1
|
Sholikah TA, Septyaningtrias DE, Sumiwi YAA, Muthmainah M, Susilowati R. Prevention of colon enlargement by TNF-α antagonist in a streptozotocin-induced diabetic rat model. Histol Histopathol 2024; 39:1443-1455. [PMID: 38572731 DOI: 10.14670/hh-18-735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE We investigated the effect of tumor necrosis factor (TNF)-α antagonist on the structure and function of the streptozotocin-nicotinamide (STZ-NA)-induced diabetic rat colon. METHODS Thirty rats were divided into normal control (NC), diabetic control (DC), and diabetic etanercept (DE) groups. The DE group was injected with etanercept twice a week. Blood glucose, body weight, fecal pellet, colonic transit time, and plasma TNF-α were measured. The colon was dissected out, followed by weight and length measurements. Toluidine blue and Verhoeff's staining, immunohistochemistry for TNF-α, RAGE, iNOS, arginase, and western blot for RAGE were performed on the colonic tissue. RESULTS Administration of TNF-α antagonist had no significant effect on the body weight and blood glucose level of the diabetic groups. However, the DE group had a shorter and lighter colon and less coarse and less dense collagen fibers in the submucosal layer than the DC group. Weaker immunoreactivity of TNF-α, RAGE, iNOS, and arginase I was observed in colon tissue sections of the DE groups compared with the DC group. Although the etanercept effect on colonic function was not significantly different, the preventive effect size of etanercept on colon remodeling was considerably large, as shown by calculated-Cohen's d>0.8. CONCLUSIONS TNF-α signaling in the colonic tissue of diabetic rats has a strong effect on tissue remodeling, leading to colon enlargement. TNF-α antagonists may be beneficial in preventing diabetic-related pathology in the colon in combination with anti-diabetic drugs.
Collapse
Affiliation(s)
- Tri Agusti Sholikah
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Histology, Faculty of Medicine Universitas Sebelas Maret, Surakarta, Indonesia
| | - Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yustina Andwi Ari Sumiwi
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muthmainah Muthmainah
- Department of Histology, Faculty of Medicine Universitas Sebelas Maret, Surakarta, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Gong Q, Xiong F, Zheng Y, Guo Y. Tea-derived exosome-like nanoparticles prevent irritable bowel syndrome induced by water avoidance stress in rat model. J Gastroenterol Hepatol 2024. [PMID: 39121461 DOI: 10.1111/jgh.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND AND AIM Exosome-like nanoparticles (ELNs) have emerged as crucial mediators of intercellular communication, evaluated as potential bioactive nutraceutical biomolecules. We hypothesized that oral ELNs have some therapeutic effect on irritable bowel syndrome (IBS). METHODS In our study, ELNs from tea (Camellia sinensis) leaves were extracted by differential centrifugation. We investigated the role of ELNs by assessing visceral hypersensitivity, body weight, bowel habits, tight junctions, and corticotropin-releasing hormone (CRH) in rats subjected to water avoidance stress (WAS) to mimic IBS with and without ELNs (1 mg/kg per day) for 10 days. RESULTS The average diameter of ELNs from LCC, FD and MZ tea tree were 165 ± 107, 168 ± 94, and 168 ± 108 nm, the concentration of ELNs were 1.2 × 1013, 1 × 1013, and 1.5 × 1013 particles/mL, respectively. ELNs can be taken up by intestinal epithelial cells. In WAS rats, ELNs significantly restored weight, recovered tight junctions, decreased CRH, and CRH receptor 1 expression levels and inhibited abdominal hypersensitivity in comparison to positive control. CONCLUSIONS Oral tea-derived ELN improves symptoms of IBS by potentially modulating the CRH pathway.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yaxian Zheng
- Pharmacist-In-Charge Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Margiotta F, Di Cesare Mannelli L, Morabito A, Ghelardini C, Lucarini E. Investigating epithelial-neuronal signaling contribution in visceral pain through colon organoid-dorsal root ganglion neuron co-cultures. Neural Regen Res 2024; 19:1199-1200. [PMID: 37905863 PMCID: PMC11467916 DOI: 10.4103/1673-5374.386403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Francesco Margiotta
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Antonino Morabito
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, University of Florence, Florence, Italy
- Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Meynier M, Daugey V, Mallaret G, Gervason S, Meleine M, Barbier J, Aissouni Y, Lolignier S, Bonnet M, Ardid D, De Vos WM, Van Hul M, Suenaert P, Brochot A, Cani PD, Carvalho FA. Pasteurized akkermansia muciniphila improves irritable bowel syndrome-like symptoms and related behavioral disorders in mice. Gut Microbes 2024; 16:2298026. [PMID: 38170633 PMCID: PMC10766393 DOI: 10.1080/19490976.2023.2298026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.
