1
|
Gibson A, Ram R, Gangula R, Li Y, Mukherjee E, Palubinsky AM, Campbell CN, Thorne M, Konvinse KC, Choshi P, Deshpande P, Pedretti S, Fear MW, Wood FM, O'Neil RT, Wanjalla CN, Kalams SA, Gaudieri S, Lehloenya RJ, Bailin SS, Chopra A, Trubiano JA, Peter JG, Mallal SA, Phillips EJ. Multiomic single-cell sequencing defines tissue-specific responses in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Commun 2024; 15:8722. [PMID: 39379371 PMCID: PMC11461852 DOI: 10.1038/s41467-024-52990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is a rare but life-threatening cutaneous drug reaction mediated by human leukocyte antigen (HLA) class I-restricted CD8+ T cells. For unbiased assessment of cellular immunopathogenesis, here we perform single-cell (sc) transcriptome, surface proteome, and T cell receptor (TCR) sequencing on unaffected skin, affected skin, and blister fluid from 15 SJS/TEN patients. From 109,888 cells, we identify 15 scRNA-defined subsets. Keratinocytes express markers indicating HLA class I-restricted antigen presentation and appear to trigger the proliferation of and killing by cytotoxic CD8+ tissue-resident T cells that express granulysin, granzyme B, perforin, LAG3, CD27, and LINC01871, and signal through the PKM, MIF, TGFβ, and JAK-STAT pathways. In affected tissue, cytotoxic CD8+ T cells express private expanded and unexpanded TCRαβ that are absent or unexpanded in unaffected skin, and mixed populations of macrophages and fibroblasts express pro-inflammatory markers or those favoring repair. This data identifies putative cytotoxic TCRs and therapeutic targets.
Collapse
MESH Headings
- Humans
- Stevens-Johnson Syndrome/immunology
- Stevens-Johnson Syndrome/genetics
- Single-Cell Analysis/methods
- Keratinocytes/immunology
- Keratinocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Skin/immunology
- Skin/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Granzymes/metabolism
- Granzymes/genetics
- Transcriptome
- Male
- Perforin/metabolism
- Perforin/genetics
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Macrophages/immunology
- Macrophages/metabolism
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Rama Gangula
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Eric Mukherjee
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Chelsea N Campbell
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Michael Thorne
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | | | - Phuti Choshi
- Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Mark W Fear
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Fiona M Wood
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Richard T O'Neil
- Ralph H Johnson VA Medical Center, Medical University of South Carolina, Charleston, USA
| | | | - Spyros A Kalams
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- School of Human Sciences, The University of Western Australia, Perth, Australia
| | | | - Samuel S Bailin
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Jason A Trubiano
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Centre for Antibiotic Allergy and Research, Austin Health, Melbourne, Australia
| | - Jonny G Peter
- Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia.
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA.
| |
Collapse
|
2
|
Shao F, Hu J, Zhang P, Akarapipad P, Park JS, Lei H, Hsieh K, Wang TH. Enhanced CRISPR/Cas-Based Immunoassay through Magnetic Proximity Extension and Detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313206. [PMID: 39314939 PMCID: PMC11419220 DOI: 10.1101/2024.09.06.24313206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-associated systems have recently emerged as a focal point for developing next-generation molecular diagnosis, particularly for nucleic acid detection. However, the detection of proteins is equally critical across diverse applications in biology, medicine, and the food industry, especially for diagnosing and prognosing diseases like cancer, Alzheimer's and cardiovascular conditions. Despite recent efforts to adapt CRISPR/Cas systems for protein detection with immunoassays, these methods typically achieved sensitivity only in the femtomolar to picomolar range, underscoring the need for enhanced detection capabilities. To address this, we developed CRISPR-AMPED, an innovative CRISPR/Cas-based immunoassay enhanced by magnetic proximity extension and detection. This approach combines proximity extension assay (PEA) with magnetic beads that converts protein into DNA barcodes for quantification with effective washing steps to minimize non-specific binding and hybridization, therefore reducing background noise and increasing detection sensitivity. The resulting DNA barcodes are then detected through isothermal nucleic acid amplification testing (NAAT) using recombinase polymerase amplification (RPA) coupled with the CRISPR/Cas12a system, replacing the traditional PCR. This integration eliminates the need for thermocycling and bulky equipment, reduces amplification time, and provides simultaneous target and signal amplification, thereby significantly boosting detection sensitivity. CRISPR-AMPED achieves attomolar level sensitivity, surpassing ELISA by over three orders of magnitude and outperforming existing CRISPR/Cas-based detection systems. Additionally, our smartphone-based detection device demonstrates potential for point-of-care applications, and the digital format extends dynamic range and enhances quantitation precision. We believe CRISPR-AMPED represents a significant advancement in the field of protein detection.
