1
|
La Cognata V, D’Amico AG, Maugeri G, Morello G, Guarnaccia M, Magrì B, Aronica E, Alkon DL, D’Agata V, Cavallaro S. The ε-Isozyme of Protein Kinase C (PKCε) Is Impaired in ALS Motor Cortex and Its Pulse Activation by Bryostatin-1 Produces Long Term Survival in Degenerating SOD1-G93A Motor Neuron-like Cells. Int J Mol Sci 2023; 24:12825. [PMID: 37629005 PMCID: PMC10454105 DOI: 10.3390/ijms241612825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, characterized by a progressive depletion of upper and lower motor neurons (MNs) in the brain and spinal cord. The aberrant regulation of several PKC-mediated signal transduction pathways in ALS has been characterized so far, describing either impaired expression or altered activity of single PKC isozymes (α, β, ζ and δ). Here, we detailed the distribution and cellular localization of the ε-isozyme of protein kinase C (PKCε) in human postmortem motor cortex specimens and reported a significant decrease in both PKCε mRNA (PRKCE) and protein immunoreactivity in a subset of sporadic ALS patients. We furthermore investigated the steady-state levels of both pan and phosphorylated PKCε in doxycycline-activated NSC-34 cell lines carrying the human wild-type (WT) or mutant G93A SOD1 and the biological long-term effect of its transient agonism by Bryostatin-1. The G93A-SOD1 cells showed a significant reduction of the phosphoPKCε/panPKCε ratio compared to the WT. Moreover, a brief pulse activation of PKCε by Bryostatin-1 produced long-term survival in activated G93A-SOD1 degenerating cells in two different cell death paradigms (serum starvation and chemokines-induced toxicity). Altogether, the data support the implication of PKCε in ALS pathophysiology and suggests its pharmacological modulation as a potential neuroprotective strategy, at least in a subgroup of sporadic ALS patients.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Agata Grazia D’Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Benedetta Magrì
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 Amsterdam, The Netherlands
| | | | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| |
Collapse
|
2
|
Guo W, Vandoorne T, Steyaert J, Staats KA, Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 2021; 143:1651-1673. [PMID: 32206784 PMCID: PMC7296858 DOI: 10.1093/brain/awaa022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is the most common degenerative disorder of motor neurons in adults. As there is no cure, thousands of individuals who are alive at present will succumb to the disease. In recent years, numerous causative genes and risk factors for amyotrophic lateral sclerosis have been identified. Several of the recently identified genes encode kinases. In addition, the hypothesis that (de)phosphorylation processes drive the disease process resulting in selective motor neuron degeneration in different disease variants has been postulated. We re-evaluate the evidence for this hypothesis based on recent findings and discuss the multiple roles of kinases in amyotrophic lateral sclerosis pathogenesis. We propose that kinases could represent promising therapeutic targets. Mainly due to the comprehensive regulation of kinases, however, a better understanding of the disturbances in the kinome network in amyotrophic lateral sclerosis is needed to properly target specific kinases in the clinic.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jolien Steyaert
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
3
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
The Impact of Kinases in Amyotrophic Lateral Sclerosis at the Neuromuscular Synapse: Insights into BDNF/TrkB and PKC Signaling. Cells 2019; 8:cells8121578. [PMID: 31817487 PMCID: PMC6953086 DOI: 10.3390/cells8121578] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuron survival in adulthood in the central nervous system. In the peripheral nervous system, BDNF is a contraction-inducible protein that, through its binding to tropomyosin-related kinase B receptor (TrkB), contributes to the retrograde neuroprotective control done by muscles, which is necessary for motor neuron function. BDNF/TrkB triggers downstream presynaptic pathways, involving protein kinase C, essential for synaptic function and maintenance. Undeniably, this reciprocally regulated system exemplifies the tight communication between nerve terminals and myocytes to promote synaptic function and reveals a new view about the complementary and essential role of pre and postsynaptic interplay in keeping the synapse healthy and strong. This signaling at the neuromuscular junction (NMJ) could establish new intervention targets across neuromuscular diseases characterized by deficits in presynaptic activity and muscle contractility and by the interruption of the connection between nervous and muscular tissues, such as amyotrophic lateral sclerosis (ALS). Indeed, exercise and other therapies that modulate kinases are effective at delaying ALS progression, preserving NMJs and maintaining motor function to increase the life quality of patients. Altogether, we review synaptic activity modulation of the BDNF/TrkB/PKC signaling to sustain NMJ function, its and other kinases’ disturbances in ALS and physical and molecular mechanisms to delay disease progression.
