1
|
Leone CM, Truini A. Understanding neuropathic pain: the role of neurophysiological tests in unveiling underlying mechanisms. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:77. [PMID: 39558394 PMCID: PMC11575013 DOI: 10.1186/s44158-024-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Neuropathic pain, arising from lesions of the somatosensory nervous system, presents with diverse symptoms including ongoing pain, paroxysmal pain, and provoked pain, usually accompanied by sensory deficits. Understanding the pathophysiological mechanisms behind these symptoms is crucial for targeted treatment strategies. Neurophysiological techniques such as nerve conduction studies, reflexes, and evoked potentials help elucidate these mechanisms by assessing large myelinated non-nociceptive fibres and small nociceptive fibres. This argumentative review highlights the importance of tailored neurophysiological assessments for improving our understanding of the pathophysiological mechanisms behind neuropathic pain symptoms.
Collapse
Affiliation(s)
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Argoff CE. Central Neuropathic Pain. Continuum (Minneap Minn) 2024; 30:1381-1396. [PMID: 39445926 DOI: 10.1212/con.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This article provides an approach to the assessment, diagnosis, and treatment of central neuropathic pain. LATEST DEVELOPMENTS Recent studies of the pathophysiology of central neuropathic pain, including evidence of changes in the expression of voltage-gated sodium channels and N-methyl-d-aspartate (NMDA) receptors, may provide the basis for new therapies. Other areas of current research include the role of cannabinoid-receptor activity and microglial cell activation in various animal models of central neuropathic pain. New observations regarding changes in primary afferent neuronal activity in central neuropathic pain and the preliminary observation that peripheral nerve blocks may relieve pain due to central neuropathic etiologies provide new insights into both the mechanism and treatment of central neuropathic pain. ESSENTIAL POINTS In the patient populations treated by neurologists, central neuropathic pain develops most frequently following spinal cord injury, multiple sclerosis, or stroke. A multimodal, individualized approach to the management of central neuropathic pain is necessary to optimize pain relief and may require multiple treatment trials to achieve the best outcome.
Collapse
|
3
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
4
|
Wang Y, Zhang Y, Ma N, Zhao W, Ren X, Sun Y, Zang W, Cao J. SIRT1 mediates the excitability of spinal CaMKIIα-positive neurons and participates in neuropathic pain by controlling Nav1.3. CNS Neurosci Ther 2024; 30:e14764. [PMID: 38828629 PMCID: PMC11145124 DOI: 10.1111/cns.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
AIMS Neuropathic pain is a common chronic pain disorder, which is largely attributed to spinal central sensitization. Calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) activation in the spinal dorsal horn (SDH) is a major contributor to spinal sensitization. However, the exact way that CaMKIIα-positive (CaMKIIα+) neurons in the SDH induce neuropathic pain is still unclear. This study aimed to explore the role of spinal CaMKIIα+ neurons in neuropathic pain caused by chronic constriction injury (CCI) and investigate the potential epigenetic mechanisms involved in CaMKIIα+ neuron activation. METHODS CCI-induced neuropathic pain mice model, Sirt1loxP/loxP mice, and chemogenetic virus were used to investigate whether the activation of spinal CaMKIIα+ neurons is involved in neuropathic pain and its involved mechanism. Transcriptome sequence, western blotting, qRT-PCR, and immunofluorescence analysis were performed to assay the expression of related molecules and activation of neurons. Co-immunoprecipitation was used to observe the binding relationship of protein. Chromatin immunoprecipitation (ChIP)-PCR was applied to analyze the acetylation of histone H3 in the Scn3a promoter region. RESULTS The expression of sodium channel Nav1.3 was increased and the expression of SIRT1 was decreased in the spinal CaMKIIα+ neurons of CCI mice. CaMKIIα neurons became overactive after CCI, and inhibiting their activation relieved CCI-induced pain. Overexpression of SIRT1 reversed the increase of Nav1.3 and alleviated pain, while knockdown of SIRT1 or overexpression of Nav1.3 promoted CaMKIIα+ neuron activation and induced pain. By knocking down spinal SIRT1, the acetylation of histone H3 in the Scn3a (encoding Nav1.3) promoter region was increased, leading to an increased expression of Nav1.3. CONCLUSION The findings suggest that an aberrant reduction of spinal SIRT1 after nerve injury epigenetically increases Nav1.3, subsequently activating CaMKIIα+ neurons and causing neuropathic pain.
Collapse
Affiliation(s)
- Yuanzeng Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Yidan Zhang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Nan Ma
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Wen Zhao
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- The Nursing and Health SchoolZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
5
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Ghanbari A, Ghasemi S, Zarbakhsh S. Exercise induced myelin protein zero improvement in neuropathic pain rats. Somatosens Mot Res 2023; 40:141-146. [PMID: 36630644 DOI: 10.1080/08990220.2022.2158800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Aerobic exercise including swimming plays a suitable role in improving somatosensory injuries. Neuropathic pain is a debilitating condition that occurs following injury or diseases of somatosensory system. In the present study, we tried to investigate the effect of exercise on myelin protein zero of sciatic nerve injured rats. MATERIALS AND METHODS Forty male rats (180-220 g) were divided into five groups (intact, sham, sham + exercise, neuropathy, and neuropathy + exercise). Right Sciatic nerve of anesthetized rats was exposed and loosely ligated (four ligations with 1 mm apart) using catgut chromic sutures to induce neuropathy. After 3 days of recovery, swimming exercise began (20 min/day/5 days a week/4 weeks). Mechanical allodynia and thermal hyperalgesia were detected using Von Frey filaments and plantar test, respectively. Sciatic nerve at the place of injury was dissected out to measure the myelin protein zero by western blot analysis. In the intact and sham groups, sciatic nerve removed at the place similar to injured group. RESULTS We found that neuropathy significantly (p < 0.05) reduced paw withdrawal mechanical and thermal thresholds and swimming exercise significantly (p < 0.05) increased paw withdrawal mechanical and thermal thresholds compared to the neuropathy group. Moreover, we found that MPZ level significantly (p < 0.01) decreased in neuropathy group against that in sham group, and exercise prominently (p < 0.05) reversed MPZ level towards control level. CONCLUSIONS Swimming exercise improves myelin protein zero level in neuropathic rats along with attenuating neuropathic pain. This is a promising approach in improving neuropathological disorders including Charcot-Marie-Tooth and Dejerine-Sottas disease.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of anatomical sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Xu L, Yang L, Wu Y, Wan X, Tang X, Xu Y, Chen Q, Liu Y, Liu S. Rac1/PAK1 signaling contributes to bone cancer pain by Regulation dendritic spine remodeling in rats. Mol Pain 2023; 19:17448069231161031. [PMID: 36938611 PMCID: PMC10028669 DOI: 10.1177/17448069231161031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bone cancer pain (BCP) is severe chronic pain caused by tumor metastasis to the bones, often resulting in significant skeletal remodeling and fractures. Currently, there is no curative treatment. Therefore, insight into the underlying mechanisms could guide the development of mechanism-based therapeutic strategies for BCP. We speculated that Rac1/PAK1 signaling plays a critical role in the development of BCP. Tumor cells implantation (TCI) into the tibial cavity resulted in bone cancer-associated mechanical allodynia. Golgi staining revealed changes in the excitatory synaptic structure of WDR (Wide-dynamic range) neurons in the spinal cord, including increased postsynaptic density (PSD) length and thickness, and width of the cleft. Behavioral and western blotting test revealed that the development and persistence of pain correlated with Rac1/PAK1 signaling activation in primary sensory neurons. Intrathecal injection of NSC23766, a Rac1 inhibitor, reduced the persistence of BCP as well as reversed the remodeling of dendrites. Therefore, we concluded that activation of the Rac1/PAK1 signaling pathway in the spinal cord plays an important role in the development of BCP through remodeling of dendritic spines. Modulation of the Rac1/PAK1 pathway may be a potential strategy for BCP treatment.