Collapse
|
3
|
Liu Q, Zhao RM, Wang DY, Li P, Qu YF, Ji X. Genome-wide characterization of the TGF-β gene family and their expression in different tissues during tail regeneration in the Schlegel's Japanese gecko Gekko japonicus. Int J Biol Macromol 2024; 255:128127. [PMID: 37984573 DOI: 10.1016/j.ijbiomac.2023.128127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The transforming growth factor-β (TGF-β) gene family is unique to animals and is involved in various important processes including tissue regeneration. Here, we identified 52 TGF-β family genes based on genome sequences of the gecko (Gekko japonicus), compared TGF-β genes between G. japonicus and other four reptilian species, and evaluated the expression of 14 randomly selected genes in muscle, kidney, liver, heart, and brain during tail regeneration to investigate whether their expression was tissue-dependent. We detected 23 conserved domains, 13 in the TGF-β ligand subfamily, and 10 in the receptor subfamily. The pattern of higher genetic variation in the ligand subfamily than in the receptor subfamily in vertebrates might result from the precise localization of agonists and antagonists in the cell surface and intracellular compartment. TGF-β genes were unevenly distributed across 15 chromosomes in G. japonicus, presumably resulting from gene losses and gains during evolution. Genes in the TGF-β receptor subfamily (ACVR2A, ACVR2B, ACVR1, BMPR1A, ACVRL1, BMPR2 and TGFBR1) played a vital role in the TGF-β signal pathway. The expression of all 14 randomly selected TGF-β genes was tissue-specific. Our study supports the speculation that some TGF-β family genes are involved in the early stages of tail regeneration.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ru-Meng Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan-Yan Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Shimoyama Y, Yamada K, Yoshida S, Kawamura A, Hannya Y, Imaizumi Y, Kumamoto T, Takeda Y, Shimoda M, Eto K, Yoshida K. Inhibition of protein kinase C delta leads to cellular senescence to induce anti-tumor effects in colorectal cancer. Cancer Sci 2023. [PMID: 36851883 DOI: 10.1111/cas.15768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Protein kinase C delta (PKCδ) is a multifunctional serine-threonine kinase implicated in cell proliferation, differentiation, tumorigenesis, and therapeutic resistance. However, the molecular mechanism of PKCδ in colorectal cancer (CRC) remains unclear. In this study, we showed that PKCδ acts as a negative regulator of cellular senescence in p53 wild-type (wt-p53) CRC. Immunohistochemical analysis revealed that PKCδ levels in human CRC tissues were higher than those in the surrounding normal tissues. Deletion studies have shown that cell proliferation and tumorigenesis in wt-p53 CRC is sensitive to PKCδ expression. We found that PKCδ activates p21 via a p53-independent pathway and that PKCδ-kinase activity is essential for p21 activity. In addition, both repression of PKCδ expression and inhibition of PKCδ activity induced cellular senescence-like phenotypes, including increased senescence-associated β-galactosidase (SA-β-gal) staining, low LaminB1 expression, large nucleus size, and senescence-associated secretory phenotype (SASP) detection. Finally, a kinase inhibitor of PKCδ suppressed senescence-dependent tumorigenicity in a dose-dependent manner. These results offer a mechanistic insight into CRC survival and tumorigenesis. In addition, a novel therapeutic strategy for wt-p53 CRC is proposed.
