1
|
Dovjak P. [Cardiorenal syndrome in geriatric patients]. Z Gerontol Geriatr 2024; 57:152-161. [PMID: 38305795 DOI: 10.1007/s00391-024-02287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
The unfavorable mutual influence of the kidney and heart functions in acute or chronic kidney and/or heart failure has defined the cardiorenal syndrome (CRS) since a consensus conference in 2004. The pathophysiological considerations and the subsequent treatment approaches determine the classification into five types. The syndrome has a high prevalence in geriatric patients. The interactions of medications on one or the other organ system require an interaction of treatment modalities in order to improve the prognosis and prevent acute deterioration. Exact knowledge of the respective indications, differential treatment approaches and specifics in dealing with CRS can improve the current undertreatment due to concerns about side effects.
Collapse
Affiliation(s)
- Peter Dovjak
- Akutgeriatrie, Salzkammergut Klinikum Gmunden, Miller von Aichholzstraße 49, 4810, Gmunden, Österreich.
| |
Collapse
|
2
|
Keidai Y, Yoshiji S, Hasebe M, Minamino H, Murakami T, Tanaka D, Fujita Y, Inagaki N. Stabilization of kidney function and reduction in heart failure events with sodium-glucose co-transporter 2 inhibitors: A meta-analysis and meta-regression analysis. Diabetes Obes Metab 2023. [PMID: 37217461 DOI: 10.1111/dom.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
AIMS Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of heart failure (HF) events regardless of diabetes status. However, factors associated with their efficacy in HF reduction remain unknown. This study aims to identify clinically relevant markers for the efficacy of SGLT2 inhibitors in HF risk reduction. MATERIALS AND METHODS We searched PubMed/MEDLINE and EMBASE for randomized placebo-controlled trials of SGLT2 inhibitors reporting a composite of HF hospitalization or cardiovascular death in participants with or without type 2 diabetes published until 28 February 2023. Random-effects meta-analysis and mixed-effects meta-regression were conducted to evaluate the association between the outcomes and clinical variables, including changes in glycated haemoglobin, body weight, systolic blood pressure, haematocrit and overall/chronic estimated glomerular filtration rate (eGFR) slope. RESULTS Thirteen trials with 90 413 participants were included. SGLT2 inhibitors reduced the hazard ratio of the composite of HF hospitalization or cardiovascular death (hazard ratio 0.77; 95% confidence interval, 0.74-0.81; p < .0001). In meta-regression analysis, chronic eGFR slope (eGFR change after the initial dip) was significantly associated with the composite outcome (p = .017), and each 1 ml/min/1.73 m2 /year improvement in chronic eGFR slope led to a 14% reduction in the composite outcome. By contrast, changes in the other parameters showed no significant associations. CONCLUSIONS Improvement in chronic eGFR slope, which reflects the stabilization of kidney function, is significantly associated with the efficacy of the SGLT2 inhibitor in HF, highlighting the cardiorenal axis role in the beneficial effects on HF. The chronic eGFR slope can be a surrogate marker of the effects of SGLT2 inhibitors on HF reduction.
Collapse
Affiliation(s)
- Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Tazuke-Kofukai Medical Research Institute KITANO HOSPITAL, Osaka, Japan
| | - Satoshi Yoshiji
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Tazuke-Kofukai Medical Research Institute KITANO HOSPITAL, Osaka, Japan
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Kyoto-McGill International Collaborative Program in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Hasebe
- Tazuke-Kofukai Medical Research Institute KITANO HOSPITAL, Osaka, Japan
| | - Hiroto Minamino
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Tanaka
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Tazuke-Kofukai Medical Research Institute KITANO HOSPITAL, Osaka, Japan
| |
Collapse
|
3
|
de Castro Nobre AC, Pimentel CF, do Rêgo GMS, Paludo GR, Pereira Neto GB, de Castro MB, Nitz N, Hecht M, Dallago B, Hagström L. Insights from the use of erythropoietin in experimental Chagas disease. Int J Parasitol Drugs Drug Resist 2022; 19:65-80. [PMID: 35772309 PMCID: PMC9253553 DOI: 10.1016/j.ijpddr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.
Collapse
Affiliation(s)
| | - Carlos Fernando Pimentel
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - George Magno Sousa do Rêgo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Glaucia Bueno Pereira Neto
- Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Márcio Botelho de Castro
- Laboratory of Veterinary Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Faculty of Physical Education, University of Brasília, Brasília, Brazil.
| |
Collapse
|
4
|
Auzmendi J, Puchulu MB, Rodríguez JCG, Balaszczuk AM, Lazarowski A, Merelli A. EPO and EPO-Receptor System as Potential Actionable Mechanism for the Protection of Brain and Heart in Refractory Epilepsy and SUDEP. Curr Pharm Des 2020; 26:1356-1364. [PMID: 32072891 DOI: 10.2174/1381612826666200219095548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
The most important activity of erythropoietin (EPO) is the regulation of erythrocyte production by activation of the erythropoietin receptor (EPO-R), which triggers the activation of anti-apoptotic and proliferative responses of erythroid progenitor cells. Additionally, to erythropoietic EPO activity, an antiapoptotic effect has been described in a wide spectrum of tissues. EPO low levels are found in the central nervous system (CNS), while EPO-R is expressed in most CNS cell types. In spite of EPO-R high levels expressed during the hypoxicischemic brain, insufficient production of endogenous cerebral EPO could be the cause of determined circuit alterations that lead to the loss of specific neuronal populations. In the heart, high EPO-R expression in cardiac progenitor cells appears to contribute to myocardial regeneration under EPO stimulation. Several lines of evidence have linked EPO to an antiapoptotic role in CNS and in heart tissue. In this review, an antiapoptotic role of EPO/EPO-R system in both brain and heart under hypoxic conditions, such as epilepsy and sudden death (SUDEP) has been resumed. Additionally, their protective effects could be a new field of research and a novel therapeutic strategy for the early treatment of these conditions and avoid SUDEP.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - María B Puchulu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Julio C G Rodríguez
- CENPALAB, Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Ana M Balaszczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Amalia Merelli
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| |
Collapse
|
5
|
Abstract
Erythropoietin (EPO) has been linked to cardioprotective effects. However, its effects during the aging process are little known. We investigated the effect of EPO administration on hemodynamic parameters, cardiac function, oxidative damage, and erythropoietin receptor (EPOR) expression pattern in the hypovolemic state. EPO was administered (1000 IU/kg/3 days) and then acute hemorrhage (20% blood loss) was induced in young and adult rats. There was no difference in plasmatic EPO in either age group. The hemodynamic basal condition was similar, without alterations in renal function and hematocrit, in both age groups. After bleeding, both EPO-treated age groups had increased blood pressure at the end of the experimental protocol, being greater in adult animals. EPO attenuated the tachycardic effect. Ejection fraction and fractional shortening were higher in adult EPO-treated rats subjected to hemorrhage. In the left ventricle, young and adult EPO-treated rats subjected to bleeding showed an increased EPOR expression. A different EPOR expression pattern was observed in the adult right atrial tissue, compared with young animals. EPO treatment decreased oxidative damage to lipids in both age groups. EPO treatment before acute hemorrhage improves cardiovascular function during the aging process, which is mediated by different EPOR pattern expression in the heart tissue.
Collapse
|
6
|
Seo WW, Suh JW, Oh IY, Yoon CH, Cho YS, Youn TJ, Chae IH, Choi DJ. Efficacy of IntraCoronary Erythropoietin Delivery BEfore Reperfusion-Gauging Infarct Size in Patients with Acute ST-segment Elevation Myocardial Infarction (ICEBERG). Int Heart J 2019; 60:255-263. [PMID: 30799375 DOI: 10.1536/ihj.18-035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous clinical studies have shown inconsistent results regarding the effect of erythropoietin in ST-segment elevation myocardial infarction (STEMI). This study investigated whether directed intracoronary infusion of darbepoetin-α into ischemic myocardium before reperfusion would reduce infarct size or post-infarct remodeling in STEMI patients.Eighty STEMI patients received one of the following treatments simultaneously with the first balloon inflation: intracoronary darbepoetin-α 300 μg (n = 40) or saline (n = 40), administered via the over-the-wire balloon system. The primary endpoint was infarct size estimated by serial cardiac enzyme levels after procedure. The secondary endpoints were (1) infarct size and proportion of salvaged myocardium measured with cardiac magnetic resonance (CMR) at baseline; (2) post-infarct remodeling (PIR), defined as an increase in left ventricular end-diastolic volume more than 20% at 4 months compared to the baseline on CMR; and (3) composite cardiovascular endpoints assessed at 4 months.The peak CK-MB [median 270.0 (interquartile range 139.8-356.3) versus 231.5 (131.0-408.5) ng/mL, P = 0.55] and troponin-I [128.5 (63.5-227.8) versus 109.0 (43.8-220.0) ng/mL, P = 0.52) ] did not differ between the darbepoetin-α and control group. Fifty-seven patients completed the baseline and 4-month follow-up CMR. There were no differences in infarct size [30.6 (18.1-49.8) versus 31.5 (22.5-47.3) cm3, P = 0.91), proportion of salvaged myocardium [26.7% (15.9-42.6%) versus 35.8% (22.4-48.8%), P = 0.12) or PIR (8.0% versus 6.7%, P = 0.62) between the two groups. Composite cardiovascular outcomes did not differ between the two groups.In conclusion, administration of intracoronary darbepoetin-α before reperfusion did not reduce infarct size or post-infarct remodeling in STEMI patients.