Collapse
Affiliation(s)
- Lingfei Xu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
| | - Long Yang
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
| | - Yan Wu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Xinxin Wan
- Department of Anesthesiology, Nanjing Drum Tower
Hospital, Jiangsu, China
| | - Xihui Tang
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Yuqing Xu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Qingsong Chen
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Yuepeng Liu
- Institute of Xuzhou Medical
Science, Jiangsu, China
| | - Su Liu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| |
Collapse
|
8
|
Central Neuropathic Pain Syndromes: Current and Emerging Pharmacological Strategies. CNS Drugs 2022; 36:483-516. [PMID: 35513603 DOI: 10.1007/s40263-022-00914-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/31/2022]
Abstract
Central neuropathic pain is caused by a disease or lesion of the brain or spinal cord. It is difficult to predict which patients will develop central pain syndromes after a central nervous system injury, but depending on the etiology, lifetime prevalence may be greater than 50%. The resulting pain is often highly distressing and difficult to treat, with no specific treatment guidelines currently available. This narrative review discusses mechanisms contributing to central neuropathic pain, and focuses on pharmacological approaches for managing common central neuropathic pain conditions such as central post-stroke pain, spinal cord injury-related pain, and multiple sclerosis-related neuropathic pain. Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, and gabapentinoids have some evidence for efficacy in central neuropathic pain. Medications from other pharmacologic classes may also provide pain relief, but current evidence is limited. Certain non-pharmacologic approaches, neuromodulation in particular, may be helpful in refractory cases. Emerging data suggest that modulating the primary afferent input may open new horizons for the treatment of central neuropathic pain. For most patients, effective treatment will likely require a multimodal therapy approach.
Collapse
|
9
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
10
|
Forstenpointner J, Berry D, Baron R, Borsook D. The cornucopia of central disinhibition pain - An evaluation of past and novel concepts. Neurobiol Dis 2020; 145:105041. [PMID: 32800994 DOI: 10.1016/j.nbd.2020.105041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Central disinhibition (CD), as applied to pain, decreases thresholds of endogenous systems. This provokes onset of spontaneous or evoked pain in an individual beyond the ability of the nervous system to inhibit pain resulting from a disease or tissue damage. The original CD concept as proposed by Craig entails a shift from the lateral pain pathway (i.e. discriminative pain processing) towards the medial pain pathway (i.e. emotional pain processing), within an otherwise neurophysiological intact environment. In this review, the original CD concept as proposed by Craig is extended by the primary "nociceptive pathway damage - CD" concept and the secondary "central pathway set point - CD". Thereby, the original concept may be transferred into anatomical and psychological non-functional conditions. We provide examples for either primary or secondary CD concepts within different clinical etiologies as well as present surrogate models, which directly mimic the underlying pathophysiology (A-fiber block) or modulate the CD pathway excitability (thermal grill). The thermal grill has especially shown promising advancements, which may be useful to examine CD pathway activation in the future. Therefore, within this topical review, a systematic review on the thermal grill illusion is intended to stimulate future research. Finally, the authors review different mechanism-based treatment approaches to combat CD pain.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Delany Berry
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Wu L, Niu Z, Hu X, Liu H, Li S, Chen L, Zheng D, Liu Z, Liu T, Xu F, Manyande A, Wang J, Xia H. Regional cerebral metabolic levels and turnover in awake rats after acute or chronic spinal cord injury. FASEB J 2020; 34:10547-10559. [PMID: 32592196 DOI: 10.1096/fj.202000447r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Liang Wu
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases Yinchuan P.R. China
- School of Clinical Medicine Ningxia Medical University Yinchuan P.R. China
| | - Zhanfeng Niu
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
| | - Xulei Hu
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases Yinchuan P.R. China
- School of Clinical Medicine Ningxia Medical University Yinchuan P.R. China
| | - Huili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Shuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
| | - Lei Chen
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
| | - Danhao Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Zhuang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Taotao Liu
- Department of Anesthesiology Peking University Third Hospital Beijing P.R. China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Anne Manyande
- School of Human and Social Sciences University of West London London UK
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes 2nd Hospital of Shijiazhuang Shijiazhuang P.R. China
| | - Hechun Xia
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
- Ningxia Human Stem Cell Research Institute General Hospital of Ningxia Medical University Yinchuan P.R. China
| |
Collapse
|
12
|
Vicario N, Turnaturi R, Spitale FM, Torrisi F, Zappalà A, Gulino R, Pasquinucci L, Chiechio S, Parenti C, Parenti R. Intercellular communication and ion channels in neuropathic pain chronicization. Inflamm Res 2020; 69:841-850. [PMID: 32533221 DOI: 10.1007/s00011-020-01363-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuropathic pain is caused by primary lesion or dysfunction of either peripheral or central nervous system. Due to its complex pathogenesis, often related to a number of comorbidities, such as cancer, neurodegenerative and neurovascular diseases, neuropathic pain still represents an unmet clinical need, lacking long-term effective treatment and complex case-by-case approach. AIM AND METHODS We analyzed the recent literature on the role of selective voltage-sensitive sodium, calcium and potassium permeable channels and non-selective gap junctions (GJs) and hemichannels (HCs) in establishing and maintaining chronic neuropathic conditions. We finally focussed our review on the role of extracellular microenvironment modifications induced by resident glial cells and on the recent advances in cell-to-cell and cell-to-extracellular environment communication in chronic neuropathies. CONCLUSION In this review, we provide an update on the current knowledge of neuropathy chronicization processes with a focus on both neuronal and glial ion channels, as well as on channel-mediated intercellular communication.
Collapse
Affiliation(s)
- Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rita Turnaturi
- Section of Medicinal Chemistry, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Federica Maria Spitale
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lorella Pasquinucci
- Section of Medicinal Chemistry, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Santina Chiechio
- Section of Pharmacology, Department of Drug Sciences, University of Catania, Catania, Italy
- Oasi Research Institute IRCCS, Troina, Italy
| | - Carmela Parenti
- Section of Pharmacology, Department of Drug Sciences, University of Catania, Catania, Italy.
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Dendritic Spine Dynamics after Peripheral Nerve Injury: An Intravital Structural Study. J Neurosci 2020; 40:4297-4308. [PMID: 32371602 DOI: 10.1523/jneurosci.2858-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
Neuropathic pain is an intractable medical condition with few or no options for effective treatment. Emerging evidence shows a strong structure-function relationship between dendritic spine dysgenesis and the presence of neuropathic pain. Postmortem tissue analyses can only imply dynamic structural changes associated with injury-induced pain. Here, we profiled the in vivo dynamics of dendritic spines over time on the same superficial dorsal horn (lamina II) neurons before and after peripheral nerve injury-induced pain. We used a two-photon, whole-animal imaging paradigm that permitted repeat imaging of the same dendritic branches of these neurons in C57/Bl6 Thy1-YFP male mice. Our study demonstrates, for the first time, the ongoing, steady-state changes in dendritic spine dynamics in the dorsal horn associated with peripheral nerve injury and pain. Ultimately, the relationship between altered dendritic spine dynamics and neuropathic pain may serve as a structure-based opportunity to investigate mechanisms of pain following injury and disease.SIGNIFICANCE STATEMENT This work is important because it demonstrates for the first time: (1) the powerful utility of intravital study of dendritic spine dynamics in the superficial dorsal horn; (2) that nerve injury-induced pain triggers changes in dendritic spine steady-state behavior in the spinal cord dorsal horn; and (3) this work opens the door to further investigations in vivo of spinal cord dendritic spine dynamics in the context of injury and disease.