Collapse
Affiliation(s)
- Yuya Shimoyama
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshito Hannya
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuta Imaizumi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomotaka Kumamoto
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhiro Takeda
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Khatoon F, Haque S, Hashem A, Mahmoud A, Tashkandi H, Mathkor D, Harakeh S, Alghamdi B, Kumar V. Network-based approach for targeting human kinases commonly associated with amyotrophic lateral sclerosis and cancer. Front Mol Neurosci 2022; 15:1023286. [PMID: 36590916 PMCID: PMC9802580 DOI: 10.3389/fnmol.2022.1023286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and chronic motor neuron degenerative disease for which at present no cure is available. In recent years, multiple genes encode kinases and other causative agents for ALS have been identified. Kinases are enzymes that show pleiotropic nature and regulate different signal transduction processes and pathways. The dysregulation of kinase activity results in dramatic changes in processes and causes many other human diseases including cancers. Methods In this study, we have adopted a network-based system biology approach to investigate the kinase-based molecular interplay between ALS and other human disorders. A list of 62 ALS-associated-kinases was first identified and then we identified the disease associated with them by scanning multiple disease-gene interaction databases to understand the link between the ALS-associated kinases and other disorders. Results An interaction network with 36 kinases and 381 different disorders associated with them was prepared, which represents the complexity and the comorbidity associated with the kinases. Further, we have identified 5 miRNAs targeting the majority of the kinases in the disease-causing network. The gene ontology and pathways enrichment analysis of those miRNAs were performed to understand their biological and molecular functions along with to identify the important pathways. We also identified 3 drug molecules that can perturb the disease-causing network by drug repurposing. Conclusion This network-based study presented hereby contributes to a better knowledge of the molecular underpinning of comorbidities associated with the kinases associated with the ALS disease and provides the potential therapeutic targets to disrupt the highly complex disease-causing network.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Anwar Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Hanaa Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Darin Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badra Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Kumar,
| |
Collapse
|
6
|
Batista ICA, Gava SG, Tavares NC, Calzavara-Silva CE, Mourão MM. Hypoxanthine guanine phosphoribosyl transferases SmHGPRTases functional roles in Schistosoma mansoni. Front Microbiol 2022; 13:1064218. [PMID: 36578572 PMCID: PMC9791060 DOI: 10.3389/fmicb.2022.1064218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Extracellular/environmental stimuli trigger cellular responses to allow Schistosoma sp. parasites adaptation and decide development and survival fate. In this context, signal transduction involving eukaryotic protein kinases (ePKs) has an essential role in regulatory mechanisms. Functional studies had shown the importance of MAPK pathway for Schistosoma mansoni development. In addition, early studies demonstrated that Smp38 MAPK regulates the expression of a large set of genes, among them the hypoxanthine-guanine phosphoribosyl transferase 1 (SmHGPRTase 1, Smp_103560), a key enzyme in the purine salvage pathway that is part of a family comprising five different proteins. Methods First, the regulation of this gene family by the MAPKs pathways was experimentally verified using Smp38-predicted specific inhibitors. In silico analysis showed significant differences in the predicted structure and the domain sequence among the schistosomal HGPRTase family and their orthologs in humans. In order to interrogate the HGPRTases (Smp_103560, Smp_148820, Smp_168500, Smp_312580 and Smp_332640, henceforth SmHGPRTase -1, -2, -3, -4, -5) functional roles, schistosomula, sporocysts, and adult worms were knocked-down using specific dsRNAs. Results Our results suggest that SmHGPRTases activity has an essential role in sporocysts and schistosomula development since significant differences in viability, size, and/ or shape were observed after the in vitro knockdown. Also, the knockdown of SmHGPRTases in schistosomula influenced the ovary development and egg maturation in female adult worms during mammalian infection. We also observed alterations in the movement of female adult worms knocked-down in vitro. Most of these results were shown when all gene family members were knocked-down simultaneously, suggesting a redundant function among them. Discussion Thus, this study helps to elucidate the functional roles of the SmHGPRTase gene family in the S. mansoni life cycle and provides knowledge for future studies required for schistosomiasis treatment and control.