Collapse
Affiliation(s)
- Won-Woo Seo
- Division of Cardiology, Department of Internal Medicine, Kangdong Sacred Heart Hospital
| | - Jung-Won Suh
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Il-Young Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Chang-Hwan Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Young-Seok Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Tae-Jin Youn
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - In-Ho Chae
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| | - Dong-Ju Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Bundang Hospital
| |
Collapse
|
7
|
Kittur FS, Lin Y, Arthur E, Hung CY, Li PA, Sane DC, Xie J. Recombinant asialoerythropoetin protects HL-1 cardiomyocytes from injury via suppression of Mst1 activation. Biochem Biophys Rep 2019; 17:157-168. [PMID: 30671548 PMCID: PMC6327940 DOI: 10.1016/j.bbrep.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/04/2022] Open
Abstract
Background Recombinant human erythropoietin (rhuEPO) and asialoerythropoietin (asialo-rhuEPO) are cardioprotective. However, the protective effects of rhuEPO could not be translated into clinical practice because of its hematopoiesis-associated side effects while non-erythropoietic asialo-rhuEPO is unavailable in large quantities for clinical studies. This study was designed to investigate the cardiomyocyte protective potential of plant-produced asialo-rhuEPO (asialo-rhuEPOP) against staurosporine (STS)-induced injury in HL-1 murine cardiomyocytes and identify cellular pathway(s) responsible for its cardioprotection. Methods HL-1 cardiomyocytes were simultaneously treated with STS and asialo-rhuEPOP. Cellular injury, apoptosis, and cell viabilities were measured by LDH assay, Hoechst staining and trypan blue exclusion method, respectively while western blotting was used to study its effects on apoptosis and autophagy hallmarks. Results Our results showed that 20 IU/ml asialo-rhuEPOP provided 39% protection to cardiomyocytes compared to STS-treated cells, which is 2-fold better than that of mammalian cell-produce rhuEPO (rhuEPOM). Asialo-rhuEPOP was found to suppress activation of proapoptotic kinase Mst1 (mammalian Sterile-20-like kinase 1) and FOXO3, leading to inhibition of apoptotic pathway and restoration of autophagy as indicated by the reduction of fragmented/condensed nuclei, altered ratios of Bax/Bcl2, p-Bad/Bad, cytosol/mitochondrial cyt c and caspase-3 activation, and the restored levels of autophagy markers Beclin1, p62 and LC3B-II. Additionally, Akt was found to be activated and FOXO3 was phosphorylated on Ser253, suggesting inhibition of FOXO3 transcriptional function. Conclusions Asialo-rhuEPOP-mediated cardioprotection occurs through activation of PI3K/Akt pathway leading to suppression of Mst1 activation and promoting cardiomyocyte survival. General significance Asialo-rhuEPOP could be used to modulate Mst1 activity elevated under numerous pathological states. Recombinant asialo-rhuEPO protect HL-1 cardiomyocytes against STS-induced injury. Protective effect of recombinant asialo-rhuEPO is superior to sialylated EPO. Asialo-rhuEPO suppresses activation of proapoptotic kinase MSt1 by activating Akt. Asialo-rhuEPO restores autophagy and inhibits apoptosis to promote cell survival.
Collapse
Affiliation(s)
- Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Yuan Lin
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Elena Arthur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - David C Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
8
|
Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019; 10:216-244. [PMID: 30719216 PMCID: PMC6349428 DOI: 10.18632/oncotarget.26537] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. There has been an extensive search for cardioprotective therapies to reduce myocardial ischemia-reperfusion (I/R) injury. Remote ischemic preconditioning (RIPC) is a phenomenon that relies on the body's endogenous protective modalities against I/R injury. In RIPC, non-lethal brief I/R of one organ or tissue confers protection against subsequent lethal I/R injury in an organ remote to the briefly ischemic organ or tissue. Initially it was believed to be limited to direct myocardial protection, however it soon became apparent that RIPC applied to other organs such as kidney, liver, intestine, skeletal muscle can reduce myocardial infarct size. Intriguing discoveries have been made in extending the concept of RIPC to other organs than the heart. Over the years, the underlying mechanisms of RIPC have been widely sought and discussed. The involvement of blood-borne factors as mediators of RIPC has been suggested by a number of research groups. The main purpose of this review article is to summarize the possible circulating mediators of RIPC, and recent studies to establish the clinical efficacy of these mediators in cardioprotection from lethal I/R injury.
Collapse
|
9
|
Kim EK, Lee Y, Lee HJ, Hong JP. Local Subcutaneous Injection of Erythropoietin Might Improve Fat Graft Survival, Whereas Continuous Infusion Using an Osmotic Pump Device Was Harmful by Provoking an Overwhelming Foreign Body Reaction in a Nude Mouse Model. ARCHIVES OF AESTHETIC PLASTIC SURGERY 2018. [DOI: 10.14730/aaps.2018.24.3.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Ding XH, Wang Y, Cui B, Qin J, Zhang JH, Rao RS, Yu SY, Zhao XH, Huang L. Acute Mountain Sickness Is Associated With a High Ratio of Endogenous Testosterone to Estradiol After High-Altitude Exposure at 3,700 m in Young Chinese Men. Front Physiol 2018; 9:1949. [PMID: 30740062 PMCID: PMC6355701 DOI: 10.3389/fphys.2018.01949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background: A large proportion of populations suffer from acute mountain sickness (AMS) after exposure at high altitude. AMS is closely related with age and gender implying that the sex hormones may play critical roles in AMS. Our observational study aimed to identify the association between the endogenous testosterone (T), estradiol (E2) and AMS. Methods: A total of 113 subjects were recruited in 2012. The participants were evaluated at 500 m and after acute (1 day) and short-term (7 days) high-altitude exposure at 3,700 m. The subjects also completed a case report form questionnaire and underwent blood pressure measurements and an echocardiography examination. The red blood cell (RBC) count, Hb concentration ([Hb]), hematocrit (HCT), E2, T, and erythropoietin (EPO) were measured. Results: Upon acute high-altitude exposure, E2 and EPO were significantly lower in AMS+ group, and T/E2 and stroke volume were higher. On the 1st day, AMS score correlated positively with the T/E2 ratio while it negatively correlated with E2. After 7 days at 3,700 m, the AMS+ subjects had higher erythropoietic parameters: EPO, T, and T/E2 were significantly higher in the AMS+ group. [Hb], RBC count, HCT, EPO, T and T/E2 were also correlated with AMS score. EPO, HCT, and the RBC count were also correlated with T/E2. Regression analyses indicated that T/E2 significantly correlated to AMS score and T/E2 on the 1st day was an independent predictor for AMS on the 7th day. Conclusion: AMS was correlated with T/E2 ratio and EPO. After short-term exposure, higher T/E2 may contribute to AMS together with EPO via erythropoiesis. Furthermore, T/E2 level at high altitude in the early stage was an independent predictor for AMS in the latter stage.
Collapse
Affiliation(s)
- Xiao-Han Ding
- Department of Health Care and Geriatrics, Lanzhou General Hospital of Lanzhou Military Region, Lanzhou, China
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yanchun Wang
- Department of Health Care and Geriatrics, Lanzhou General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Bin Cui
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun Qin
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Hang Zhang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rong-Sheng Rao
- Department of Ultrasonography, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shi-Yong Yu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Hui Zhao
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Lan Huang,
| |
Collapse
|
11
|
Effect of Erythropoietin on Postresuscitation Renal Function in a Swine Model of Ventricular Fibrillation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3567275. [PMID: 27847811 PMCID: PMC5099488 DOI: 10.1155/2016/3567275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/26/2022]
Abstract
Purpose. To investigate the effect of EPO administration on postresuscitation renal function. Methods. Twenty-four female Landrace/Large-White piglets aged 10–15 weeks with average weight of 19 ± 2 kg were randomly assigned to 2 different groups of 12 subjects each. After the end of an 8-minute ventricular fibrillation, the control group (Group C) received saline as placebo, whereas the EPO group (Group E) received EPO 5000 U/kg. The animals were resuscitated according to the 2010 European Resuscitation Council Guidelines for Resuscitation. Results. Five animals (41.67%) from Group C and 11 animals (91.67%) from Group E achieved ROSC (p = 0.027). Eight animals (66.67%, 5 surviving and 3 nonsurviving) from Group C suffered severe kidney damage or AKI compared to animals from Group E, in which none of the swine had evidence of severe kidney damage or AKI (p = 0.001). There was a statistically significant difference in all tested biochemical markers between the two groups, as well as a positive correlation of creatinine with NGAL, L-FABP, and IL-18 (summed mean values' p = 0.049, 0.01, and 0.004, resp.). Conclusions. Administration of EPO protected swine from postresuscitation acute kidney injury.