Collapse
|
14
|
Patwa S, Benson CA, Dyer L, Olson K, Bangalore L, Hill M, Waxman SG, Tan AM. Spinal cord motor neuron plasticity accompanies second-degree burn injury and chronic pain. Physiol Rep 2019; 7:e14288. [PMID: 31858746 PMCID: PMC6923170 DOI: 10.14814/phy2.14288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Burn injuries and associated complications present a major public health challenge. Many burn patients develop clinically intractable complications, including pain and other sensory disorders. Recent evidence has shown that dendritic spine neuropathology in spinal cord sensory and motor neurons accompanies central nervous system (CNS) or peripheral nervous system (PNS) trauma and disease. However, no research has investigated similar dendritic spine neuropathologies following a cutaneous thermal burn injury. In this retrospective investigation, we analyzed dendritic spine morphology and localization in alpha-motor neurons innervating a burn-injured area of the body (hind paw). To identify a molecular regulator of these dendritic spine changes, we further profiled motor neuron dendritic spines in adult mice treated with romidepsin, a clinically approved Pak1-inhibitor, or vehicle control at two postburn time points: Day 6 immediately after treatment, or Day 10 following drug withdrawal. In control treated mice, we observed an overall increase in dendritic spine density, including structurally mature spines with mushroom-shaped morphology. Pak1-inhibitor treatment reduced injury-induced changes to similar levels observed in animals without burn injury. The effectiveness of the Pak1-inhibitor was durable, since normalized dendritic spine profiles remained as long as 4 days despite drug withdrawal. This study is the first report of evidence demonstrating that a second-degree burn injury significantly affects motor neuron structure within the spinal cord. Furthermore, our results support the opportunity to study dendritic spine dysgenesis as a novel avenue to clarify the complexities of neurological disease following traumatic injury.
Collapse
Affiliation(s)
- Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Curtis A. Benson
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Lauren Dyer
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Kai‐Lan Olson
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Myriam Hill
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Andrew M. Tan
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| |
Collapse
|
15
|
Ashina H, Porreca F, Anderson T, Amin FM, Ashina M, Schytz HW, Dodick DW. Post-traumatic headache: epidemiology and pathophysiological insights. Nat Rev Neurol 2019; 15:607-617. [DOI: 10.1038/s41582-019-0243-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 01/01/2023]
|
16
|
Vierck C. Mechanisms of Below-Level Pain Following Spinal Cord Injury (SCI). THE JOURNAL OF PAIN 2019; 21:262-280. [PMID: 31493490 DOI: 10.1016/j.jpain.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms of below-level pain are discoverable as neural adaptations rostral to spinal injury. Accordingly, the strategy of investigations summarized here has been to characterize behavioral and neural responses to below-level stimulation over time following selective lesions of spinal gray and/or white matter. Assessments of human pain and the pain sensitivity of humans and laboratory animals following spinal injury have revealed common disruptions of pain processing. Interruption of the spinothalamic pathway partially deafferents nocireceptive cerebral neurons, rendering them spontaneously active and hypersensitive to remaining inputs. The spontaneous activity among these neurons is disorganized and unlikely to generate pain. However, activation of these neurons by their remaining inputs can result in pain. Also, injury to spinal gray matter results in a cascade of secondary events, including excitotoxicity, with rostral propagation of excitatory influences that contribute to chronic pain. Establishment and maintenance of below-level pain results from combined influences of injured and spared axons in the spinal white matter and injured neurons in spinal gray matter on processing of nociception by hyperexcitable cerebral neurons that are partially deafferented. A model of spinal stenosis suggests that ischemic injury to the core spinal region can generate below-level pain. Additional questions are raised about demyelination, epileptic discharge, autonomic activation, prolonged activity of C nocireceptive neurons, and thalamocortical plasticity in the generation of below-level pain. PERSPECTIVE: An understanding of mechanisms can direct therapeutic approaches to prevent development of below-level pain or arrest it following spinal cord injury. Among the possibilities covered here are surgical and other means of attenuating gray matter excitotoxicity and ascending propagation of excitatory influences from spinal lesions to thalamocortical systems involved in pain encoding and arousal.
Collapse
Affiliation(s)
- Chuck Vierck
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, Florida.
| |
Collapse
|
17
|
Sex differences in central nervous system plasticity and pain in experimental autoimmune encephalomyelitis. Pain 2019; 160:1037-1049. [PMID: 30649100 DOI: 10.1097/j.pain.0000000000001483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease with many known structural and functional changes in the central nervous system. A well-recognized, but poorly understood, complication of MS is chronic pain. Little is known regarding the influence of sex on the development and maintenance of MS-related pain. This is important to consider, as MS is a predominantly female disease. Using the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, we demonstrate sex differences in measures of spinal cord inflammation and plasticity that accompany tactile hypersensitivity. Although we observed substantial inflammatory activity in both sexes, only male EAE mice exhibit robust staining of axonal injury markers and increased dendritic arborisation in morphology of deep dorsal horn neurons. We propose that tactile hypersensitivity in female EAE mice may be more immune-driven, whereas pain in male mice with EAE may rely more heavily on neurodegenerative and plasticity-related mechanisms. Morphological and inflammatory differences in the spinal cord associated with pain early in EAE progression supports the idea of differentially regulated pain pathways between the sexes. Results from this study may indicate future sex-specific targets that are worth investigating for their functional role in pain circuitry.
Collapse
|
18
|
Collins KL, Russell HG, Schumacher PJ, Robinson-Freeman KE, O'Conor EC, Gibney KD, Yambem O, Dykes RW, Waters RS, Tsao JW. A review of current theories and treatments for phantom limb pain. J Clin Invest 2018; 128:2168-2176. [PMID: 29856366 DOI: 10.1172/jci94003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following amputation, most amputees still report feeling the missing limb and often describe these feelings as excruciatingly painful. Phantom limb sensations (PLS) are useful while controlling a prosthesis; however, phantom limb pain (PLP) is a debilitating condition that drastically hinders quality of life. Although such experiences have been reported since the early 16th century, the etiology remains unknown. Debate continues regarding the roles of the central and peripheral nervous systems. Currently, the most posited mechanistic theories rely on neuronal network reorganization; however, greater consideration should be given to the role of the dorsal root ganglion within the peripheral nervous system. This Review provides an overview of the proposed mechanistic theories as well as an overview of various treatments for PLP.
Collapse
Affiliation(s)
| | - Hannah G Russell
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patrick J Schumacher
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Ellen C O'Conor
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kyla D Gibney
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Olivia Yambem
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Robert W Dykes
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | | | - Jack W Tsao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurology, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
19
|
Buyan A, Sun D, Corry B. Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels. Proc Natl Acad Sci U S A 2018; 115:E3135-E3144. [PMID: 29467289 PMCID: PMC5889629 DOI: 10.1073/pnas.1714131115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Voltage-gated sodium channels are essential for carrying electrical signals throughout the body, and mutations in these proteins are responsible for a variety of disorders, including epilepsy and pain syndromes. As such, they are the target of a number of drugs used for reducing pain or combatting arrhythmias and seizures. However, these drugs affect all sodium channel subtypes found in the body. Designing compounds to target select sodium channel subtypes will provide a new therapeutic pathway and would maximize treatment efficacy while minimizing side effects. Here, we examine the binding preferences of nine compounds known to be sodium channel pore blockers in molecular dynamics simulations. We use the approach of replica exchange solute tempering (REST) to gain a more complete understanding of the inhibitors' behavior inside the pore of NavMs, a bacterial sodium channel, and NavPas, a eukaryotic sodium channel. Using these simulations, we are able to show that both charged and neutral compounds partition into the bilayer, but neutral forms more readily cross it. We show that there are two possible binding sites for the compounds: (i) a site on helix 6, which has been previously determined by many experimental and computational studies, and (ii) an additional site, occupied by protonated compounds in which the positively charged part of the drug is attracted into the selectivity filter. Distinguishing distinct binding poses for neutral and charged compounds is essential for understanding the nature of pore block and will aid the design of subtype-selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Delin Sun
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
20
|
Physical basis of specificity and delayed binding of a subtype selective sodium channel inhibitor. Sci Rep 2018; 8:1356. [PMID: 29358762 PMCID: PMC5778059 DOI: 10.1038/s41598-018-19850-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Nerve and muscle signalling is controlled by voltage-gated sodium (Nav) channels which are the targets of local anesthetics, anti-epileptics and anti-arrythmics. Current medications do not selectively target specific types of Nav found in the body, but compounds that do so have the potential to be breakthrough treatments for chronic pain, epilepsy and other neuronal disorders. We use long computer simulations totaling more than 26 μs to show how a promising lead compound can target one Nav implicated in pain perception and specific channels found in bacteria, and accurately predict the affinity of the compound to different channel types. Most importantly, we provide two explanations for the slow kinetics of this class of compound that limits their therapeutic utility. Firstly, the negative charge on the compound is essential for high affinity binding but is also responsible for energetic barriers that slow binding. Secondly, the compound has to undergo a conformational reorientation during the binding process. This knowledge aids the design of compounds affecting specific eukaryotic and bacterial channels and suggests routes for future drug development.