Collapse
Affiliation(s)
- Maëva Meynier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Geoffroy Mallaret
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Sandie Gervason
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathieu Meleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Barbier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Youssef Aissouni
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphane Lolignier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071 INSERM, UMR1382 INRAé, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Willem M. De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- The Akkermansia Company™, Mont-Saint-Guibert, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | | | - Patrice D. Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric A. Carvalho
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
7
|
Che YH, Choi IY, Song CE, Park C, Lim SK, Kim JH, Sung SH, Park JH, Lee S, Kim YJ. Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion. Int J Stem Cells 2023; 16:269-280. [PMID: 37385635 PMCID: PMC10465334 DOI: 10.15283/ijsc23026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023] Open
Abstract
Background and Objectives The colonic epithelial layer is a complex structure consisting of multiple cell types that regulate various aspects of colonic physiology, yet the mechanisms underlying epithelial cell differentiation during development remain unclear. Organoids have emerged as a promising model for investigating organogenesis, but achieving organ-like cell configurations within colonic organoids is challenging. Here, we investigated the biological significance of peripheral neurons in the formation of colonic organoids. Methods and Results Colonic organoids were co-cultured with human embryonic stem cell (hESC)-derived peripheral neurons, resulting in the morphological maturation of columnar epithelial cells, as well as the presence of enterochromaffin cells. Substance P released from immature peripheral neurons played a critical role in the development of colonic epithelial cells. These findings highlight the vital role of inter-organ interactions in organoid development and provide insights into colonic epithelial cell differentiation mechanisms. Conclusions Our results suggest that the peripheral nervous system may have a significant role in the development of colonic epithelial cells, which could have important implications for future studies of organogenesis and disease modeling.
Collapse
Affiliation(s)
- Young Hyun Che
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - In Young Choi
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chan Eui Song
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chulsoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seung Kwon Lim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jeong Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Su Haeng Sung
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae Hoon Park
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
8
|
Xu J, McGinnis A, Ji RR. Piezo2 mediates visceral mechanosensation: A new therapeutic target for gut pain? Neuron 2023; 111:450-452. [PMID: 36796326 DOI: 10.1016/j.neuron.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Mechanical distension/stretch in the colon provokes visceral hypersensitivity and pain. In this issue of Neuron, Xie et al. report that mechanosensitive Piezo2 channels, expressed by TRPV1-lineage nociceptors, are involved in visceral mechanical nociception and hypersensitivity.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
9
|
Bai L, Sivakumar N, Yu S, Mesgarzadeh S, Ding T, Ly T, Corpuz TV, Grove JCR, Jarvie BC, Knight ZA. Enteroendocrine cell types that drive food reward and aversion. eLife 2022; 11:74964. [PMID: 35913117 PMCID: PMC9363118 DOI: 10.7554/elife.74964] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here, we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.