Collapse
|
12
|
Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation? J Transl Med 2016; 14:20. [PMID: 26791565 PMCID: PMC4721068 DOI: 10.1186/s12967-016-0767-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/20/2015] [Indexed: 01/03/2023] Open
Abstract
Kidney transplantation is the treatment of choice in patients with end stage renal disease. During kidney transplantation ischemia reperfusion injury (IRI) occurs, which is a risk factor for acute kidney injury, delayed graft function and acute and chronic rejection. Kidneys from living donors show a superior short- and long-term graft survival compared with deceased donors. However, the shortage of donor kidneys has resulted in expansion of the donor pool by using not only living- and brain death donors but also kidneys from donation after circulatory death and from extended criteria donors. These grafts are associated with an increased sensitivity to IRI and decreased graft outcome due to prolonged ischemia and donor comorbidity. Therefore, preventing or ameliorating IRI may improve graft survival. Animal experiments focus on understanding the mechanism behind IRI and try to find methods to minimize IRI either before, during or after ischemia. This review evaluates the different experimental strategies that have been investigated to prevent or ameliorate renal IRI. In addition, we review the current state of translation to the clinical setting. Experimental research has contributed to the development of strategies to prevent or ameliorate IRI, but promising results in animal studies have not yet been successfully translated to clinical use.
Collapse
|
13
|
Oba T, Yasukawa H, Nagata T, Kyogoku S, Minami T, Nishihara M, Ohshima H, Mawatari K, Nohara S, Takahashi J, Sugi Y, Igata S, Iwamoto Y, Kai H, Matsuoka H, Takano M, Aoki H, Fukumoto Y, Imaizumi T. Renal Nerve-Mediated Erythropoietin Release Confers Cardioprotection During Remote Ischemic Preconditioning. Circ J 2015; 79:1557-67. [PMID: 25833080 DOI: 10.1253/circj.cj-14-1171] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) induced by transient limb ischemia is a powerful innate mechanism of cardioprotection against ischemia. Several described mechanisms explain how RIPC may act through neural pathways or humoral factors; however, the mechanistic pathway linking the remote organ to the heart has not yet been fully elucidated. This study aimed to investigate the mechanisms underlying the RIPC-induced production of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT)-activating cytokines and cardioprotection by using mouse and human models of RIPC. METHODS AND RESULTS Screened circulating cardioprotective JAK-STAT-activating cytokines in mice unexpectedly revealed increased serum erythropoietin (EPO) levels after RIP induced by transient ischemia. In mice, RIPC rapidly upregulated EPO mRNA and its main transcriptional factor, hypoxia-inducible factor-1α (HIF1α), in the kidney. Laser Doppler blood flowmetry revealed a prompt reduction of renal blood flow (RBF) after RIPC. RIPC activated cardioprotective signaling pathways and the anti-apoptotic Bcl-xL pathway in the heart, and reduced infarct size. In mice, these effects were abolished by administration of an EPO-neutralizing antibody. Renal nerve denervation also abolished RIPC-induced RBF reduction, EPO production, and cardioprotection. In humans, transient limb ischemia of the upper arm reduced RBF and increased serum EPO levels. CONCLUSIONS Based on the present data, we propose a novel RIPC mechanism in which inhibition of infarct size by RIPC is produced through the renal nerve-mediated reduction of RBF associated with activation of the HIF1α-EPO pathway.
Collapse
Affiliation(s)
- Toyoharu Oba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rjiba-Touati K, Ayed-Boussema I, Guedri Y, Achour A, Bacha H, Abid-Essefi S. Effect of recombinant human erythropoietin on mitomycin C-induced oxidative stress and genotoxicity in rat kidney and heart tissues. Hum Exp Toxicol 2015; 35:53-62. [PMID: 25733728 DOI: 10.1177/0960327115577521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitomycin C (MMC) is an antineoplastic agent used for the treatment of several human malignancies. Nevertheless, the prolonged use of the drug may result in a serious heart and kidney injuries. Recombinant human erythropoietin (rhEPO) has recently been shown to exert an important cytoprotective effect in experimental brain injury and ischemic acute renal failure. The aim of the present work is to investigate the cardioprotective and renoprotective effects of rhEPO against MMC-induced oxidative damage and genotoxicity. Our results showed that MMC induced oxidative stress and DNA damage. rhEPO administration in any treatment conditions decreased oxidative damage induced by MMC. It reduced malondialdehyde and protein carbonyl levels. rhEPO ameliorated reduced glutathione plus oxidized glutathione modulation and the increased catalase activity after MMC treatment. Furthermore, rhEPO restored DNA damage caused by MMC. We concluded that rhEPO administration especially in pretreatment condition protected rats against MMC-induced heart and renal oxidative stress and genotoxicity.
Collapse
Affiliation(s)
- K Rjiba-Touati
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - I Ayed-Boussema
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Y Guedri
- Department of Nephrology, Dialysis and Transplant, University Hospital of Sahloul, Sousse, Tunisia
| | - A Achour
- Department of Nephrology, Dialysis and Transplant, University Hospital of Sahloul, Sousse, Tunisia
| | - H Bacha
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - S Abid-Essefi
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| |
Collapse
|
15
|
Ali-Hassan-Sayegh S, Mirhosseini SJ, Tahernejad M, Mahdavi P, Haddad F, Shahidzadeh A, Lotfaliani MR, Sedaghat-Hamedani F, Kayvanpour E, Weymann A, Sabashnikov A, Popov AF. Administration of erythropoietin in patients with myocardial infarction: does it make sense? An updated and comprehensive meta-analysis and systematic review. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2015; 16:179-89. [PMID: 25704158 DOI: 10.1016/j.carrev.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/29/2014] [Accepted: 01/14/2015] [Indexed: 01/14/2023]
Abstract
This systematic review with meta-analysis sought to determine protective effects of erythropoietin on clinical outcomes following percutaneous coronary intervention (PCI). Medline, Embase, Elsevier and Sciences online database as well as Google scholar literature were used for selecting appropriate studies with randomized controlled design. The effect sizes measured were odds ratio (OR) for categorical variables and weighted mean difference (WMD) with 95% confidence interval for calculating differences between mean values of duration of hospitalization in intervention and control groups. Values of P<0.1 for Q test or I(2)>50% indicated significant heterogeneity between the studies. The literature searches of all major databases retrieved 973 studies. After screening, a total of 15 trials that reported outcomes were identified. Pooled analysis was performed on left ventricular ejection fraction (WMD of -0.047; 95% CI: -0.912 to 0.819; P=0.9), left ventricular end diastolic volume (WMD of -0.363; 95% CI: -3.902 to 3.175; P=0.8), left ventricular end systolic volume (WMD of 0.346; 95% CI: -2.533 to 3.226; P=0.8), infarct size (WMD of -0.446; 95% CI: -2.352 to -1.460; P=0.6), stroke (OR of 2.1; 95% CI: 0.58 to 7.54; P=0.2), re-myocardial infarction (OR of 1.06; 95% CI: 0.52 to 2.185; P=0.8), heart failure (OR of 0.53; 95% CI: 0.259 to 1.105; P=0.09), mortality (OR of 0.56; 95% CI: 0.27 to 1.19; P=0.13), thrombosis (OR of 0.774; 95% CI: 0.41 to 1.45; P=0.4), major adverse cardiovascular events (OR of 0.926; 95% CI: 0.63 to 1.35; P=0.6). Short-term administration of EPO in patients with myocardial infarction (MI) undergoing PCI does not result in improvement in cardiac function, reduction of infarct size and all-cause mortality. Low dose EPO therapy may not be the choice of treatment for the patients with MI, while higher doses might be more effective.