Collapse
|
21
|
Guo Y, Benson C, Hill M, Henry S, Effraim P, Waxman SG, Dib-Hajj S, Tan AM. Therapeutic potential of Pak1 inhibition for pain associated with cutaneous burn injury. Mol Pain 2018; 14:1744806918788648. [PMID: 29956587 PMCID: PMC6053256 DOI: 10.1177/1744806918788648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/20/2023] Open
Abstract
Painful burn injuries are among the most debilitating form of trauma, globally ranking in the top 15 leading causes of chronic disease burden. Despite its prevalence, however, chronic pain after burn injury is under-studied. We previously demonstrated the contribution of the Rac1-signaling pathway in several models of neuropathic pain, including burn injury. However, Rac1 belongs to a class of GTPases with low therapeutic utility due to their complex intracellular dynamics. To further understand the mechanistic underpinnings of burn-induced neuropathic pain, we performed a longitudinal study to address the hypothesis that inhibition of the downstream effector of Rac1, Pak1, will improve pain outcome following a second-degree burn injury. Substantial evidence has identified Pak1 as promising a clinical target in cognitive dysfunction and is required for dendritic spine dysgenesis associated with many neurological diseases. In our burn injury model, mice exhibited significant tactile allodynia and heat hyperalgesia and dendritic spine dysgenesis in the dorsal horn. Activity-dependent expression of c-fos also increased in dorsal horn neurons, an indicator of elevated central nociceptive activity. To inhibit Pak1, we repurposed an FDA-approved inhibitor, romidepsin. Treatment with romidepsin decreased dendritic spine dysgenesis, reduced c-fos expression, and rescued pain thresholds. Drug discontinuation resulted in a relapse of cellular correlates of pain and in lower pain thresholds in behavioral tests. Taken together, our findings identify Pak1 signaling as a potential molecular target for therapeutic intervention in traumatic burn-induced neuropathic pain.
Collapse
Affiliation(s)
- Yiqun Guo
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Curtis Benson
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Myriam Hill
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Stefanie Henry
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Philip Effraim
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| |
Collapse
|
22
|
Su S, Shao J, Zhao Q, Ren X, Cai W, Li L, Bai Q, Chen X, Xu B, Wang J, Cao J, Zang W. MiR-30b Attenuates Neuropathic Pain by Regulating Voltage-Gated Sodium Channel Nav1.3 in Rats. Front Mol Neurosci 2017; 10:126. [PMID: 28529474 PMCID: PMC5418349 DOI: 10.3389/fnmol.2017.00126] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
Nav1.3 is a tetrodotoxin-sensitive isoform among voltage-gated sodium channels that are closely associated with neuropathic pain. It can be up-regulated following nerve injury, but its biological function remains uncertain. MicroRNAs (miRNAs) are endogenous non-coding RNAs that can regulate post-transcriptional gene expression by binding with their target mRNAs. Using Target Scan software, we discovered that SCN3A is the major target of miR-30b, and we then determined whether miR-30b regulated the expression of Nav1.3 by transfecting miR-30b agomir through the stimulation of TNF-α or by transfecting miR-30b antagomir in primary dorsal root ganglion (DRG) neurons. The spinal nerve ligation (SNL) model was used to determine the contribution of miR-30b to neuropathic pain, to evaluate changes in Nav1.3 mRNA and protein expression, and to understand the sensitivity of rats to mechanical and thermal stimuli. Our results showed that miR-30b agomir transfection down-regulated Nav1.3 mRNA stimulated with TNF-α in primary DRG neurons. Moreover, miR-30b overexpression significantly attenuated neuropathic pain induced by SNL, with decreases in the expression of Nav1.3 mRNA and protein both in DRG neurons and spinal cord. Activation of Nav1.3 caused by miR-30b antagomir was identified. These data suggest that miR-30b is involved in the development of neuropathic pain, probably by regulating the expression of Nav1.3, and might be a novel therapeutic target for neuropathic pain. Perspective: This study is the first to explore the important role of miR-30b and Nav1.3 in spinal nerve ligation-induced neuropathic pain, and our evidence may provide new insight for improving therapeutic approaches to pain.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Jinping Shao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Qingzan Zhao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Weihua Cai
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Lei Li
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Xuemei Chen
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Bo Xu
- Department of Anesthesiology, General Hospital of Guangzhou Military Command of People's Liberation ArmyGuangzhou, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, USA
| | - Jing Cao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
23
|
|
24
|
Yang L, Li Q, Liu X, Liu S. Roles of Voltage-Gated Tetrodotoxin-Sensitive Sodium Channels NaV1.3 and NaV1.7 in Diabetes and Painful Diabetic Neuropathy. Int J Mol Sci 2016; 17:ijms17091479. [PMID: 27608006 PMCID: PMC5037757 DOI: 10.3390/ijms17091479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) is a common chronic medical problem worldwide; one of its complications is painful peripheral neuropathy, which can substantially erode quality of life and increase the cost of management. Despite its clinical importance, the pathogenesis of painful diabetic neuropathy (PDN) is complex and incompletely understood. Voltage-gated sodium channels (VGSCs) link many physiological processes to electrical activity by controlling action potentials in all types of excitable cells. Two isoforms of VGSCs, NaV1.3 and NaV1.7, which are encoded by the sodium voltage-gated channel alpha subunit 3 and 9 (Scn3A and Scn9A) genes, respectively, have been identified in both peripheral nociceptive neurons of dorsal root ganglion (DRG) and pancreatic islet cells. Recent advances in our understanding of tetrodotoxin-sensitive (TTX-S) sodium channels NaV1.3 and NaV1.7 lead to the rational doubt about the cause–effect relation between diabetes and painful neuropathy. In this review, we summarize the roles of NaV1.3 and NaV1.7 in islet cells and DRG neurons, discuss the link between DM and painful neuropathy, and present a model, which may provide a starting point for further studies aimed at identifying the mechanisms underlying diabetes and painful neuropathy.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Endocrinology, The General Hospital of the PLA Rocket Force, Beijing 100088, China.
| | - Quanmin Li
- Department of Endocrinology, The General Hospital of the PLA Rocket Force, Beijing 100088, China.
| | - Xinming Liu
- Department of Endocrinology, The General Hospital of the PLA Rocket Force, Beijing 100088, China.
| | - Shiguang Liu
- Department of Endocrinology, The General Hospital of the PLA Rocket Force, Beijing 100088, China.
| |
Collapse
|
25
|
Abstract
This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD.