Collapse
Affiliation(s)
- Ling Bai
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Shenliang Yu
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Sheyda Mesgarzadeh
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Tom Ding
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Truong Ly
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Timothy V Corpuz
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Brooke C Jarvie
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
10
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Ma Y, Li J, Dong H, Yang Z, Zhou L, Xu P. PML Body Component Sp100A Restricts Wild-Type Herpes Simplex Virus 1 Infection. J Virol 2022; 96:e0027922. [PMID: 35353002 PMCID: PMC9044927 DOI: 10.1128/jvi.00279-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Sp100 (speckled protein 100 kDa) is a constituent component of nuclear structure PML (promyelocytic leukemia) bodies, playing important roles in mediating intrinsic and innate immunity. The Sp100 gene encodes four isoforms with distinct roles in the transcriptional regulation of both cellular and viral genes. Since Sp100 is a primary intranuclear target of infected-cell protein 0 (ICP0), an immediate early E3 ligase encoded by herpes simplex virus 1 (HSV-1), previous investigations attempting to analyze the functions of individual Sp100 variants during HSV-1 infection mostly avoided using a wild-type virus. Therefore, the role of Sp100 under natural infection by HSV-1 remains to be clarified. Here, we reappraised the antiviral capacity of four Sp100 isoforms during infection by a nonmutated HSV-1, examined the molecular behavior of the Sp100 protein in detail, and revealed the following intriguing observations. First, Sp100 isoform A (Sp100A) inhibited wild-type HSV-1 propagation in HEp-2, Sp100-/-, and PML-/- cells. Second, endogenous Sp100 is located in both the nucleus and the cytoplasm. During HSV-1 infection, the nuclear Sp100 level decreased drastically upon the detection of ICP0 in the same subcellular compartment, but cytosolic Sp100 remained stable. Third, transfected Sp100A showed subcellular localizations similar to those of endogenous Sp100 and matched the protein size of endogenous cytosolic Sp100. Fourth, HSV-1 infection induced increased secretion of endogenous Sp100 and ectopically expressed Sp100A, which copurified with extracellular vesicles (EVs) but not infectious virions. Fifth, the Sp100A level in secreting cells positively correlated with its level in EVs, and EV-associated Sp100A restricted HSV-1 in recipient cells. IMPORTANCE Previous studies show that the PML body component Sp100 protein is immediately targeted by ICP0 of HSV-1 in the nucleus during productive infection. Therefore, extensive studies investigating the interplay of Sp100 isoforms with HSV-1 were conducted using a mutant virus lacking ICP0 or in the absence of infection. The role of Sp100 variants during natural HSV-1 infection remains blurry. Here, we report that Sp100A potently and independently inhibited wild-type HSV-1 and that during HSV-1 infection, cytosolic Sp100 remained stable and was increasingly secreted into the extracellular space, in association with EVs. Furthermore, the Sp100A level in secreting cells positively correlated with its level in EVs and the anti-HSV-1 potency of these EVs in recipient cells. In summary, this study implies an active antiviral role of Sp100A during wild-type HSV-1 infection and reveals a novel mechanism of Sp100A to restrict HSV-1 through extracellular communications.
Collapse
Affiliation(s)
- Yilei Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingjing Li
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongchang Dong
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhaoxin Yang
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lingyue Zhou
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pei Xu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Brierley SM, Grundy L, Castro J, Harrington AM, Hannig G, Camilleri M. Guanylate cyclase-C agonists as peripherally acting treatments of chronic visceral pain. Trends Pharmacol Sci 2022; 43:110-122. [PMID: 34865885 PMCID: PMC8760167 DOI: 10.1016/j.tips.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain and altered bowel habit that affects ~11% of the global population. Over the past decade, preclinical and clinical studies have revealed a variety of novel mechanisms relating to the visceral analgesic effects of guanylate cyclase-C (GC-C) agonists. Here we discuss the mechanisms by which GC-C agonists target the GC-C/cyclic guanosine-3',5'-monophosphate (cGMP) pathway, resulting in visceral analgesia as well as clinically relevant relief of abdominal pain and other sensations in IBS patients. Due to the preponderance of evidence we focus on linaclotide, a 14-amino acid GC-C agonist with very low oral bioavailability that acts within the gut. Collectively, the weight of experimental and clinical evidence supports the concept that GC-C agonists act as peripherally acting visceral analgesics.
Collapse
Affiliation(s)
- Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA.,Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5000, AUSTRALIA.,Corresponding Author: Prof. Stuart M. Brierley, Ph.D. Visceral Pain Research Group, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, AUSTRALIA.