Collapse
Affiliation(s)
- Izabella Cristina Andrade Batista
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil,Grupo de Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sandra Grossi Gava
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Naiara Clemente Tavares
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Marina Moraes Mourão
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil,*Correspondence: Marina Moraes Mourão,
| |
Collapse
|
7
|
Gao Y, Yang R, Lou K, Dang Y, Dong Y, He Y, Huang W, Chen M, Zhang G. In vivo visualization of fluorescence reflecting CDK4 activity in a breast cancer mouse model. MedComm (Beijing) 2022; 3:e136. [PMID: 35711853 PMCID: PMC9187519 DOI: 10.1002/mco2.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022] Open
Abstract
The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.
Collapse
Affiliation(s)
- Yi‐Yang Gao
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Rui‐Qin Yang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Kang‐Liang Lou
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yong‐Ying Dang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yuan‐Yuan Dong
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue‐Yang He
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wen‐He Huang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
| | - Min Chen
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Central LaboratoryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Cancer Research Center of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenChina
| | - Guo‐Jun Zhang
- Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiang'an Hospital of Xiamen University, Xiamen UniversityXiamenChina
- Cancer Research Center of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
8
|
Decoding kinase-adverse event associations for small molecule kinase inhibitors. Nat Commun 2022; 13:4349. [PMID: 35896580 PMCID: PMC9329312 DOI: 10.1038/s41467-022-32033-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022] Open
Abstract
Small molecule kinase inhibitors (SMKIs) are being approved at a fast pace under expedited programs for anticancer treatment. In this study, we construct a multi-domain dataset from a total of 4638 patients in the registrational trials of 16 FDA-approved SMKIs and employ a machine-learning model to examine the relationships between kinase targets and adverse events (AEs). Internal and external (datasets from two independent SMKIs) validations have been conducted to verify the usefulness of the established model. We systematically evaluate the potential associations between 442 kinases with 2145 AEs and made publicly accessible an interactive web application “Identification of Kinase-Specific Signal” (https://gongj.shinyapps.io/ml4ki). The developed model (1) provides a platform for experimentalists to identify and verify undiscovered KI-AE pairs, (2) serves as a precision-medicine tool to mitigate individual patient safety risks by forecasting clinical safety signals and (3) can function as a modern drug development tool to screen and compare SMKI target therapies from the safety perspective. Small molecule kinase inhibitors (SMKIs) are being approved at a fast pace under expedited programs for anticancer treatment. Here, the authors employ a machine-learning model to examine the relationships between kinase targets and adverse events in the trials of 16 FDA-approved SMKIs.
Collapse
|
9
|
Zhang Q, Zhao H, Luo M, Cheng X, Li Y, Li Q, Wang Z, Niu Q. The Classification and Prediction of Ferroptosis-Related Genes in ALS: A Pilot Study. Front Genet 2022; 13:919188. [PMID: 35873477 PMCID: PMC9305067 DOI: 10.3389/fgene.2022.919188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle paralysis, which is followed by degeneration of motor neurons in the motor cortex of the brainstem and spinal cord. The etiology of sporadic ALS (sALS) is still unknown, limiting the exploration of potential treatments. Ferroptosis is a new form of cell death and is reported to be closely associated with Alzheimer’s disease (AD), Parkinson’s disease (PD), and ALS. In this study, we used datasets (autopsy data and blood data) from Gene Expression Omnibus (GEO) to explore the role of ferroptosis and ferroptosis-related gene (FRG) alterations in ALS. Gene set enrichment analysis (GSEA) found that the activated ferroptosis pathway displayed a higher enrichment score, and the expression of 26 ferroptosis genes showed obvious group differences between ALS and controls. Using weighted gene correlation network analysis (WGCNA), we identified FRGs associated with ALS, of which the Gene Ontology (GO) analysis displayed that the biological process of oxidative stress was the most to be involved in. KEGG pathway analysis revealed that the FRGs were enriched not only in ferroptosis pathways but also in autophagy, FoxO, and mTOR signaling pathways. Twenty-one FRGs (NR4A1, CYBB, DRD4, SETD1B, LAMP2, ACSL4, MYB, PROM2, CHMP5, ULK1, AKR1C2, TGFBR1, TMBIM4, MLLT1, PSAT1, HIF1A, LINC00336, AMN, SLC38A1, CISD1, and GABARAPL2) in the autopsy data and 16 FRGs (NR4A1, DRD4, SETD1B, MYB, PROM2, CHMP5, ULK1, AKR1C2, TGFBR1, TMBIM4, MLLT1, HIF1A, LINC00336, IL33, SLC38A1, and CISD1) in the blood data were identified as target genes by least absolute shrinkage and selection operator analysis (LASSO), in which gene signature could differentiate ALS patients from controls. Finally, the higher the expression of CHMP5 and SLC38A1 in whole blood, the shorter the lifespan of ALS patients will be. In summary, our study presents potential biomarkers for the diagnosis and prognosis of ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qi Niu