Collapse
|
26
|
Abstract
Chronic pain, especially headache, is an exceedingly common complication of traumatic brain injury (TBI). In fact, paradoxically, the milder the TBI, the more likely one is to develop headaches. The environment of injury and the associated comorbidities can have a significant impact on the frequency and severity of headaches and commonly serve to direct management of the headaches. Trauma likely contributes to the development of headaches via alterations in neuronal signaling, inflammation, and musculoskeletal changes. The clinical picture of the patient with post-traumatic headaches is often that of a mixed headache disorder with features of tension-type headaches as well as migrainous headaches. Treatment of these headaches is thus often guided by the predominant characteristics of the headaches and can include pharmacologic and nonpharmacologic strategies. Pharmacologic therapies include both abortive and prophylactic agents with prophylaxis targeting comorbidities, primarily impaired sleep. Nonpharmacologic interventions for post-traumatic headaches include thermal and physical modalities as well as cognitive behavioral approaches. As with many postconcussive symptoms, headaches can lessen with time but in up to 25% of patients, chronic headaches are long-term residua.
Collapse
|
27
|
Increased responses in the somatosensory thalamus immediately after spinal cord injury. Neurobiol Dis 2016; 87:39-49. [DOI: 10.1016/j.nbd.2015.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
|
28
|
Smith NE, Corry B. Mutant bacterial sodium channels as models for local anesthetic block of eukaryotic proteins. Channels (Austin) 2016; 10:225-37. [PMID: 26852716 DOI: 10.1080/19336950.2016.1148224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage gated sodium channels are the target of a range of local anesthetic, anti-epileptic and anti-arrhythmic compounds. But, gaining a molecular level understanding of their mode of action is difficult as we only have atomic resolution structures of bacterial sodium channels not their eukaryotic counterparts. In this study we used molecular dynamics simulations to demonstrate that the binding sites of both the local anesthetic benzocaine and the anti-epileptic phenytoin to the bacterial sodium channel NavAb can be altered significantly by the introduction of point mutations. Free energy techniques were applied to show that increased aromaticity in the pore of the channel, used to emulate the aromatic residues observed in eukaryotic Nav1.2, led to changes in the location of binding and dissociation constants of each drug relative to wild type NavAb. Further, binding locations and dissociation constants obtained for both benzocaine (660 μM) and phenytoin (1 μM) in the mutant channels were within the range expected from experimental values obtained from drug binding to eukaryotic sodium channels, indicating that these mutant NavAb may be a better model for drug binding to eukaryotic channels than the wild type.
Collapse
Affiliation(s)
- Natalie E Smith
- a Research School of Biology, Australian National University , Canberra , ACT , Australia
| | - Ben Corry
- a Research School of Biology, Australian National University , Canberra , ACT , Australia
| |
Collapse
|
29
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. J Neurol Phys Ther 2015; 39:3-14. [PMID: 25415550 DOI: 10.1097/npt.0000000000000063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Impaired hand function decreases quality of life in persons with tetraplegia. We tested functional electrical stimulation (FES) controlled by a hybrid brain-computer interface (BCI) for improving hand function in participants with tetraplegia. METHODS Two participants with subacute tetraplegia (participant 1: C5 Brown-Sequard syndrome, participant 2: complete C5 lesion) took part in this proof-of-concept study. The goal was to determine whether the BCI system could drive the FES device by accurately classifying participants' intent (open or close the hand). Participants 1 and 2 received 10 sessions and 4 sessions of BCI-FES, respectively. A novel time-switch BCI strategy based on motor imagery was used to activate the FES. In one session, we tested a hybrid BCI-FES based on 2 spontaneously generated brain rhythms: a sensory-motor rhythm during motor imagery to activate a stimulator and occipital alpha rhythms to deactivate the stimulator. Participants received BCI-FES therapy 2 to 3 times a week in addition to conventional therapy. Imagery ability and muscle strength were measured before and after treatment. RESULTS Visual feedback was associated with a 4-fold increase of brain response during motor imagery in both participants. For participant 1, classification accuracy (open/closed) for motor imagery-based BCI was 83.5% (left hand) and 83.8% (right hand); participant 2 had a classification accuracy of 83.8% for the right hand. Participant 1 had moderate improvement in muscle strength, while there was no change for participant 2. DISCUSSION AND CONCLUSION We demonstrated feasibility of BCI-FES, using 2 naturally generated brain rhythms. Studies on a larger number of participants are needed to separate the effects of BCI training from effects of conventional therapy.Video Abstract available. (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A84) for more insights from the authors.
Collapse
|
31
|
Tan AM, Samad OA, Dib-Hajj SD, Waxman SG. Virus-Mediated Knockdown of Nav1.3 in Dorsal Root Ganglia of STZ-Induced Diabetic Rats Alleviates Tactile Allodynia. Mol Med 2015; 21:544-52. [PMID: 26101954 DOI: 10.2119/molmed.2015.00063] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetic neuropathic pain affects a substantial number of people and represents a major public health problem. Available clinical treatments for diabetic neuropathic pain remain only partially effective and many of these treatments carry the burden of side effects or the risk of dependence. The misexpression of sodium channels within nociceptive neurons contributes to abnormal electrical activity associated with neuropathic pain. Voltage-gated sodium channel Nav1.3 produces tetrodotoxin-sensitive sodium currents with rapid repriming kinetics and has been shown to contribute to neuronal hyperexcitability and ectopic firing in injured neurons. Suppression of Nav1.3 activity can attenuate neuropathic pain induced by peripheral nerve injury. Previous studies have shown that expression of Nav1.3 is upregulated in dorsal root ganglion (DRG) neurons of diabetic rats that exhibit neuropathic pain. Here, we hypothesized that viral-mediated knockdown of Nav1.3 in painful diabetic neuropathy would reduce neuropathic pain. We used a validated recombinant adeno-associated virus (AAV)-shRNA-Nav1.3 vector to knockdown expression of Nav1.3, via a clinically applicable intrathecal injection method. Three weeks following vector administration, we observed a significant rate of transduction in DRGs of diabetic rats that concomitantly reduced neuronal excitability of dorsal horn neurons and reduced behavioral evidence of tactile allodynia. Taken together, these findings offer a novel gene therapy approach for addressing chronic diabetic neuropathic pain.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Omar A Samad
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| |
Collapse
|
32
|
Karlsson P, Nyengaard JR, Polydefkis M, Jensen TS. Structural and functional assessment of skin nerve fibres in small-fibre pathology. Eur J Pain 2014; 19:1059-70. [PMID: 25546653 DOI: 10.1002/ejp.645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
Abstract
Damage to nociceptor nerve fibres may give rise to peripheral neuropathies, some of which are pain free and some are painful. A hallmark of many peripheral neuropathies is the loss of small nerve fibres in the epidermis, a condition called small-fibre neuropathy (SFN) when it is predominantly the small nerve fibres that are damaged. Historically, SFN has been very difficult to diagnose as clinical examination and nerve conduction studies mainly detect large nerve fibres, and quantitative sensory testing is not sensitive enough to detect small changes in small nerve fibres. However, taking a 3-mm punch skin biopsy from the distal leg and quantification of the nerve fibre density has proven to be a useful method to diagnose SFN. However, the correlation between the nerve fibre loss and other test results varies greatly. Recent studies have shown that it is possible not only to extract information about the nerve fibre density from the biopsies but also to get an estimation of the nerve fibre length density using stereology, quantify sweat gland innervation and detect morphological changes such as axonal swelling, all of which may be additional parameters indicating diseased small fibres relating to symptoms reported by the patients. In this review, we focus on available tests to assess structure and function of the small nerve fibres, and summarize recent advances that have provided new possibilities to more specifically relate structural findings with symptoms and function in patients with SFN.