Collapse
Affiliation(s)
| | | | - Mahbube Tahernejad
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Mahdavi
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Haddad
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Shahidzadeh
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Elham Kayvanpour
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Alexander Weymann
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Anton Sabashnikov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Aron-Frederik Popov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Jun JH, Jun NH, Shim JK, Shin EJ, Kwak YL. Erythropoietin protects myocardium against ischemia-reperfusion injury under moderate hyperglycemia. Eur J Pharmacol 2014; 745:1-9. [PMID: 25446919 DOI: 10.1016/j.ejphar.2014.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 01/26/2023]
Abstract
Erythropoietin (EPO), an essential hormone for erythropoiesis, provides protection against myocardial ischemia/reperfusion (I/R) injury. Hyperglycemia during acute myocardial infarction aggravates organ damage and attenuates the efficacies of various protective measures. This study aimed to investigate the protective role of EPO against myocardial I/R injury under a clinically relevant moderate hyperglycemic condition and its associated mechanisms. Eighty-two Sprague-Dawley rats were randomly assigned to six groups: normoglycemia-Sham, normoglycemia-I/R-control-saline (IRC), normoglycemia-I/R-EPO (IRE), hyperglycemia-Sham, hyperglycemia-IRC, and hyperglycemia-IRE. The rats received 1.2 g/kg dextrose or same volume of normal saline depending on the group. I/R was induced by a 30 min period of ischemia followed by reperfusion for 4 h. For 1 h before I/R injury, intravenous 4000 IU/kg of EPO was administered. EPO pretreatment significantly reduced the number of apoptotic cells and the infarct size compared with those of the control groups. EPO increased GATA-4 phosphorylation and acetylation against I/R in hyperglycemic myocardium. It also enhanced ERK induced GATA-4 post-translational modifications such as increased GATA-4 phosphorylation and acetylation, and decreased GATA-4 ubiquitination following hypoxia-reoxygenation in H9c2 cells in hyperglycemic medium. Increased GATA-4 stability by EPO diminished I/R-related down-regulation of Bcl-2 and reduction of caspase-3 activities in hyperglycemic myocardium. In conclusion, EPO pretreatment before I/R injury conveyed significant myocardial protection under moderate hyperglycemic condition through mechanisms involved in reduction of caspase-3 activity and up-regulation of Bcl-2 in association with enhanced ERK-induced GATA-4 stability.
Collapse
Affiliation(s)
- Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Na-Hyung Jun
- Department of Anesthesiology and Pain Medicine, National Health Insurance Corporation Ilsan Hospital, Goyang, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Shin
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Erythropoietin and the heart: physiological effects and the therapeutic perspective. Int J Cardiol 2013; 171:116-25. [PMID: 24377712 DOI: 10.1016/j.ijcard.2013.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Erythropoietin (Epo) has been thought to act exclusively on erythroid progenitor cells. The identification of Epo receptor (EpoR) in non-haematopoietic cells and tissues including neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells, as well as cells of myocardium, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle indicates that Epo has pleiotropic actions. Epo shows signals through protein kinases, anti-apoptotic proteins and transcription factors. In light of interest of administering recombinant human erythropoietin (rhEpo) and its analogues for limiting infarct size and left ventricular (LV) remodelling after acute myocardial infarction (AMI) in humans, the foremost studies utilising rhEpo are reviewed. The putative mechanisms involved in Epo-induced cardioprotection are related to the antiapoptotic, anti-inflammatory and angiogenic effects of Epo. Thus, cardioprotective potentials of rhEpo are reviewed in this article by focusing on clinical applicability. An overview of non-haematopoietic Epo analogues, which are a reliable alternative to the classic EpoR agonists and may prevent undesired side effects, is also provided.
Collapse
|
18
|
Wen Y, Xu J, Ma X, Gao Q. High-dose erythropoietin in acute ST-segment elevation myocardial infarction: a meta-analysis of randomized controlled trials. Am J Cardiovasc Drugs 2013; 13:435-42. [PMID: 24097294 DOI: 10.1007/s40256-013-0042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We sought to perform a meta-analysis to evaluate the potential influence of high-dose erythropoietin (EPO) on cardiac function parameters in patients with acute ST-segment elevation myocardial infarction (STEMI). METHODS AND RESULTS By searching PubMed, EMBASE, and the Cochrane Library (up to December 2012), seven randomized controlled trials (RCTs) reporting cardiac functional parameters with a total of 1,250 acute STEMI patients were identified. When applied to patients with acute STEMI, high-dose EPO was relatively safe and no increase in all-caused death and severe adverse effects were indicated. Estimates were pooled from fixed or random effects models. Compared with controls, high-dose EPO resulted in a slight but significant improvement in left ventricular ejection fraction of 1.02 % [95 % confidence interval (CI) 0.17-1.88, P = 0.019, I (2) = 0 %] and an improvement in left ventricular end-systolic volume of -4.61 ml (95 % CI -7.64 to -1.58, P = 0.003, I (2) = 27.7 %). CONCLUSIONS Available evidence suggested that high-dose EPO has limited cardio-protective effects in patients with STEMI. However, considering the relatively short follow-up durations and small patient populations in the current RCTs, the effects of high-dose EPO on clinical outcomes in patients with STEMI need to be evaluated in larger prospective RCTs of longer duration.
Collapse
Affiliation(s)
- Yanting Wen
- Center for Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | | | | | | |
Collapse
|
19
|
Ahmet I, Tae HJ, Brines M, Cerami A, Lakatta EG, Talan MI. Chronic administration of small nonerythropoietic peptide sequence of erythropoietin effectively ameliorates the progression of postmyocardial infarction-dilated cardiomyopathy. J Pharmacol Exp Ther 2013; 345:446-56. [PMID: 23584743 DOI: 10.1124/jpet.113.202945] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cardioprotective properties of erythropoietin (EPO) in preclinical studies are well documented, but erythropoietic and prothrombotic properties of EPO preclude its use in chronic heart failure (CHF). We tested the effect of long-term treatment with a small peptide sequence within the EPO molecule, helix B surface peptide (HBSP), that possesses tissue-protective, but not erythropoietic properties of EPO, on mortality and cardiac remodeling in postmyocardial infarction-dilated cardiomyopathy in rats. Starting 2 weeks after permanent left coronary artery ligation, rats received i.p. injections of HBSP (60 µg/kg) or saline two times per week for 10 months. Treatment did not elicit an immune response, and did not affect the hematocrit. Compared with untreated rats, HBSP treatment reduced mortality by 50% (P < 0.05). Repeated echocardiography demonstrated remarkable attenuation of left ventricular dilatation (end-diastolic volume: 41 versus 86%; end-systolic volume: 44 versus 135%; P < 0.05), left ventricle functional deterioration (ejection fraction: -4 versus -63%; P < 0.05), and myocardial infarction (MI) expansion (3 versus 38%; P < 0.05). A hemodynamic assessment at study termination demonstrated normal preload independent stroke work (63 ± 5 versus 40 ± 4; P < 0.05) and arterioventricular coupling (1.2 ± 0.2 versus 2.7 ± 0.7; P < 0.05). Histologic analysis revealed reduced apoptosis (P < 0.05) and fibrosis (P < 0.05), increased cardiomyocyte density (P < 0.05), and increased number of cardiomyocytes in myocardium among HBSP-treated rats. The results indicate that HBSP effectively reduces mortality, ameliorates the MI expansion and CHF progression, and preserves systolic reserve in the rat post-MI model. There is also a possibility that HBSP promoted the increase of the myocytes number in the myocardial wall remote from the infarct. Thus, HBSP peptide merits consideration for clinical testing.
Collapse
Affiliation(s)
- Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Extensive research during the last decade demonstrated that a single systemic administration of -erythropoietin (EPO) lead to significant attenuation of myocardial infarction (MI) induced in animals, mostly small rodents, either by a myocardial ischemia followed by reperfusion or by a permanent ligation of a coronary artery. Both methods are critically reviewed with the aim of helping the reader in appreciating key issues in the translation of experimental results to the clinic. Results of several clinical trials in patients with acute MI completed to date failed to demonstrate beneficial effects of EPO, and thus put into question the validity of results obtained in animal models. Comprehensive review of design and results of animal experiments and clinical trials presented here allowed authors to postulate that therapeutic window for EPO during developing MI is very narrow and was possibly missed in negative clinical trials. This point was illustrated by the negative outcome of experiment in the rat model of MI in which timing of EPO administration was similar to that in clinical trials. The design of future clinical trials should allow for a narrow therapeutic window of EPO. Given current standards for onset-to-door and door-to-balloon time the optimal time for EPO administration should be just prior to PCI.