Collapse
|
5
|
Masala A, Sanna S, Esposito S, Rassu M, Galioto M, Zinellu A, Carru C, Carrì MT, Iaccarino C, Crosio C. Epigenetic Changes Associated with the Expression of Amyotrophic Lateral Sclerosis (ALS) Causing Genes. Neuroscience 2018; 390:1-11. [DOI: 10.1016/j.neuroscience.2018.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
|
6
|
Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. Cell Death Dis 2018; 9:596. [PMID: 29789529 PMCID: PMC5964181 DOI: 10.1038/s41419-018-0624-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the degeneration of upper and lower motor neurons. Defects in axonal transport have been observed pre-symptomatically in the SOD1G93A mouse model of ALS, and have been proposed to play a role in motor neuron degeneration as well as in other pathologies of the nervous system, such as Alzheimer's disease and hereditary neuropathies. In this study, we screen a library of small-molecule kinase inhibitors towards the identification of pharmacological enhancers of the axonal retrograde transport of signalling endosomes, which might be used to normalise the rate of this process in diseased neurons. Inhibitors of p38 mitogen-activated protein kinases (p38 MAPK) were identified in this screen and were found to correct deficits in axonal retrograde transport of signalling endosomes in cultured primary SOD1G93A motor neurons. In vitro knockdown experiments revealed that the alpha isoform of p38 MAPK (p38 MAPKα) was the sole isoform responsible for SOD1G93A-induced transport deficits. Furthermore, we found that acute treatment with p38 MAPKα inhibitors restored the physiological rate of axonal retrograde transport in vivo in early symptomatic SOD1G93A mice. Our findings demonstrate the pathogenic effect of p38 MAPKα on axonal retrograde transport and identify a potential therapeutic strategy for ALS.
Collapse
|
7
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
8
|
Krieger C, Wang SJH, Yoo SH, Harden N. Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for Dear Life. Front Cell Neurosci 2016; 10:11. [PMID: 26858605 PMCID: PMC4731495 DOI: 10.3389/fncel.2016.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca2+-dependence, raising the possibility that changes in intracellular Ca2+ might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na+/K+-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS.
Collapse
Affiliation(s)
- Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Simon Ji Hau Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Soo Hyun Yoo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
9
|
Morfini GA, Bosco DA, Brown H, Gatto R, Kaminska A, Song Y, Molla L, Baker L, Marangoni MN, Berth S, Tavassoli E, Bagnato C, Tiwari A, Hayward LJ, Pigino GF, Watterson DM, Huang CF, Banker G, Brown RH, Brady ST. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 2013; 8:e65235. [PMID: 23776455 PMCID: PMC3680447 DOI: 10.1371/journal.pone.0065235] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.
Collapse
Affiliation(s)
- Gerardo A. Morfini
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Daryl A. Bosco
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Hannah Brown
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rodolfo Gatto
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Agnieszka Kaminska
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Yuyu Song
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Linda Molla
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Lisa Baker
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - M. Natalia Marangoni
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Sarah Berth
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Ehsan Tavassoli
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Carolina Bagnato
- Department of Natural Sciences and Engineering. National University of Rio Negro, Rio Negro, Argentina
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, United States of America
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Gustavo F. Pigino
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - D. Martin Watterson
- Center for Molecular Innovation and Drug Discovery and Department of Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IIllinois, United States of America
| | - Chun-Fang Huang
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gary Banker
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Scott T. Brady
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
10
|
Tobias A, Saxena M, Lelievre V. CDK5: the "pathfinder" for new born neurons in adult hippocampus? Cell Adh Migr 2009; 3:319-21. [PMID: 19855173 DOI: 10.4161/cam.3.4.9951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neurogenesis takes place in the mammalian hippocampus throughout the whole life and deficient adult hippocampal neurogenesis has been related to neurological conditions like Alzheimer disease (AD), Parkinson disease (PD) and epilepsy. The molecular mechanisms by which immature neurons and their extending neurites find their appropriate position and target area remain largely unknown. Recent work by Jessberger et al. examines the role of Cdk5 in normal adult neurogenesis by a retroviral knock-down approach. Cdk5 is shown to be implicated in the migration of newborn neurons into the granule cell layer (GCL), as well as, in correct targeting of dendrites from newborn granule cells (GC) into the molecular layer (ML) of the dentate gyrus (DG). The study also shows that aberrant dendrites still seem to become synaptically integrated into the existing circuitry thereby suggesting a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation. The finding of Cdk5 guiding this integration of new born neurons at the physiologically appropriate place is an important step towards understanding adult neurogenesis that may help to overcome problems with the restorative use of neural stem cells in present grafting approaches in neurological diseases.