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | - Andrea M. Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | | | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiologic Research Program, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Meerschaert KA, Davis BM, Smith-Edwards KM. New Insights on Extrinsic Innervation of the Enteric Nervous System and Non-neuronal Cell Types That Influence Colon Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:133-139. [PMID: 36587153 DOI: 10.1007/978-3-031-05843-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system not only innervates the colon to execute various functions in a semi-autonomous manner but also receives neural input from three extrinsic sources, (1) vagal, (2) thoracolumbar (splanchnic), and (3) lumbosacral (pelvic) pathways, that permit bidirectional communication between the colon and central nervous system. Extrinsic pathways signal sensory input via afferent fibers, as well as motor autonomic output via parasympathetic or sympathetic efferent fibers, but the shared and unique roles for each pathway in executing sensory-motor control of colon function have not been well understood. Here, we describe the recently developed approaches that have provided new insights into the diverse mechanisms utilized by extrinsic pathways to influence colon functions related to visceral sensation, motility, and inflammation. Based on the cumulative results from anatomical, molecular, and functional studies, we propose pathway-specific functions for vagal, thoracolumbar, and lumbosacral innervation of the colon.
Collapse
Affiliation(s)
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
14
|
García-Gaytán AC, Hernández-Abrego A, Díaz-Muñoz M, Méndez I. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Front Endocrinol (Lausanne) 2022; 13:1029210. [PMID: 36457557 PMCID: PMC9705578 DOI: 10.3389/fendo.2022.1029210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.
Collapse
|
15
|
Defaye M, Abdullah NS, Iftinca M, Hassan A, Agosti F, Zhang Z, Cumenal M, Zamponi GW, Altier C. Gut-innervating TRPV1+ Neurons Drive Chronic Visceral Pain via Microglial P2Y12 Receptor. Cell Mol Gastroenterol Hepatol 2021; 13:977-999. [PMID: 34954381 PMCID: PMC8867057 DOI: 10.1016/j.jcmgh.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Chronic abdominal pain is a common symptom of inflammatory bowel diseases (IBDs). Peripheral and central mechanisms contribute to the transition from acute to chronic pain during active disease and clinical remission. Lower mechanical threshold and hyperexcitability of visceral afferents induce gliosis in central pain circuits, leading to persistent visceral hypersensitivity (VHS). In the spinal cord, microglia, the immune sentinels of the central nervous system, undergo activation in multiple models of VHS. Here, we investigated the mechanisms of microglia activation to identify centrally acting analgesics for chronic IBD pain. METHODS Using Designer Receptors Exclusively Activated by Designer Drugs (DREADD) expressed in transient receptor potential vanilloid member 1-expressing visceral neurons that sense colonic inflammation, we tested whether neuronal activity was indispensable to control microglia activation and VHS. We then investigated the neuron-microglia signaling system involved in visceral pain chronification. RESULTS We found that chemogenetic inhibition of transient receptor potential vanilloid member 1+ visceral afferents prevents microglial activation in the spinal cord and subsequent VHS in colitis mice. In contrast, chemogenetic activation, in the absence of colitis, enhanced microglial activation associated with VHS. We identified a purinergic signaling mechanism mediated by neuronal adenosine triphosphate (ATP) and microglial P2Y12 receptor, triggering VHS in colitis. Inhibition of P2RY12 prevented microglial reactivity and chronic VHS post-colitis. CONCLUSIONS Overall, these data provide novel insights into the central mechanisms of chronic visceral pain and suggest that targeting microglial P2RY12 signaling could be harnessed to relieve pain in patients with IBD who are in remission.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Ahmed Hassan
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melissa Cumenal
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada,Correspondence Address correspondence to: Christophe Altier, PhD, Associate Professor, Canada Research Chair in Inflammatory Pain, Department of Physiology & Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Dr NW, Calgary, AB, T2N4N1 Canada. tel: (403) 220-7549.
| |
Collapse
|
16
|
Najjar SA, Albers KM. Pain in Inflammatory Bowel Disease: Optogenetic Strategies for Study of Neural-Epithelial Signaling. CROHN'S & COLITIS 360 2021; 3:otab040. [PMID: 34805983 PMCID: PMC8600958 DOI: 10.1093/crocol/otab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Abdominal pain is common in patients with active inflammation of the colon but can persist even in its absence, suggesting other mechanisms of pain signaling. Recent findings suggest colon epithelial cells are direct regulators of pain-sensing neurons. Optogenetic activation of epithelial cells evoked nerve firing and pain-like behaviors. Inhibition of epithelial cells caused the opposite effect, reducing responses to colon distension and inflammatory hypersensitivity. Thus, epithelial cells alone can regulate the activation of pain circuits. Future goals are to define the anatomical and cellular mechanisms that underlie epithelial-neural pain signaling and how it is altered in response to colon inflammation.