Collapse
|
21
|
Ahmet I, Lakatta EG, Talan MI. Acute hemodynamic effects of erythropoietin do not mediate its cardioprotective properties. Biol Open 2012; 1:1049-53. [PMID: 23213383 PMCID: PMC3507179 DOI: 10.1242/bio.20122378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/31/2012] [Indexed: 11/26/2022] Open
Abstract
Activation of nitric oxide (NO) signaling is considered, at list partially, a mechanistic basis for EPO-induced cardioprotection. Surprisingly, hemodynamic response subsequent to NO activation after EPO administration has never been reported. The objectives of this study were to evaluate the acute hemodynamic and cardiovascular responses to EPO administration, to confirm their NO genesis, and to test the hypothesis that EPO-induced cardioprotection is mediated through cardiovascular changes related to NO activation. In Experiment 1, after 3000 U/kg of rhEPO was administered intravenously to Wistar rats, arterial blood pressure, monitored via indwelling catheter, progressively declined almost immediately until it leveled off 90 minutes after injection at 20% below control level. In Experiment 2 the 25% reduction of mean blood pressure, compared to control group, was observed 2 hours after intravenous injection of either 3000 or 150 U/kg of rhEPO. Detailed pressure–volume loop analyses of cardiac performance (Experiment 3) 2 hours after intravenous injection of human or rat recombinant EPO (3000 U/kg) revealed a significant reduction of systolic function (PRSW was 33% less than control). Reduction of arterial blood pressure and systolic cardiac function in response to rhEPO were blocked in rats pretreated with a non-selective inhibitor of nitric oxide synthase (L-NAME). In Experiment 4, 24 hours after a permanent ligation of a coronary artery, myocardial infarction (MI) measured 26±3.5% of left ventricle in untreated rats. MI in rats treated with 3000 U/kg of rhEPO immediately after coronary ligation was 56% smaller. Pretreatment with L-NAME did not attenuate the beneficial effect of rhEPO on MI size, while MI size in rats treated with L-NAME alone did not differ from control. Therefore, a single injection of rhEPO resulted in a significant, NO-mediated reduction of systemic blood pressure and corresponding reduction of cardiac systolic function. However, EPO-induced protection of myocardium from ischemic damage is not associated with NO activation or NO-mediated hemodynamic responses.
Collapse
Affiliation(s)
- Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Mark I. Talan
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther 2012; 136:69-81. [PMID: 22800800 DOI: 10.1016/j.pharmthera.2012.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Hypoxia inducible factor (HIF) is an oxygen-sensitive transcription factor that enables aerobic organisms to adapt to hypoxia. This is achieved through the transcriptional activation of up to 200 genes, many of which are critical to cell survival. Under conditions of normoxia, the hydroxylation of HIF by prolyl hydroxylase domain-containing (PHD) enzymes targets it for polyubiquitination and proteosomal degradation by the von Hippel-Lindau protein (VHL). However, under hypoxic conditions, PHD activity is inhibited, thereby allowing HIF to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Experimental studies suggest that HIF may act as a mediator of ischemic preconditioning, and that the genetic or pharmacological stabilization of HIF under normoxic conditions, may protect the heart against the detrimental effects of acute ischemia-reperfusion injury. The mechanisms underlying the cardioprotective effect of HIF are unclear, but it may be attributed to the transcriptional activation of genes associated with cardioprotection such as erythropoietin, heme oxygenase-1, and inducible nitric oxide synthase or it may be due to reprogramming of cell metabolism. In this review article, we highlight the role of HIF in mediating both adaptive and pathological processes in the heart, as well as focusing on the therapeutic potential of the HIF-signaling pathway as a target for cardioprotection.
Collapse
Affiliation(s)
- Sang-Ging Ong
- The Hatter Cardiovascular Institute, University College London Hospital, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | | |
Collapse
|
23
|
Bell RM, Yellon DM. Conditioning the whole heart—not just the cardiomyocyte. J Mol Cell Cardiol 2012; 53:24-32. [DOI: 10.1016/j.yjmcc.2012.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/05/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
24
|
Did clinical trials in which erythropoietin failed to reduce acute myocardial infarct size miss a narrow therapeutic window? PLoS One 2012; 7:e34819. [PMID: 22529941 PMCID: PMC3329541 DOI: 10.1371/journal.pone.0034819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To test a hypothesis that in negative clinical trials of erythropoietin in patients with acute myocardial infarction (MI) the erythropoietin (rhEPO) could be administered outside narrow therapeutic window. Despite overwhelming evidence of cardioprotective properties of rhEPO in animal studies, the outcomes of recently concluded phase II clinical trials have failed to demonstrate the efficacy of rhEPO in patients with acute MI. However, the time between symptoms onset and rhEPO administration in negative clinical trials was much longer that in successful animal experiments. METHODOLOGY/PRINCIPAL FINDINGS MI was induced in rats either by a permanent ligation of a descending coronary artery or by a 2-hr occlusion followed by a reperfusion. rhEPO, 3000 IU/kg, was administered intraperitoneally at the time of reperfusion, 4 hrs after beginning of reperfusion, or 6 hrs after permanent occlusion. MI size was measured histologically 24 hrs after coronary occlusion. The area of myocardium at risk was similar among groups. The MI size in untreated rats averaged ~42% of area at risk, or ~24% of left ventricle, and was reduced by more than 50% (p<0.001) in rats treated with rhEPO at the time of reperfusion. The MI size was not affected by treatment administered 4 hrs after reperfusion or 6 hrs after permanent coronary occlusion. Therefore, our study in a rat experimental model of MI demonstrates that rhEPO administered within 2 hrs of a coronary occlusion effectively reduces MI size, but when rhEPO was administered following a delay similar to that encountered in clinical trials, it had no effect on MI size. CONCLUSIONS/SIGNIFICANCE The clinical trials that failed to demonstrate rhEPO efficacy in patients with MI may have missed a narrow therapeutic window defined in animal experiments.
Collapse
|
25
|
Abstract
Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide. For a large number of patients with CHD, coronary artery bypass graft (CABG) surgery remains the preferred strategy for coronary revascularization. Over the last 10 years, the number of high-risk patients undergoing CABG surgery has increased significantly, resulting in worse clinical outcomes in this patient group. This appears to be related to the ageing population, increased co-morbidities (such as diabetes, obesity, hypertension, stroke), concomitant valve disease, and advances in percutaneous coronary intervention which have resulted in patients with more complex coronary artery disease undergoing surgery. These high-risk patients are more susceptible to peri-operative myocardial injury and infarction (PMI), a major cause of which is acute global ischaemia/reperfusion injury arising from inadequate myocardial protection during CABG surgery. Therefore, novel therapeutic strategies are required to protect the heart in this high-risk patient group. In this article, we review the aetiology of PMI during CABG surgery, its diagnosis and clinical significance, and the endogenous and pharmacological therapeutic strategies available for preventing it. By improving cardioprotection during CABG surgery, we may be able to reduce PMI, preserve left ventricular systolic function, and reduce morbidity and mortality in these high-risk patients with CHD.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College, London WC1E 6HX, UK
| | | | | |
Collapse
|
26
|
Joshi D, Tsui J, Yu R, Shiwen X, Selvakumar S, Abraham DJ, Baker DM. Potential of Novel EPO Derivatives in Limb Ischemia. Cardiol Res Pract 2012; 2012:213785. [PMID: 22462027 PMCID: PMC3296231 DOI: 10.1155/2012/213785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/12/2011] [Indexed: 12/18/2022] Open
Abstract
Erythropoietin (EPO) has tissue-protective properties, but it increases the risk of thromboembolism by raising the haemoglobin concentration. New generation of EPO derivatives is tissue protective without the haematopoietic side effects. Preclinical studies have demonstrated their effectiveness and safety. This paper summarizes the development in EPO derivatives with emphasis on their potential use in critical limb ischaemia.
Collapse
Affiliation(s)
- Dhiraj Joshi
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Janice Tsui
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Rebekah Yu
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Xu Shiwen
- Centre for Rheumatology, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Sadasivam Selvakumar
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| | - Daryll M. Baker
- Vascular Unit, Division of Surgery and Interventional Science, Royal Free Hospital, University College London (Royal Free Campus), Pond Street, London NW3 2QG, UK
| |
Collapse
|
27
|
Napoli C, Casamassimi A, Crudele V, Infante T, Abbondanza C. Kidney and heart interactions during cardiorenal syndrome: a molecular and clinical pathogenic framework. Future Cardiol 2012; 7:485-97. [PMID: 21797745 DOI: 10.2217/fca.11.24] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The heart and kidney are physiologically interconnected. Cardiorenal syndrome (CRS) is a pathological disorder where acute or chronic dysfunction in one organ may induce dysfunction in the other one. Although classical studies have proposed a role for hypertension, dyslipidemia and endothelial dysfunction, CRS should be considered as a complex molecular interplay of neurohumoral pathway activation including the sympathetic nervous system, the renin angiotensin aldosterone axis, the endothelin system and the arginine vasopressin system. This activation may induce vascular inflammation, oxidative stress, accelerated atherosclerosis, cardiac hypertrophy and both myocardial and intrarenal fibrosis with progression of CRS treatment. More recently, epigenetics has opened new pathogenic molecular routes for CRS. This will lead to a more rapid development of novel, safe and effective clinical therapies.