Collapse
Affiliation(s)
- Albert Tobias
- Faculté des Sciences de la Vie, Unìversité de Strasbourg, Strasbourg, France
| | | | | |
Collapse
|
11
|
Shahani N, Gourie-Devi M, Nalini A, Rammohan P, Shobha K, Harsha HN, Raju TR. (‐)‐Deprenyl alleviates the degenerative changes induced in the neonatal rat spinal cord by CSF from amyotrophic lateral sclerosis patients. ACTA ACUST UNITED AC 2009; 5:172-9. [PMID: 15512906 DOI: 10.1080/14660820410017037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies from our laboratory suggest the presence of toxic factor(s) in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS) which induces degenerative changes in the spinal cord neurons. The present work was carried out to investigate the role of (-)-deprenyl in attenuating these degenerative changes. CSF samples from ALS and non-ALS neurological patients were injected into the spinal subarachnoid space of 3-day-old rat pups, followed by a single dose (0.01 mg/kg body weight) of (-)-deprenyl, administered 24 h after CSF injection. After a further period of 24 h, the rats were sacrificed and the spinal cord sections were stained with antibodies against phosphorylated neurofilament (NF, SMI-31 antibody) and glial fibrillary acidic protein (GFAP). Activity of lactate dehydrogenase (LDH) was also measured. (-)-Deprenyl injection resulted in a significant (61%) decrease in the number of SMI-31 stained neuronal soma in the ventral horn of the spinal cord of ALS CSF exposed rats. This was accompanied by a reduction in the astrocytes immunoreactive for GFAP. There was also a significant (35%) decrease in the LDH activity following (-)-deprenyl treatment. These results suggest that (-)-deprenyl may confer neuroprotection against the toxic factor(s) present in ALS CSF.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neurobiology, University of Osnabrueck, D- 49076 Osnabrueck, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Tomimatsu N, Arakawa Y. Protein kinase C-mediated protection of motoneurons from excitotoxicity. Neurosci Lett 2008; 439:143-6. [DOI: 10.1016/j.neulet.2008.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 04/29/2008] [Accepted: 05/03/2008] [Indexed: 01/26/2023]
|
13
|
Dhariwala FA, Rajadhyaksha MS. An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 2008; 28:351-69. [PMID: 18183483 DOI: 10.1007/s10571-007-9242-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/14/2007] [Indexed: 12/23/2022]
Abstract
The proline-directed serine threonine kinase, Cdk5, is an unusual molecule that belongs to the well-known large family of proteins, cyclin-dependent kinases (Cdks). While it has significant homology with the mammalian Cdk2 and yeast cdc2, unlike the other Cdks, it has little role to play in cell cycle regulation and is activated by non-cyclin proteins, p35 and p39. It phosphorylates a spectrum of proteins, most of them associated with cell morphology and motility. A majority of known substrates of Cdk5 are cytoskeletal elements, signalling molecules or regulatory proteins. It also appears to be an important player in cell-cell communication. Highly conserved, Cdk5 is most abundant in the nervous system and is of special interest to neuroscientists as it appears to be indispensable for normal neural development and function. In normal cells, transcription and activity of Cdk5 is tightly regulated. Present essentially in post-mitotic neurons, its normal activity is obligatory for migration and differentiation of neurons in developing brain. Deregulation of Cdk5 has been implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. Regulators of Cdk5 activity are considered as potential therapeutic molecules for degenerative diseases. This review focuses on the role of Cdk5 in neural cells as regulator of cytoskeletal elements, axonal guidance, membrane transport, synaptogenesis and cell survival in normal and pathological conditions.