Collapse
Affiliation(s)
- P Karlsson
- Danish Pain Research Center and Stereology & EM Laboratory, Aarhus University Hospital, Denmark.,Stereology and Electron Microscopy Laboratory and Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Denmark
| | - J R Nyengaard
- Stereology and Electron Microscopy Laboratory and Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Denmark
| | - M Polydefkis
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - T S Jensen
- Danish Pain Research Center and Stereology & EM Laboratory, Aarhus University Hospital, Denmark.,Department of Neurology, Aarhus University Hospital, Denmark
| |
Collapse
|
33
|
Tan AM, Waxman SG. Dendritic spine dysgenesis in neuropathic pain. Neurosci Lett 2014; 601:54-60. [PMID: 25445354 DOI: 10.1016/j.neulet.2014.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 12/20/2022]
Abstract
Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. More powerful analgesics, e.g., opioids, carry a high risk for chemical dependence. Thus, a major challenge for pain research is the elucidation of the mechanisms that underlie neuropathic pain and developing targeted strategies to alleviate pathological pain. The mechanistic link between dendritic spine structure and circuit function could explain why neuropathic pain is difficult to treat, since nociceptive processing pathways are adversely "hard-wired" through the reorganization of dendritic spines. Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurology and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurology and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
34
|
Liu S, Li C, Xing Y, Tao F. Effect of microenvironment modulation on stem cell therapy for spinal cord injury pain. Neural Regen Res 2014; 9:458-9. [PMID: 25206837 PMCID: PMC4153499 DOI: 10.4103/1673-5374.130057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sufang Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA ; Basic Medical College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changsheng Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA ; Basic Medical College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ying Xing
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan Province, China ; Basic Medical College, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Tao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
35
|
Theeler B, Lucas S, Riechers RG, Ruff RL. Post-traumatic headaches in civilians and military personnel: a comparative, clinical review. Headache 2014; 53:881-900. [PMID: 23721236 DOI: 10.1111/head.12123] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 12/14/2022]
Abstract
Post-traumatic headache (PTH) is the most frequent symptom after traumatic brain injury (TBI). We review the epidemiology and characterization of PTH in military and civilian settings. PTH appears to be more likely to develop following mild TBI (concussion) compared with moderate or severe TBI. PTH often clinically resembles primary headache disorders, usually migraine. For migraine-like PTH, individuals who had the most severe headache pain had the highest headache frequencies. Based on studies to date in both civilian and military settings, we recommend changes to the current definition of PTH. Anxiety disorders such as post-traumatic stress disorder (PTSD) are frequently associated with TBI, especially in military populations and in combat settings. PTSD can complicate treatment of PTH as a comorbid condition of post-concussion syndrome. PTH should not be treated as an isolated condition. Comorbid conditions such as PTSD and sleep disturbances also need to be treated. Double-blind placebo-controlled trials in PTH population are necessary to see whether similar phenotypes in the primary headache disorders and PTH will respond similarly to treatment. Until blinded treatment trials are completed, we suggest that, when possible, PTH be treated as one would treat the primary headache disorder(s) that the PTH most closely resembles.
Collapse
Affiliation(s)
- Brett Theeler
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | | | | |
Collapse
|
36
|
Foadi N, de Oliveira RC, Buchholz V, Stoetzer C, Wegner F, Pilawski I, Haeseler G, Leuwer M, Ahrens J. A combination of topical antiseptics for the treatment of sore throat blocks voltage-gated neuronal sodium channels. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:991-1000. [PMID: 25012093 DOI: 10.1007/s00210-014-1016-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
Amylmetacresol and dichloro-benzylalcohol are ingredients of lozenges used for the treatment of sore throat. In a former in vitro study, a local anaesthetic-like effect of these substances has been described. Since amylmetacresol and dichloro-benzylalcohol are co-administered in over-the-counter lozenges, the intention of this study is to evaluate the in vitro effects of the combination of these compounds on the voltage-gated sodium channel. We analysed the block of inward sodium currents induced by the combination of amylmetacresol, dichloro-benzylalcohol and the local anaesthetic lidocaine. Tonic and use-dependent block and effects on the inactivated channel state of the neuronal sodium channel were examined. Therefore, the α-subunit of the voltage-gated NaV1.2 sodium channel was heterologously expressed in HEK 293 cells in vitro. Inward sodium currents were investigated in the whole-cell configuration of the patch-clamp technique. The combination of amylmetacresol and dichloro-benzylalcohol and the combination of amylmetacresol and lidocaine induced a block of resting and inactivated sodium channels both displaying a pronounced block at the inactivated channel state. In addition, the combination of all three compounds also resulted in a voltage-dependent block of inward sodium currents. While use-dependent block by co-application of amylmetacresol and dichloro-benzylalcohol was moderate (<20 %), lidocaine and amylmetacresol induced a robust use-dependent block (up to 50 %). This study demonstrates local anaesthetic-like effects of a combination of amylmetacresol and dichloro-benzylalcohol as established ingredients of lozenges. In the presence of amylmetacresol, dichloro-benzylalcohol and lidocaine, a prominent block of inward sodium currents is apparent.
Collapse
Affiliation(s)
- Nilufar Foadi
- Clinic for Anaesthesia and Critical Care Medicine; OE8050, Hannover Medical School, Carl-Neuberg-Str. 1, 30623, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, Edden RAE, Siddall PJ, Henderson LA. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 2014; 155:1027-1036. [PMID: 24530612 DOI: 10.1016/j.pain.2014.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry, and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. To clarify this subject, we compared brain activity and biochemistry in 12 people with below-level neuropathic pain after complete thoracic spinal cord injury with 11 people with similar injuries and no neuropathic pain and 21 age- and gender-matched healthy control subjects. Quantitative arterial spinal labelling was used to measure thalamic activity, and magnetic resonance spectroscopy was used to determine changes in neuronal variability quantifying N-acetylaspartate and alterations in inhibitory function quantifying gamma amino butyric acid. This study revealed that the presence of neuropathic pain is associated with significant changes in thalamic biochemistry and neuronal activity. More specifically, the presence of neuropathic pain after spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content, and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain.
Collapse
Affiliation(s)
- S M Gustin
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia Neuroscience Research Australia, Randwick, NSW 2031, Australia Sydney Medical School-Northern, University of Sydney, Sydney, New South Wales, Australia Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA F.M. Kirby Research Center for Functional MRI, Baltimore, MD, USA Department of Pain Management, HammondCare, Greenwich Hospital, Greenwich, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Flor H. Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother 2014; 8:809-18. [DOI: 10.1586/14737175.8.5.809] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Nardone R, Höller Y, Leis S, Höller P, Thon N, Thomschewski A, Golaszewski S, Brigo F, Trinka E. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review. J Spinal Cord Med 2014; 37:19-31. [PMID: 24090372 PMCID: PMC4066547 DOI: 10.1179/2045772313y.0000000140] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CONTEXT Past evidence has shown that invasive and non-invasive brain stimulation may be effective for relieving central pain. OBJECTIVE To perform a topical review of the literature on brain neurostimulation techniques in patients with chronic neuropathic pain due to traumatic spinal cord injury (SCI) and to assess the current evidence for their therapeutic efficacy. METHODS A MEDLINE search was performed using following terms: "Spinal cord injury", "Neuropathic pain", "Brain stimulation", "Deep brain stimulation" (DBS), "Motor cortex stimulation" (MCS), "Transcranial magnetic stimulation" (TMS), "Transcranial direct current stimulation" (tDCS), "Cranial electrotherapy stimulation" (CES). RESULTS Invasive neurostimulation therapies, in particular DBS and epidural MCS, have shown promise as treatments for neuropathic and phantom limb pain. However, the long-term efficacy of DBS is low, while MCS has a relatively higher potential with lesser complications that DBS. Among the non-invasive techniques, there is accumulating evidence that repetitive TMS can produce analgesic effects in healthy subjects undergoing laboratory-induced pain and in chronic pain conditions of various etiologies, at least partially and transiently. Another very safe technique of non-invasive brain stimulation - tDCS - applied over the sensory-motor cortex has been reported to decrease pain sensation and increase pain threshold in healthy subjects. CES has also proved to be effective in managing some types of pain, including neuropathic pain in subjects with SCI. CONCLUSION A number of studies have begun to use non-invasive neuromodulatory techniques therapeutically to relieve neuropathic pain and phantom phenomena in patients with SCI. However, further studies are warranted to corroborate the early findings and confirm different targets and stimulation paradigms. The utility of these protocols in combination with pharmacological approaches should also be explored.