Collapse
Affiliation(s)
- Claudio Napoli
- Dipartimento di Patologia Generale, Centro di Eccellenza sulle Malattie Cardiovascolari, Facoltà di Medicina e Chirurgia, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | | | | | | | | |
Collapse
|
28
|
Salisch SV, Klar M, Thurisch B, Bungert J, Dame C. Gata4 and Sp1 regulate expression of the erythropoietin receptor in cardiomyocytes. J Cell Mol Med 2012; 15:1963-72. [PMID: 21029371 PMCID: PMC3918051 DOI: 10.1111/j.1582-4934.2010.01193.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Experimental studies indicate significant cardioprotective effects of recombinant erythropoietin (Epo) by binding to the Epo receptor (EpoR) and by inducing various molecular mechanisms, including activation of Gata4, a transcription factor that induces anti-apoptotic genes. However, specific molecular mechanisms of EpoR regulation in cardiomyocytes are unknown. We identified a 774 bp regulatory domain in the EpoR 5' flanking region by reporter gene assays in murine HL-1 cardiomyocytes. The binding sites for Gata and Sp transcription factors both significantly contributed to EpoR promoter activity. DNA-binding studies (EMSA and ChIP assays) identified Gata4 and Sp1 as EpoR promoter-binding proteins in HL1 cardiomyocytes. Although Sp1 alone stimulates EpoR only slightly, forced expression of Gata4 significantly induced EpoR mRNA expression. In addition, knockdown of Gata4 (but also of Sp1) resulted in a significant decrease of EpoR transcript levels in HL-1 cardiomyocytes. Cumulative in vitro data suggest that function of the Sp1 site is essential for the Gata4-mediated transcription. In vivo, analysis of transgenic mice expressing an inducible small-hairpin RNA against Gata4 confirmed suppression of EpoR expression in the heart. Treating mice with high-dose doxorubicin not only resulted in Gata4 protein depletion, but also down-regulated EpoR, followed by up-regulation of EpoR transcripts when Gata4 levels recovered. In conclusion, we identified Gata4 as novel regulator of EpoR transcription in cardiomyocytes. In models of cardiac injury, down-regulation of Gata4 or Sp1 may limit the accessibility of the EpoR for binding of erythropoiesis-stimulating agents (ESA). Thereby our data underline the essential role of Gata4 in mediating cardioprotective effects.
Collapse
Affiliation(s)
- Sandy von Salisch
- Department of Neonatology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Li J, Xu H, Gao Q, Wen Y. Effect of erythropoiesis-stimulating agents in acute ST-segment elevation myocardial infarction: a systematic review. Eur J Clin Pharmacol 2011; 68:469-77. [DOI: 10.1007/s00228-011-1160-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
30
|
Niccoli G, Andreotti F, Marzo F, Cecchetti S, Santucci E, D'Amario D, Pafundi T, Cosentino N, Crea F. Endogenous serum erythropoietin and no-reflow in patients with ST-elevation myocardial infarction. Eur J Clin Invest 2011; 41:1210-9. [PMID: 21492156 DOI: 10.1111/j.1365-2362.2011.02528.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In models of acute ischaemia, erythropoietin (EPO) administration has been found to attenuate vascular injury largely through reduced apoptosis, suppressed inflammation and increased nitric oxide availability. We studied the association between circulating endogenous EPO and no-reflow in patients with first ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). METHODS Blood sampling was performed before PPCI. Consecutive patients with (n = 24) or without (n = 24) evidence of angiographic no-reflow after PPCI were enrolled. Angiographic no-reflow was defined as Thrombolysis in Myocardial Infarction (TIMI) flow ≤ 2 or as TIMI flow = 3 but with myocardial blush grade < 2. We also assessed electrocardiographic (ECG) no-reflow as ≤ 50% resolution of maximal ST elevation 60 min after PPCI. RESULTS Baseline characteristics did not correlate significantly with EPO concentrations. In contrast, both angiographic and ECG no-reflow correlated with lower EPO levels at univariate analysis [median (interquartile): 4·2 (0·6-9·5) vs. 12·2 (5·2-20·3) mIU mL(-1), P = 0·001, and 4·0 (0·6-7·1) vs. 9·3 (1·0-12·6) mIU mL(-1), P = 0·01, respectively]. At multivariable analysis, decreasing EPO tertiles and left anterior descending as the infarct-related artery were the only factors that predicted both angiographic and ECG no-reflow (P = 0·017 and P = 0·02 for EPO; P < 0·005 and P > 0·05 for left anterior descending artery, respectively). CONCLUSIONS We found an independent, graded, inverse relation between endogenous EPO levels and angiographic and ECG no-reflow following PPCI. In animal models of ischaemia, EPO has been found to be protective. In humans, endogenous EPO may contribute to offset the mechanisms responsible for no-reflow.
Collapse
|
31
|
Murua A, Orive G, Hernández RM, Pedraz JL. Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 2011; 31:284-309. [PMID: 19967731 DOI: 10.1002/med.20184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deciphering the function of proteins and their roles in signaling pathways is one of the main goals of biomedical research, especially from the perspective of uncovering pathways that may ultimately be exploited for therapeutic benefit. Over the last half century, a greatly expanded understanding of the biology of the glycoprotein hormone erythropoietin (Epo) has emerged from regulator of the circulating erythrocyte mass to a widely used therapeutic agent. Originally viewed as the renal hormone responsible for erythropoiesis, recent in vivo studies in animal models and clinical trials demonstrate that many other tissues locally produce Epo independent of its effects on red blood cell mass. Thus, not only its hematopoietic activity but also the recently discovered nonerythropoietic actions in addition to new drug delivery systems are being thoroughly investigated in order to fulfill the specific Epo release requirements for each therapeutic approach. The present review focuses on updating the information previously provided by similar reviews and recent experimental approaches are presented to describe the advances in Epo drug delivery achieved in the last few years and future perspectives.
Collapse
Affiliation(s)
- Ainhoa Murua
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | | | | | | |
Collapse
|
32
|
House AA, Haapio M, Lassus J, Bellomo R, Ronco C. Pharmacological management of cardiorenal syndromes. Int J Nephrol 2011; 2011:630809. [PMID: 21660311 PMCID: PMC3108139 DOI: 10.4061/2011/630809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Cardiorenal syndromes are disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. The pharmacological management of Cardiorenal syndromes may be complicated by unanticipated or unintended effects of agents targeting one organ on the other. Hence, a thorough understanding of the pathophysiology of these disorders is paramount. The treatment of cardiovascular diseases and risk factors may affect renal function and modify the progression of renal injury. Likewise, management of renal disease and associated complications can influence heart function or influence cardiovascular risk. In this paper, an overview of pharmacological management of acute and chronic Cardiorenal Syndromes is presented, and the need for high-quality future studies in this field is highlighted.
Collapse
Affiliation(s)
- Andrew A House
- Division of Nephrology, London Health Sciences Centre, University Hospital, 339 Windermere Road, London, ON, Canada N6A 5A5
| | | | | | | | | |
Collapse
|
33
|
Ahmet I, Tae HJ, Juhaszova M, Riordon DR, Boheler KR, Sollott SJ, Brines M, Cerami A, Lakatta EG, Talan MI. A small nonerythropoietic helix B surface peptide based upon erythropoietin structure is cardioprotective against ischemic myocardial damage. Mol Med 2010; 17:194-200. [PMID: 21170473 DOI: 10.2119/molmed.2010.00235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/15/2010] [Indexed: 01/23/2023] Open
Abstract
Strong cardioprotective properties of erythropoietin (EPO) reported over the last 10 years have been difficult to translate to clinical applications for ischemic cardioprotection owing to undesirable parallel activation of erythropoiesis and thrombogenesis. A pyroglutamate helix B surface peptide (pHBP), recently engineered to include only a part of the EPO molecule that does not bind to EPO receptor and thus, is not erythropoietic, retains tissue protective properties of EPO. Here we compared the ability of pHBP and EPO to protect cardiac myocytes from oxidative stress in vitro and cardiac tissue from ischemic damage in vivo. HBP, similar to EPO, increased the reactive oxygen species (ROS) threshold for induction of the mitochondrial permeability transition by 40%. In an experimental model of myocardial infarction induced by permanent ligation of a coronary artery in rats, a single bolus injection of 60 μg/kg of pHBP immediately after coronary ligation, similar to EPO, reduced apoptosis in the myocardial area at risk, examined 24 h later, by 80% and inflammation by 34%. Myocardial infarction (MI) measured 24 h after coronary ligation was similarly reduced by 50% in both pHBP- and EPO-treated rats. Two wks after surgery, left ventricular remodeling (ventricular dilation) and functional decline (fall in ejection fraction) assessed by echocardiography were significantly and similarly attenuated in pHBP- and EPO-treated rats, and MI size was reduced by 25%. The effect was retained during the 6-wk follow-up. A single bolus injection of pHBP immediately after coronary ligation was effective in reduction of MI size in a dose as low as 1 μg/kg, but was ineffective at a 60 μg/kg dose if administered 24 h after MI induction. We conclude that pHBP is equally cardioprotective with EPO and deserves further consideration as a safer alternative to rhEPO in the search for therapeutic options to reduce myocardial damage following blockade of the coronary circulation.