Collapse
Affiliation(s)
- Fatema A Dhariwala
- Department of Life Sciences, Sophia College, B. Desai Road, Mumbai 400026, India
| | | |
Collapse
|
14
|
DeBruin LS, Haines JD, Bienzle D, Harauz G. Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosisThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:993-1005. [PMID: 17215885 DOI: 10.1139/o06-180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have characterized the lipid rafts in myelin from a spontaneously demyelinating mouse line (ND4), and from control mice (CD1 background), as a function of age and severity of disease. Myelin was isolated from the brains of CD1 and ND4 mice at various ages, and cold lysed with 1.5% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulphonate). The lysate was separated by low-speed centrifugation into supernatant and pellet fractions, which were characterized by Western blotting for myelin basic protein (MBP) isoforms and their post-translationally modified variants. We found that, with maturation and with disease progression, there was a specific redistribution of the 14–21.5 kDa MBP isoforms (classic exon-II-containing vs exon-II-lacking) and phosphorylated forms into the supernatant and pellet. Further fractionation of the supernatant to yield detergent-resistant membranes (DRMs), representing coalesced lipid rafts, showed these to be highly enriched in exon-II-lacking MBP isoforms, and deficient in methylated MBP variants, in mice of both genotypes. The DRMs from the ND4 mice appeared to be enriched in MBP phosphorylated by MAP kinase at Thr95 (murine 18.5 kDa numbering). These studies indicate that different splice isoforms and post-translationally modified charge variants of MBP are targeted to different microdomains in the myelin membrane, implying multifunctionality of this protein family in myelin maintenance.
Collapse
Affiliation(s)
- Lillian S DeBruin
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
15
|
Maracchioni A, Totaro A, Angelini DF, Di Penta A, Bernardi G, Carrì MT, Achsel T. Mitochondrial damage modulates alternative splicing in neuronal cells: implications for neurodegeneration. J Neurochem 2006; 100:142-53. [PMID: 17064354 DOI: 10.1111/j.1471-4159.2006.04204.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial damage is linked to many neurodegenerative conditions, such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. These diseases are associated with changes in the splicing pattern of individual mRNAs. Here, we tested the hypothesis that mitochondrial damage modulates alternative splicing, not only of a few mRNAs, but in a general manner. We incubated cultured human neuroblastoma cells with the chemical agent paraquat (a neurotoxin that interferes with mitochondrial function, causing energy deficit and oxidative stress) and analysed the splicing pattern of 13 genes by RT-PCR. For all mRNAs that are alternatively spliced, we observed a dose- and time-dependent increase of the smaller isoforms. In contrast, splicing of all constitutive splicing exons that we monitored did not change. Using other drugs, we show that the modulation of alternative splicing correlates with ATP depletion, not with oxidative stress. Such drastic changes in alternative splicing are not observed in cell lines of non-neuronal origin, suggesting a selective susceptibility of neuronal cells to modulation of splicing. As a significant percentage of all mammalian mRNAs undergo alternative splicing, we predict that mitochondrial failure will unbalance a vast number of isoform equilibriums, which would give an important contribution to neurodegeneration.
Collapse
Affiliation(s)
- Alessia Maracchioni
- Department of Experimental Neurosciences, European Centre for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Lukas TJ, Luo WW, Mao H, Cole N, Siddique T. Informatics-assisted Protein Profiling in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Mol Cell Proteomics 2006; 5:1233-44. [PMID: 16571896 DOI: 10.1074/mcp.m500431-mcp200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the causes of amyotrophic lateral sclerosis (ALS) is due to mutations in Cu,Zn-superoxide dismutase (SOD1). The mutant protein exhibits a toxic gain of function that adversely affects the function of neurons in the spinal cord, brain stem, and motor cortex. A proteomic analysis of protein expression in a widely used mouse model of ALS was undertaken to identify differences in protein expression in the spinal cords of mice expressing a mutant protein with the G93A mutation found in human ALS. Protein profiling was done on soluble and particulate fractions of spinal cord extracts using high throughput two-dimensional liquid chromatography coupled to tandem mass spectrometry. An integrated proteomics-informatics platform was used to identify relevant differences in protein expression based upon the abundance of peptides identified by database searching of mass spectrometry data. Changes in the expression of proteins associated with mitochondria were particularly prevalent in spinal cord proteins from both mutant G93A-SOD1 and wild-type SOD1 transgenic mice. G93A-SOD1 mouse spinal cord also exhibited differences in proteins associated with metabolism, protein kinase regulation, antioxidant activity, and lysosomes. Using gene ontology analysis, we found an overlap of changes in mRNA expression in presymptomatic mice (from microarray analysis) in three different gene categories. These included selected protein kinase signaling systems, ATP-driven ion transport, and neurotransmission. Therefore, alterations in selected cellular processes are detectable before symptomatic onset in ALS mouse models. However, in late stage disease, mRNA expression analysis did not reveal significant changes in mitochondrial gene expression but did reveal concordant changes in lipid metabolism, lysosomes, and the regulation of neurotransmission. Thus, concordance of proteomic and mRNA expression data within multiple categories validates the use of gene ontology analysis to compare different types of "omic" data.