Collapse
Affiliation(s)
- Sarah A Najjar
- Department of Neurobiology and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Present address: Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Kathryn M Albers
- Department of Neurobiology and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Address correspondence to: Kathryn M. Albers, PhD, Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15216, USA ()
| |
Collapse
|
17
|
Abstract
Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.
Collapse
Affiliation(s)
- Marcin Szczot
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, 583 30 Linköping, Sweden
| | - Alec R Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ruby M Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,NIH-Brown University Graduate Program in Neuroscience, Providence, Rhode Island 02912, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Hurtado-Lorenzo A, Honig G, Weaver SA, Larkin PB, Heller C. Chronic Abdominal Pain in IBD Research Initiative: Unraveling Biological Mechanisms and Patient Heterogeneity to Personalize Treatment and Improve Clinical Outcomes. CROHN'S & COLITIS 360 2021; 3:otab034. [PMID: 36776666 PMCID: PMC9802354 DOI: 10.1093/crocol/otab034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA,Address correspondence to: Andrés Hurtado-Lorenzo, PhD, Crohn’s & Colitis Foundation, 733 3rd Ave Suite 510, New York, NY 10017, USA ()
| | - Gerard Honig
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | | | - Paul B Larkin
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| | - Caren Heller
- Research Department, Crohn’s & Colitis Foundation, New York, New York, USA
| |
Collapse
|
19
|
Najjar SA, Ejoh LL, Loeza-Alcocer E, Edwards BS, Smith-Edwards KM, Epouhe AY, Gold MS, Davis BM, Albers KM. Optogenetic inhibition of the colon epithelium reduces hypersensitivity in a mouse model of inflammatory bowel disease. Pain 2021; 162:1126-1134. [PMID: 33048854 PMCID: PMC7969374 DOI: 10.1097/j.pain.0000000000002110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Visceral pain is a prevalent symptom of inflammatory bowel disease that can be difficult to treat. Pain and hypersensitivity are mediated by extrinsic primary afferent neurons (ExPANs) that innervate the colon. Recent studies indicate that the colon epithelium contributes to initiating ExPAN firing and nociceptive responses. Based on these findings, we hypothesized that the epithelium contributes to inflammation-induced hypersensitivity. A key prediction of this hypothesis is that inhibition of the epithelium would attenuate nociceptive signaling and inflammatory hypersensitivity. To test this hypothesis, the inhibitory yellow light-activated protein archaerhodopsin was targeted to the intestinal epithelium (villin-Arch) or the ExPANs (TRPV1-Arch) that innervate the colon. Visceral sensitivity was assessed by measuring the visceromotor response (VMR) to colorectal distension (CRD), with and without yellow light illumination of the colon lumen. Inhibition of the colon epithelium in healthy villin-Arch mice significantly diminished the CRD-induced VMR. Direct inhibition of ExPANs during CRD using TRPV1-Arch mice showed that ExPAN and epithelial inhibition were similarly effective in reducing the VMR to CRD. We then investigated the effect of epithelial and ExPAN inhibition in the dextran sulfate sodium model of inflammatory bowel disease. Inhibition of the colon epithelium significantly decreased dextran sulfate sodium-induced hypersensitivity and was comparable with the inhibition of ExPANs. Together, these results reveal the potential of targeting the colon epithelium for the treatment of pain.