Collapse
Affiliation(s)
- Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, National Institute on Aging, NIH, Baltimore, Maryland 21224-6825, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croué A, Tourmen Y, Henrion D, Furber A, Prunier F. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling. Basic Res Cardiol 2010; 106:147-62. [PMID: 20981553 DOI: 10.1007/s00395-010-0130-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 12/22/2022]
Abstract
Recent studies reported cardioprotective effects of erythropoietin (EPO) against ischemia-reperfusion (I/R) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been reported to be impaired in diabetes and insulin resistance syndrome, we examined whether EPO-induced cardioprotection was maintained in rat models of type 1 diabetes and insulin resistance syndrome. Isolated hearts were obtained from three rat cohorts: healthy controls, streptozotocin (STZ)-induced diabetes, and high-fat diet (HFD)-induced insulin resistance syndrome. All hearts underwent 25 min ischemia and 30 min or 120 min reperfusion. They were assigned to receive either no intervention or a single dose of EPO at the onset of reperfusion. In hearts from healthy controls, EPO decreased infarct size (14.36 ± 0.60 and 36.22 ± 4.20% of left ventricle in EPO-treated and untreated hearts, respectively, p < 0.05) and increased phosphorylated forms of Akt, ERK1/2, and their downstream target GSK-3β. In hearts from STZ-induced diabetic rats, EPO did not decrease infarct size (32.05 ± 2.38 and 31.88 ± 1.87% in EPO-treated and untreated diabetic rat hearts, respectively, NS) nor did it increase phosphorylation of Akt, ERK1/2, and GSK-3β. In contrast, in hearts from HFD-induced insulin resistance rats, EPO decreased infarct size (18.66 ± 1.99 and 34.62 ± 3.41% in EPO-treated and untreated HFD rat hearts, respectively, p < 0.05) and increased phosphorylation of Akt, ERK1/2, and GSK-3β. Administration of GSK-3β inhibitor SB216763 was cardioprotective in healthy and diabetic hearts. STZ-induced diabetes abolished EPO-induced cardioprotection against I/R injury through a disruption of upstream signaling of GSK-3β. In conclusion, direct inhibition of GSK-3β may provide an alternative strategy to protect diabetic hearts against I/R injury.
Collapse
Affiliation(s)
- Nehmat Ghaboura
- Protection et Remodelage du Myocarde, UPRES EA 3860, Faculté de Médecine, Université d'Angers, Rue Haute de Reculée, 49045 Angers Cedex 1, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
House AA, Haapio M, Lassus J, Bellomo R, Ronco C. Therapeutic strategies for heart failure in cardiorenal syndromes. Am J Kidney Dis 2010; 56:759-73. [PMID: 20557988 DOI: 10.1053/j.ajkd.2010.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/14/2010] [Indexed: 12/22/2022]
Abstract
Cardiorenal syndromes are disorders of the heart and kidneys whereby acute or long-term dysfunction in one organ may induce acute or long-term dysfunction of the other. The management of cardiovascular diseases and risk factors may influence, in a beneficial or harmful way, kidney function and progression of kidney injury. In this review, we assess therapeutic strategies and discuss treatment options for the management of patients with heart failure with decreased kidney function and highlight the need for future high-quality studies in patients with coexisting heart and kidney disease.
Collapse
Affiliation(s)
- Andrew A House
- London Health Sciences Centre, Division of Nephrology, London, Canada.
| | | | | | | | | |
Collapse
|
36
|
Treguer F, Donal E, Tamareille S, Ghaboura N, Derumeaux G, Furber A, Prunier F. Speckle tracking imaging improves in vivo assessment of EPO-induced myocardial salvage early after ischemia-reperfusion in rats. Am J Physiol Heart Circ Physiol 2010; 298:H1679-86. [DOI: 10.1152/ajpheart.01058.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A noninvasive assessment of infarct size and transmural extension of myocardial infarction (TEMI) is fundamental in experimental models of ischemia-reperfusion. Conventional echocardiography parameters are limited in this purpose. This study was designed to examine whether speckle tracking imaging can be used in a rat model of ischemia-reperfusion to accurately detect the reduction of infarct size and TEMI induced by erythropoietin (EPO) as early as 24 h after reperfusion. Rats were randomly assigned to one of three groups: myocardial infarction (MI)-control group, 45 min ischemia followed by 24 h of reperfusion; MI-EPO group, similar surgery with a single bolus of EPO administered at the onset of reperfusion; and sham-operated group. Short-axis two-dimensional echocardiography was performed after reperfusion. Global radial (GSr) and circumferential (GScir) strains were compared with infarct size and TEMI assessed after triphenyltetrazolium chloride staining. As a result, ejection fraction, shortening fraction, GSr, and GScir significantly correlated to infarct size, whereas only GSr and GScir significantly correlated to TEMI. EPO significantly decreased infarct size (30.8 ± 3.5 vs. 56.2 ± 5.7% in MI-control, P < 0.001) and TEMI (0.37 ± 0.05 vs. 0.77 ± 0.05 in MI-control, P < 0.001). None of the conventional echocardiography parameters was significantly different between the MI-EPO and MI-control groups, whereas GSr was significantly higher in the MI-EPO group (29.1 ± 4.7 vs. 16.4 ± 3.3% in MI-control; P < 0.05). Furthermore, GScir and GSr appeared to be the best parameters to identify a TEMI >0.75 24 h after reperfusion. In conclusion, these findings demonstrate the usefulness of speckle tracking imaging in the early evaluation of a cardioprotective strategy in a rat model of ischemia-reperfusion.
Collapse
Affiliation(s)
- Frederic Treguer
- Protection et Remodelage du Myocarde, Unité Propre de Recherche de l'Enseignement Supérieur 3860, Université d'Angers, Angers
- Service de Cardiologie, Centre Hospitalier Universitaire d'Angers, Angers
| | - Erwan Donal
- Service de Cardiologie, Centre Hospitalier Universitaire de Rennes, Centre d'Investigation Clinique et d'Innovation Technologique 804, Laboratoire Traitement du Signal et de l'Image, Institut National de la Santé Et de la Recherche Médicale U 642, Rennes; and
| | - Sophie Tamareille
- Protection et Remodelage du Myocarde, Unité Propre de Recherche de l'Enseignement Supérieur 3860, Université d'Angers, Angers
| | - Nehmat Ghaboura
- Protection et Remodelage du Myocarde, Unité Propre de Recherche de l'Enseignement Supérieur 3860, Université d'Angers, Angers
| | - Geneviève Derumeaux
- Cardioprotection, Institut National de la Santé Et de la Recherche Médicale U 886, Université Claude Bernard, Lyon, France
| | - Alain Furber
- Protection et Remodelage du Myocarde, Unité Propre de Recherche de l'Enseignement Supérieur 3860, Université d'Angers, Angers
- Service de Cardiologie, Centre Hospitalier Universitaire d'Angers, Angers
| | - Fabrice Prunier
- Protection et Remodelage du Myocarde, Unité Propre de Recherche de l'Enseignement Supérieur 3860, Université d'Angers, Angers
- Service de Cardiologie, Centre Hospitalier Universitaire d'Angers, Angers
| |
Collapse
|
37
|
Joshi D, Tsui J, Ho TK, Selvakumar S, Abraham DJ, Baker DM. Review of the Role of Erythropoietin in Critical Leg Ischemia. Angiology 2010; 61:541-50. [DOI: 10.1177/0003319709358697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a need to develop alternative treatment strategies for the 30% of patients with critical leg ischemia (CLI) for whom conventional modes of revascularization fail. The efficacy erythropoietin (EPO) in this regard has been verified in preclinical models. Erythropoietin receptors are expressed in the human skeletal muscle and possibly, upregulated in CLI. Furthermore, EPO induces angiogenesis and prevents apoptosis in the ischemic skeletal muscle. The use of EPO in conjunction with autologous bone marrow cells or gene-induced angiogenesis with vascular endothelial growth factor may be more effective in inducing angiogenesis and protecting the critically ischemic leg than EPO alone. The recently synthesized nonhemopoietic derivatives of EPO (eg, asialo erythropoietin and carbamylated erythropoietin) allow higher doses to be administered to achieve tissue protective effects, without an unwanted increase in hematocrit. This may allow translation of preclinical studies into clinical trials.