Collapse
Affiliation(s)
- Raffaele Nardone
- Correspondence to: Raffaele Nardone, Department of Neurology, ‘F. Tappeiner’ Hospital, Meran/o, Via Rossini, 5, 39012 Meran/o (BZ), Italy.
| | | | - Stefan Leis
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
40
|
Ghanbari A, Asgari AR, Kaka GR, Falahatpishe HR, Naderi A, Jorjani M. In vivo microdialysis of glutamate in ventroposterolateral nucleus of thalamus following electrolytic lesion of spinothalamic tract in rats. Exp Brain Res 2013; 232:415-21. [PMID: 24186197 DOI: 10.1007/s00221-013-3749-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/14/2013] [Indexed: 01/08/2023]
Abstract
Central pain is one of the most important complications after spinal cord injury (SCI), and thereby, its treatment raises many challenges. After SCI, in a cascade of molecular events, a marked increase in glutamate at the injury site results in secondary changes which may impact on supraspinal regions, mainly ventroposterolateral (VPL). There is little information about the changes in glutamate metabolism in the VPL and whether it contributes to SCI-related central pain. The present study was performed to evaluate glutamate release in the VPL following electrolytic lesion of spinothalamic tract (STT). A laminectomy was performed at spinal segments of T9-T10 in male rats, and then, unilateral electrolytic lesions were made in the STT. Glutamate concentrations in ipsilateral VPL dialysate were measured by HPLC method at days 3, 7, 14, 21 and 28 post-injury. Tactile pain and motor activity were also examined. Glutamate levels were significantly increased in ipsilateral VPL of spinal-cord-injured rats 2 weeks after SCI and remained high up to day 28 post-surgery. The STT lesions had no marked effect on our measures of motor activity, but there was a significant decrease in paw withdrawal threshold in the hind paws at day 14 post-SCI. These findings suggest that an increased release of glutamate in VPL plays a role in secondary pathologic changes, leading to neuronal hyperexcitation and neuropathic pain after SCI.
Collapse
Affiliation(s)
- A Ghanbari
- Applied Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
41
|
Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms. Nat Rev Neurol 2013; 9:572-82. [PMID: 24018479 DOI: 10.1038/nrneurol.2013.180] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropathic pain--that is, pain arising directly from a lesion or disease that affects the somatosensory system--is a common clinical problem, and typically causes patients intense distress. Patients with neuropathic pain have sensory abnormalities on clinical examination and experience pain of diverse types, some spontaneous and others provoked. Spontaneous pain typically manifests as ongoing burning pain or paroxysmal electric shock-like sensations. Provoked pain includes pain induced by various stimuli or even gentle brushing (dynamic mechanical allodynia). Recent clinical and neurophysiological studies suggest that the various pain types arise through distinct pathophysiological mechanisms. Ongoing burning pain primarily reflects spontaneous hyperactivity in nociceptive-fibre pathways, originating from 'irritable' nociceptors, regenerating nerve sprouts or denervated central neurons. Paroxysmal sensations can be caused by several mechanisms; for example, electric shock-like sensations probably arise from high-frequency bursts generated in demyelinated non-nociceptive Aβ fibres. Most human and animal findings suggest that brush-evoked allodynia originates from Aβ fibres projecting onto previously sensitized nociceptive neurons in the dorsal horn, with additional contributions from plastic changes in the brainstem and thalamus. Here, we propose that the emerging mechanism-based approach to the study of neuropathic pain might aid the tailoring of therapy to the individual patient, and could be useful for drug development.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Neurology and Psychiatry, Sapienza University, Viale Università 30, 00185 Rome, Italy
| | | | | |
Collapse
|
42
|
Lidocaine infusion adjunct to total intravenous anesthesia reduces the total dose of propofol during intraoperative neurophysiological monitoring. J Clin Monit Comput 2013; 28:139-47. [DOI: 10.1007/s10877-013-9506-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/23/2013] [Indexed: 01/14/2023]
|
43
|
Wu J, Raver C, Piao C, Keller A, Faden AI. Cell cycle activation contributes to increased neuronal activity in the posterior thalamic nucleus and associated chronic hyperesthesia after rat spinal cord contusion. Neurotherapeutics 2013; 10:520-38. [PMID: 23775067 PMCID: PMC3701760 DOI: 10.1007/s13311-013-0198-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) causes not only sensorimotor and cognitive deficits, but frequently also severe chronic pain that is difficult to treat (SCI pain). We previously showed that hyperesthesia, as well as spontaneous pain induced by electrolytic lesions in the rat spinothalamic tract, is associated with increased spontaneous and sensory-evoked activity in the posterior thalamic nucleus (PO). We have also demonstrated that rodent impact SCI increases cell cycle activation (CCA) in the injury region and that post-traumatic treatment with cyclin dependent kinase inhibitors reduces lesion volume and motor dysfunction. Here we examined whether CCA contributes to neuronal hyperexcitability of PO and hyperpathia after rat contusion SCI, as well as to microglial and astroglial activation (gliopathy) that has been implicated in delayed SCI pain. Trauma caused enhanced pain sensitivity, which developed weeks after injury and was correlated with increased PO neuronal activity. Increased CCA was found at the thoracic spinal lesion site, the lumbar dorsal horn, and the PO. Increased microglial activation and cysteine-cysteine chemokine ligand 21 expression was also observed in the PO after SCI. In vitro, neurons co-cultured with activated microglia showed up-regulation of cyclin D1 and cysteine-cysteine chemokine ligand 21 expression. In vivo, post-injury treatment with a selective cyclin dependent kinase inhibitor (CR8) significantly reduced cell cycle protein induction, microglial activation, and neuronal activity in the PO nucleus, as well as limiting chronic SCI-induced hyperpathia. These results suggest a mechanistic role for CCA in the development of SCI pain, through effects mediated in part by the PO nucleus. Moreover, cell cycle modulation may provide an effective therapeutic strategy to improve reduce both hyperpathia and motor dysfunction after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research, National Study Center for Trauma and EMS, University of Maryland, School of Medicine, Bressler Research Building, 655 W. Baltimore Street, Room #6-009, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
44
|
Tao F, Li Q, Liu S, Wu H, Skinner J, Hurtado A, Belegu V, Furmanski O, Yang Y, McDonald JW, Johns RA. Role of neuregulin-1/ErbB signaling in stem cell therapy for spinal cord injury-induced chronic neuropathic pain. Stem Cells 2013; 31:83-91. [PMID: 23097328 DOI: 10.1002/stem.1258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/01/2012] [Indexed: 12/12/2022]
Abstract
Chronic neuropathic pain is a common and debilitating consequence of spinal cord injury (SCI). In a rat contusion injury model, we observed that chronic neuropathic pain is present on day 7 after SCI and persists for the entire 56-day observation period. However, currently available pain therapies are inadequate for SCI-induced neuropathic pain. In this study, we show that spinal transplantation of mouse embryonic stem cell-derived oligodendrocyte progenitor cells (OPCs) enhances remyelination in the injured spinal cord and reduces SCI-induced chronic neuropathic pain. Moreover, we found that SCI reduces the protein level of neuregulin-1 and ErbB4 in the injured spinal cord and that OPC transplantation enhances the spinal expression of both proteins after SCI. Finally, intrathecal injection of neuregulin-1 small interfering RNA, but not the control nontarget RNA, diminishes OPC transplantation-produced remyelination and reverses the antinociceptive effect of OPC transplantation. Our findings suggest that the transplantation of embryonic stem cell-derived OPCs is an appropriate therapeutic intervention for treatment of SCI-induced chronic neuropathic pain, and that neuregulin-1/ErbB signaling plays an important role in central remyelination under pathological conditions and contributes to the alleviation of such pain.