Collapse
Affiliation(s)
- Sarah A. Najjar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lindsay L. Ejoh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian S. Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristen M. Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ariel Y. Epouhe
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian M. Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathryn M. Albers
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Díez-Obrero V, Dampier CH, Moratalla-Navarro F, Devall M, Plummer SJ, Díez-Villanueva A, Peters U, Bien S, Huyghe JR, Kundaje A, Ibáñez-Sanz G, Guinó E, Obón-Santacana M, Carreras-Torres R, Casey G, Moreno V. Genetic Effects on Transcriptome Profiles in Colon Epithelium Provide Functional Insights for Genetic Risk Loci. Cell Mol Gastroenterol Hepatol 2021; 12:181-197. [PMID: 33601062 PMCID: PMC8102177 DOI: 10.1016/j.jcmgh.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The association of genetic variation with tissue-specific gene expression and alternative splicing guides functional characterization of complex trait-associated loci and may suggest novel genes implicated in disease. Here, our aims were as follows: (1) to generate reference profiles of colon mucosa gene expression and alternative splicing and compare them across colon subsites (ascending, transverse, and descending), (2) to identify expression and splicing quantitative trait loci (QTLs), (3) to find traits for which identified QTLs contribute to single-nucleotide polymorphism (SNP)-based heritability, (4) to propose candidate effector genes, and (5) to provide a web-based visualization resource. METHODS We collected colonic mucosal biopsy specimens from 485 healthy adults and performed bulk RNA sequencing. We performed genome-wide SNP genotyping from blood leukocytes. Statistical approaches and bioinformatics software were used for QTL identification and downstream analyses. RESULTS We provided a complete quantification of gene expression and alternative splicing across colon subsites and described their differences. We identified thousands of expression and splicing QTLs and defined their enrichment at genome-wide regulatory regions. We found that part of the SNP-based heritability of diseases affecting colon tissue, such as colorectal cancer and inflammatory bowel disease, but also of diseases affecting other tissues, such as psychiatric conditions, can be explained by the identified QTLs. We provided candidate effector genes for multiple phenotypes. Finally, we provided the Colon Transcriptome Explorer web application. CONCLUSIONS We provide a large characterization of gene expression and splicing across colon subsites. Our findings provide greater etiologic insight into complex traits and diseases influenced by transcriptomic changes in colon tissue.
Collapse
Affiliation(s)
- Virginia Díez-Obrero
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Christopher H Dampier
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ferran Moratalla-Navarro
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Matthew Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Sarah J Plummer
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Anna Díez-Villanueva
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Ulrike Peters
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie Bien
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeroen R Huyghe
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California
| | - Gemma Ibáñez-Sanz
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Gastroenterology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Guinó
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Robert Carreras-Torres
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.
| | - Víctor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol 2020; 319:G748-G760. [PMID: 33084399 PMCID: PMC7792669 DOI: 10.1152/ajpgi.00323.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), historically considered as regional gastrointestinal disorders with heightened colonic sensitivity, are increasingly recognized to have concurrent dysfunction of other visceral and somatic organs, such as urinary bladder hyperactivity, leg pain, and skin hypersensitivity. The interorgan sensory cross talk is, at large, termed "cross-organ sensitization." These organs, anatomically distant from one another, physiologically interlock through projecting their sensory information into dorsal root ganglia (DRG) and then the spinal cord for integrative processing. The fundamental question of how sensitization of colonic afferent neurons conveys nociceptive information to activate primary afferents that innervate distant organs remains ambiguous. In DRG, primary afferent neurons are surrounded by satellite glial cells (SGCs) and macrophage accumulation in response to signals of injury to form a neuron-glia-macrophage triad. Astrocytes and microglia are major resident nonneuronal cells in the spinal cord to interact, physically and chemically, with sensory synapses. Cumulative evidence gathered so far indicate the indispensable roles of paracrine/autocrine interactions among neurons, glial cells, and immune cells in sensory cross-activation. Dichotomizing afferents, sensory convergency in the spinal cord, spinal nerve comingling, and extensive sprouting of central axons of primary afferents each has significant roles in the process of cross-organ sensitization; however, more results are required to explain their functional contributions. DRG that are located outside the blood-brain barrier and reside upstream in the cascade of sensory flow from one organ to the other in cross-organ sensitization could be safer therapeutic targets to produce less central adverse effects.
Collapse
Affiliation(s)
- Liya Y. Qiao
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia,2Department of Internal Medicine, Commonwealth University School of Medicine, Richmond, Virginia
| | - Namrata Tiwari
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
23
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|