Collapse
Affiliation(s)
- Dhiraj Joshi
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - Janice Tsui
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - Teik K. Ho
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - Sadasivam Selvakumar
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - David J. Abraham
- Centre for Rheumatology; University College London (Royal Free campus), London, United Kingdom
| | - Daryll M. Baker
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom,
| |
Collapse
|
38
|
Suh JW, Chung WY, Kim YS, Kim KI, Jeon EJ, Cho YS, Youn TJ, Chae IH, Kim CH, Choi DJ. The effect of intravenous administration of erythropoietin on the infarct size in primary percutaneous coronary intervention. Int J Cardiol 2010; 149:216-220. [PMID: 20199815 DOI: 10.1016/j.ijcard.2010.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 11/18/2009] [Accepted: 02/04/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND After an acute myocardial infarction, the early restoration of coronary blood flow is mandatory for reducing infarct size. However, the process of reperfusion itself may also cause irreversible myocardial injury and contribute to the final infarct size. Recent animal studies have suggested that erythropoietin could protect the myocardium when administered after the onset of reperfusion. We investigated whether the administration of erythropoietin at the time of PCI would limit the size of the infarct during acute myocardial infarction by analysis of MRI and cardiac enzymes in this pilot study. METHODS We randomly assigned 57 patients with acute, anterior wall ST-elevation myocardial infarction who were presented within 12h after the onset of chest pain to one group which was given an intravenous bolus of recombinant human erythropoietin (rhEPO, 50 U/kg) immediately before undergoing PCI or the control group without the IV treatment before PCI. Infarct size was assessed by measuring the release of cardiac enzymes (CK, CK-MB) and by performing MRI on day 4 after infarction. RESULTS The injection of erythropoietin did not result in thrombotic or hypertensive complications. The release of cardiac enzyme was not different between two groups. On day 4, the absolute infarct volume of the area of hyperenhancement on MRI did not differ between two groups (EPO group 52.4 ± 23.6 cm(3) vs. control group 54.8 ± 28.6 cm(3), p=0.74). Two groups did not differ in the percentage of total infarct volume over left ventricle volume (EPO group 34.4 ± 11.7% vs. 37.0 ± 13.8%, p=0.50). CONCLUSIONS Intravenous administration of erythropoietin was safe and was not associated with thrombotic or hypertensive side effects. However, it did not reduce the infarct size when assessed by MRI and cardiac enzyme. Further studies about the dose or routes of administration of EPO are needed (ClinicalTrials.gov Identifier NCT00882466).
Collapse
Affiliation(s)
- Jung-Won Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Woo-Young Chung
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Yong-Seok Kim
- Department of Internal Medicine, DongGuk University International Hospital, Goyang, Republic of Korea
| | - Kwang-Il Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Eun-Ju Jeon
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young-Seok Cho
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Tae-Jin Youn
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - In-Ho Chae
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Cheol-Ho Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Dong-Ju Choi
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea.
| |
Collapse
|
39
|
BALESTRA COSTANTINO, GERMONPRÉ PETER, LAFERE PIERRE, CICCARELLA YANNICK, VAN DER LINDEN PHILIPPE. The ‘normobaric oxygen paradox’: a simple way to induce endogenous erythropoietin production and concomitantly raise hemoglobin levels in anemic patients. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1778-428x.2010.01127.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Tamareille S, Ghaboura N, Treguer F, Khachman D, Croué A, Henrion D, Furber A, Prunier F. Myocardial reperfusion injury management: erythropoietin compared with postconditioning. Am J Physiol Heart Circ Physiol 2009; 297:H2035-43. [DOI: 10.1152/ajpheart.00472.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic postconditioning (IPost) and erythropoietin (EPO) have been shown to attenuate myocardial reperfusion injury using similar signaling pathways. The aim of this study was to examine whether EPO is as effective as IPost in decreasing postischemic myocardial injury in both Langendorff-isolated-heart and in vivo ischemia-reperfusion rat models. Rat hearts were subjected to 25 min ischemia, followed by 30 min or 2 h of reperfusion in the isolated-heart study. Rats underwent 45 min ischemia, followed by 24 h of reperfusion in the in vivo study. In both studies, the control group ( n = 12; ischemia-reperfusion only) was compared with IPost ( n = 16; 3 cycles of 10 s reperfusion/10 s ischemia) and EPO ( n = 12; 1,000 IU/kg) at the onset of reperfusion. The following resulted. First, in the isolated hearts, IPost or EPO significantly improved postischemic recovery of left ventricular developed pressure. EPO induced better left ventricular developed pressure than IPost at 30 min of reperfusion (73.18 ± 10.23 vs. 48.11 ± 7.92 mmHg, P < 0.05). After 2 h of reperfusion, the infarct size was significantly lower in EPO-treated hearts compared with IPost and control hearts (14.36 ± 0.60%, 19.11 ± 0.84%, and 36.21 ± 4.20% of the left ventricle, respectively; P < 0.05). GSK-3β phosphorylation, at 30 min of reperfusion, was significantly higher with EPO compared with IPost hearts. Phosphatidylinositol 3-kinase and ERK1/2 inhibitors abolished both EPO- and IPost-mediated cardioprotection. Second, in vivo, IPost and EPO induced an infarct size reduction compared with control (40.5 ± 3.6% and 28.9 ± 3.1%, respectively, vs. 53.7 ± 4.3% of the area at risk; P < 0.05). Again, EPO decreased significantly more infarct size and transmurality than IPost ( P < 0.05). In conclusion, with the use of our protocols, EPO showed better protective effects than IPost against reperfusion injury through higher phosphorylation of GSK-3β.
Collapse
Affiliation(s)
- Sophie Tamareille
- Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 3860, Protection et Remodelage du Myocarde, Faculté de Médecine d'Angers, Université d'Angers,
| | - Nehmat Ghaboura
- Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 3860, Protection et Remodelage du Myocarde, Faculté de Médecine d'Angers, Université d'Angers,
| | - Frederic Treguer
- Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 3860, Protection et Remodelage du Myocarde, Faculté de Médecine d'Angers, Université d'Angers,
- Service de Cardiologie, Centre Hospitalier Universitaire d'Angers,
| | - Dalia Khachman
- Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 3860, Protection et Remodelage du Myocarde, Faculté de Médecine d'Angers, Université d'Angers,
| | - Anne Croué
- Département de Pathologie Cellulaire et Tissulaire, Centre Hospitlier Universitaire d'Angers, and
| | - Daniel Henrion
- Faculté de Médecine d'Angers, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214, Institut National de la Santé et de la Recherche Médicale U771, Université d'Angers, Angers, France
| | - Alain Furber
- Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 3860, Protection et Remodelage du Myocarde, Faculté de Médecine d'Angers, Université d'Angers,
- Service de Cardiologie, Centre Hospitalier Universitaire d'Angers,
| | - Fabrice Prunier
- Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 3860, Protection et Remodelage du Myocarde, Faculté de Médecine d'Angers, Université d'Angers,
- Service de Cardiologie, Centre Hospitalier Universitaire d'Angers,
| |
Collapse
|
41
|
Short- and Long-Term Cardioprotective Effect of Darbepoetin-α: Role of Bcl-2 Family Proteins. J Cardiovasc Pharmacol 2009; 54:223-31. [DOI: 10.1097/fjc.0b013e3181b04d01] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Update on phase II studies of erythropoietin in acute myocardial infarction. Rationale and design of Exogenous erythroPoietin in Acute Myocardial Infarction: New Outlook aNd Dose Association Study (EPAMINONDAS). J Thromb Thrombolysis 2009; 28:489-95. [DOI: 10.1007/s11239-009-0363-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
|
44
|
|
45
|
Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol 2008; 52:1527-39. [PMID: 19007588 DOI: 10.1016/j.jacc.2008.07.051] [Citation(s) in RCA: 1347] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/14/2008] [Accepted: 07/28/2008] [Indexed: 12/16/2022]
Abstract
The term cardiorenal syndrome (CRS) increasingly has been used without a consistent or well-accepted definition. To include the vast array of interrelated derangements, and to stress the bidirectional nature of heart-kidney interactions, we present a new classification of the CRS with 5 subtypes that reflect the pathophysiology, the time-frame, and the nature of concomitant cardiac and renal dysfunction. CRS can be generally defined as a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce acute or chronic dysfunction of the other. Type 1 CRS reflects an abrupt worsening of cardiac function (e.g., acute cardiogenic shock or decompensated congestive heart failure) leading to acute kidney injury. Type 2 CRS comprises chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) causing progressive chronic kidney disease. Type 3 CRS consists of an abrupt worsening of renal function (e.g., acute kidney ischemia or glomerulonephritis) causing acute cardiac dysfunction (e.g., heart failure, arrhythmia, ischemia). Type 4 CRS describes a state of chronic kidney disease (e.g., chronic glomerular disease) contributing to decreased cardiac function, cardiac hypertrophy, and/or increased risk of adverse cardiovascular events. Type 5 CRS reflects a systemic condition (e.g., sepsis) causing both cardiac and renal dysfunction. Biomarkers can contribute to an early diagnosis of CRS and to a timely therapeutic intervention. The use of this classification can help physicians characterize groups of patients, provides the rationale for specific management strategies, and allows the design of future clinical trials with more accurate selection and stratification of the population under investigation.
Collapse
Affiliation(s)
- Claudio Ronco
- Department of Nephrology, St. Bortolo Hospital, Vicenza, Italy.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
|