Collapse
Affiliation(s)
- Feng Tao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee S, Goodchild SJ, Ahern CA. Molecular and functional determinants of local anesthetic inhibition of NaChBac. Channels (Austin) 2012; 6:403-6. [PMID: 22992485 DOI: 10.4161/chan.21807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In our recent publication, we describe the local anesthetic (LA) inhibition of the prokaryotic voltage gated sodium channel NaChBac. Despite the numerous functional and putative structural differences with the mammalian sodium channels, the data show that LA compounds effectively and reversibly inhibit NaChBac channels in a concentration range similar to resting blockade on eukaryotic Navs. In addition to current reduction, LA application accelerated channel inactivation kinetics of NaChBac which could be accounted for in a simple state-model whereby local anesthetics increase the probability of entering the inactivated state. We have further explored what state (or states) local anesthetic blockade of NaChBac could pertain to eukaryotic sodium channels, and what molecular similarities exist between these disparate channel families. Here we show that the rate of recovery from inactivation remains unaffected in the presence of local anesthetics. Further, we show that two sites that support use-dependent inhibition in eukaryotic channels, do not affect block to the same extent when mutated in NaChBac channels. The data indicate that the molecular determinants and the inherent mechanisms for LA block are likely to be divergent between bacterial and eukaryotic Navs, but future experiments will help define possible similarities.
Collapse
Affiliation(s)
- Sora Lee
- Department of Anesthesiology, University of British Columbia, Vancouver, BC, CA
| | | | | |
Collapse
|
46
|
Hoeijmakers JGJ, Merkies ISJ, Gerrits MM, Waxman SG, Faber CG. Genetic aspects of sodium channelopathy in small fiber neuropathy. Clin Genet 2012; 82:351-8. [PMID: 22803682 DOI: 10.1111/j.1399-0004.2012.01937.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Small fiber neuropathy (SFN) is a disorder typically dominated by neuropathic pain and autonomic dysfunction, in which the thinly myelinated Aδ-fibers and unmyelinated C-fibers are selectively injured. The diagnosis SFN is based on a reduced intraepidermal nerve fiber density and/or abnormal thermal thresholds in quantitative sensory testing. The etiologies of SFN are diverse, although no apparent cause is frequently seen. Recently, SCN9A-gene variants (single amino acid substitutions) have been found in ∼30% of a cohort of idiopathic SFN patients, producing gain-of-function changes in sodium channel Na(V)1.7, which is preferentially expressed in small diameter peripheral axons. Functional testing showed that these variants altered fast inactivation, slow inactivation or resurgent current and rendered dorsal root ganglion neurons hyperexcitable. In this review, we discuss the role of Na(V)1.7 in pain and highlight the molecular genetics and pathophysiology of SCN9A-gene variants in SFN. With increasing knowledge regarding the underlying pathophysiology in SFN, the development of specific treatment in these patients seems a logical target for future studies.
Collapse
Affiliation(s)
- J G J Hoeijmakers
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Walters ET. Nociceptors as chronic drivers of pain and hyperreflexia after spinal cord injury: an adaptive-maladaptive hyperfunctional state hypothesis. Front Physiol 2012; 3:309. [PMID: 22934060 PMCID: PMC3429080 DOI: 10.3389/fphys.2012.00309] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 07/13/2012] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) causes chronic peripheral sensitization of nociceptors and persistent generation of spontaneous action potentials (SA) in peripheral branches and the somata of hyperexcitable nociceptors within dorsal root ganglia (DRG). Here it is proposed that SCI triggers in numerous nociceptors a persistent hyperfunctional state (peripheral, synaptic, and somal) that originally evolved as an adaptive response to compensate for loss of sensory terminals after severe but survivable peripheral injury. In this hypothesis, nociceptor somata monitor the status of their own receptive field and the rest of the body by integrating signals received by their peripheral and central branches and the soma itself. A nociceptor switches into a potentially permanent hyperfunctional state when central neural, glial, and inflammatory signal combinations are detected that indicate extensive peripheral injury. Similar signal combinations are produced by SCI and disseminated widely to uninjured as well as injured nociceptors. This paper focuses on the uninjured nociceptors that are altered by SCI. Enhanced activity generated in below-level nociceptors promotes below-level central sensitization, somatic and autonomic hyperreflexia, and visceral dysfunction. If sufficient ascending fibers survive, enhanced activity in below-level nociceptors contributes to below-level pain. Nociceptor activity generated above the injury level contributes to at- and above-level sensitization and pain (evoked and spontaneous). Thus, SCI triggers a potent nociceptor state that may have been adaptive (from an evolutionary perspective) after severe peripheral injury but is maladaptive after SCI. Evidence that hyperfunctional nociceptors make large contributions to behavioral hypersensitivity after SCI suggests that nociceptor-specific ion channels required for nociceptor SA and hypersensitivity offer promising targets for treating chronic pain and hyperreflexia after SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston Houston, TX, USA
| |
Collapse
|
48
|
Beraneck M, Idoux E. Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis. Front Neurol 2012; 3:25. [PMID: 22403570 PMCID: PMC3289128 DOI: 10.3389/fneur.2012.00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/09/2012] [Indexed: 12/29/2022] Open
Abstract
The sensorimotor transformations performed by central vestibular neurons constantly adapt as the animal faces conflicting sensory information or sustains injuries. To ensure the homeostasis of vestibular-related functions, neural changes could in part rely on the regulation of 2° VN intrinsic properties. Here we review evidence that demonstrates modulation and plasticity of central vestibular neurons’ intrinsic properties. We first present the partition of Rodents’ vestibular neurons into distinct subtypes, namely type A and type B. Then, we focus on the respective properties of each type, their putative roles in vestibular functions, fast control by neuromodulators and persistent modifications following a lesion. The intrinsic properties of central vestibular neurons can be swiftly modulated by a wealth of neuromodulators to adapt rapidly to temporary changes of ecophysiological surroundings. To illustrate how intrinsic excitability can be rapidly modified in physiological conditions and therefore be therapeutic targets, we present the modulation of vestibular reflexes in relation to the variations of the neuromodulatory inputs during the sleep/wake cycle. On the other hand, intrinsic properties can also be slowly, yet permanently, modified in response to major perturbations, e.g., after unilateral labyrinthectomy (UL). We revisit the experimental evidence, which demonstrates that drastic alterations of the central vestibular neurons’ intrinsic properties occur following UL, with a slow time course, more on par with the compensation of dynamic deficits than static ones. Data are interpreted in the framework of distributed processes that progress from global, large-scale coping mechanisms (e.g., changes in behavioral strategies) to local, small-scale ones (e.g., changes in intrinsic properties). Within this framework, the compensation of dynamic deficits improves over time as deeper modifications are engraved within the finer parts of the vestibular-related networks. Finally, we offer perspectives and working hypotheses to pave the way for future research aimed at understanding the modulation and plasticity of central vestibular neurons’ intrinsic properties.
Collapse
Affiliation(s)
- Mathieu Beraneck
- Centre d'Etude de la SensoriMotricité, CNRS UMR 8194, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | | |
Collapse
|
49
|
Tan AM, Chang YW, Zhao P, Hains BC, Waxman SG. Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury. Exp Neurol 2011; 232:222-33. [DOI: 10.1016/j.expneurol.2011.08.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/11/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
|
50
|
Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 2011; 234:362-72. [PMID: 22036747 DOI: 10.1016/j.expneurol.2011.10.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/05/2011] [Accepted: 10/13/2011] [Indexed: 01/27/2023]
Abstract
In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors and channels that, in turn, contribute to neuronal-neuronal and neuronal-glial interaction as well as microglia-astrocytic interactions. However, a systematic review of temporal and spatial glial activation following SCI has not been done. In this review, we describe time and regional dependence of glial activation and describe activation mechanisms in various SCI models in rats. These data are placed in the broader context of glial activation mechanisms and chronic pain states. Our work in the context of work by others in SCI models demonstrates that dysfunctional glia, a condition called "gliopathy", is a key contributor in the underlying cellular mechanisms contributing to neuropathic pain.
Collapse
Affiliation(s)
- Young S Gwak
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|