, followed by real-time PCR (qPCR) (n = 26), and nested PCR (n = 22). This systematic review has shed light on the distribution of two common dog ticks as well as the tick-borne pathogens of veterinary and zoonotic importance they are harbouring. This data will enable surveillance studies that can report whether the distribution of these ticks and their associated tick-borne pathogens is expanding or shrinking or is stable.
Collapse
Affiliation(s)
- Clara-Lee Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Senzo Mtshali
- National Institute of Communicable Diseases, Sandringham 2131, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa.
| | - Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
7
|
Perveen N, Muhammad K, Muzaffar SB, Zaheer T, Munawar N, Gajic B, Sparagano OA, Kishore U, Willingham AL. Host-pathogen interaction in arthropod vectors: Lessons from viral infections. Front Immunol 2023; 14:1061899. [PMID: 36817439 PMCID: PMC9929866 DOI: 10.3389/fimmu.2023.1061899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Haematophagous arthropods can harbor various pathogens including viruses, bacteria, protozoa, and nematodes. Insects possess an innate immune system comprising of both cellular and humoral components to fight against various infections. Haemocytes, the cellular components of haemolymph, are central to the insect immune system as their primary functions include phagocytosis, encapsulation, coagulation, detoxification, and storage and distribution of nutritive materials. Plasmatocytes and granulocytes are also involved in cellular defense responses. Blood-feeding arthropods, such as mosquitoes and ticks, can harbour a variety of viral pathogens that can cause infectious diseases in both human and animal hosts. Therefore, it is imperative to study the virus-vector-host relationships since arthropod vectors are important constituents of the ecosystem. Regardless of the complex immune response of these arthropod vectors, the viruses usually manage to survive and are transmitted to the eventual host. A multidisciplinary approach utilizing novel and strategic interventions is required to control ectoparasite infestations and block vector-borne transmission of viral pathogens to humans and animals. In this review, we discuss the arthropod immune response to viral infections with a primary focus on the innate immune responses of ticks and mosquitoes. We aim to summarize critically the vector immune system and their infection transmission strategies to mammalian hosts to foster debate that could help in developing new therapeutic strategies to protect human and animal hosts against arthropod-borne viral infections.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sabir Bin Muzaffar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bojan Gajic
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Olivier Andre Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Uday Kishore
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Arve Lee Willingham
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|