Collapse
Affiliation(s)
- Thomas J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
17
|
Shan X, Hu JH, Cayabyab FS, Krieger C. Increased phospho-adducin immunoreactivity in a murine model of amyotrophic lateral sclerosis. Neuroscience 2005; 134:833-46. [PMID: 15994023 DOI: 10.1016/j.neuroscience.2005.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/22/2005] [Accepted: 04/15/2005] [Indexed: 11/16/2022]
Abstract
Adducins alpha, beta and gamma are proteins that link spectrin and actin in the regulation of cytoskeletal architecture and are substrates for protein kinase C and other signaling molecules. Previous studies have shown that expressions of phosphorylated adducin (phospho-adducin) and protein kinase C are increased in spinal cord tissue from patients who died with amyotrophic lateral sclerosis, a neurodegenerative disorder of motoneurons and other cells. However, the distribution of phospho-adducin immunoreactivity has not been described in the mammalian spinal cord. We have evaluated the distribution of immunoreactivity to serine/threonine-dependent phospho-adducin at a region corresponding to the myristoylated alanine-rich C kinase substrate-related domain of adducin in spinal cords of mice over-expressing mutant human superoxide dismutase, an animal model of amyotrophic lateral sclerosis, and in control littermates. We find phospho-adducin immunoreactivity in control spinal cord in ependymal cells surrounding the central canal, neurons and astrocytes. Phospho-adducin immunoreactivity is localized to the cell bodies, dendrites and axons of some motoneurons, as well as to astrocytes in the gray and white matter. Spinal cords of mutant human superoxide dismutase mice having motoneuron loss exhibit significantly increased phospho-adducin immunoreactivity in ventral and dorsal horn spinal cord regions, but not in ependyma surrounding the central canal, compared with control animals. Increased phospho-adducin immunoreactivity localizes predominantly to astrocytes and likely increases as a consequence of the astrogliosis that occurs in the mutant human superoxide dismutase mouse with disease progression. These findings demonstrate increased immunoreactivity against phosphorylated adducin at the myristoylated alanine-rich C kinase substrate domain in a murine model of amyotrophic lateral sclerosis. As adducin is a substrate for protein kinase C at the myristoylated alanine-rich C kinase substrate domain, the increased phospho-adducin immunoreactivity is likely a consequence of protein kinase C activation in neurons and astrocytes of the spinal cord and evidence for aberrant phosphorylation events in mutant human superoxide dismutase mice that may affect neuron survival.
Collapse
Affiliation(s)
- X Shan
- School of Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
18
|
Li S, Wang X, Klee CB, Krieger C. Overexpressed mutant G93A superoxide dismutase protects calcineurin from inactivation. ACTA ACUST UNITED AC 2004; 125:156-61. [PMID: 15193434 DOI: 10.1016/j.molbrainres.2004.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2004] [Indexed: 11/30/2022]
Abstract
Previous studies have claimed that there is a failure of a mutant form of superoxide dismutase (mSOD) to protect the protein phosphatase, calcineurin (CN), against inactivation in the pathogenesis of amyotrophic lateral sclerosis (ALS), as determined in a murine model of ALS resulting from overexpression of mSOD (G93A). In contrast to previous studies, we find that mice overexpressing G93A mSOD have no statistically significant differences in the expression, or activity, of CN. However, CN from G93A mSOD overexpressing mice is significantly more protected against inactivation than non-transgenic mice that do not overexpress SOD. This reduced inactivation of CN is a consequence of increased expression of G93A mSOD. Thus, like wild-type SOD, G93A mSOD protects CN against inactivation.
Collapse
Affiliation(s)
- Shipeng Li
- Laboratory of Biochemistry, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|