- *Correspondence: Qi Niu, ; Zheng Wang,
| |
Collapse
|
10
|
Tan Z, Hung SW, Zheng X, Wang CC, Chung JPW, Zhang T. What We Have Learned from Animal Models to Understand the Etiology and Pathology of Endometrioma-Related Infertility. Biomedicines 2022; 10:biomedicines10071483. [PMID: 35884788 PMCID: PMC9313443 DOI: 10.3390/biomedicines10071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrioma (OMA) is the most common subtype of endometriosis, in which the endometriotic lesions are implanted in the ovary. Women with OMA are usually associated with infertility, presenting with reduced ovarian reserve, low oocyte quantity and quality, and poor fertility outcomes. However, the underlying pathological mechanisms in OMA-related infertility are still unclear. Due to the limitations and ethical issues of human studies in reproduction, animal models that recapitulate OMA characteristics and its related infertility are critical for mechanistic studies and subsequent drug development, preclinical testing, and clinical trials. This review summarized the investigations of OMA-related infertility based on previous and latest endometrioma models, providing the possible pathogenesis and potential therapeutic targets for further studies.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Sze-Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Xu Zheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
- Sichuan University-Chinese University of Hong Kong Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
- Correspondence: ; Tel.: +852-3505-3099
| |
Collapse
|
11
|
Himeda CL, Jones PL. FSHD Therapeutic Strategies: What Will It Take to Get to Clinic? J Pers Med 2022; 12:jpm12060865. [PMID: 35743650 PMCID: PMC9225474 DOI: 10.3390/jpm12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of DUX4 in skeletal muscle. The complex nature of the locus and the fact that FSHD is a toxic, gain-of-function disease present unique challenges for the design of therapeutic strategies. There are three major DUX4-targeting avenues of therapy for FSHD: small molecules, oligonucleotide therapeutics, and CRISPR-based approaches. Here, we evaluate the preclinical progress of each avenue, and discuss efforts being made to overcome major hurdles to translation.
Collapse
|
12
|
Polypharmacology: The science of multi-targeting molecules. Pharmacol Res 2022; 176:106055. [PMID: 34990865 DOI: 10.1016/j.phrs.2021.106055] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Polypharmacology is a concept where a molecule can interact with two or more targets simultaneously. It offers many advantages as compared to the conventional single-targeting molecules. A multi-targeting drug is much more efficacious due to its cumulative efficacy at all of its individual targets making it much more effective in complex and multifactorial diseases like cancer, where multiple proteins and pathways are involved in the onset and development of the disease. For a molecule to be polypharmacologic in nature, it needs to possess promiscuity which is the ability to interact with multiple targets; and at the same time avoid binding to antitargets which would otherwise result in off-target adverse effects. There are certain structural features and physicochemical properties which when present would help researchers to predict if the designed molecule would possess promiscuity or not. Promiscuity can also be identified via advanced state-of-the-art computational methods. In this review, we also elaborate on the methods by which one can intentionally incorporate promiscuity in their molecules and make them polypharmacologic. The polypharmacology paradigm of "one drug-multiple targets" has numerous applications especially in drug repurposing where an already established drug is redeveloped for a new indication. Though designing a polypharmacological drug is much more difficult than designing a single-targeting drug, with the current technologies and information regarding different diseases and chemical functional groups, it is plausible for researchers to intentionally design a polypharmacological drug and unlock its advantages.
Collapse
|
13
|
Repurposing cabozantinib with therapeutic potential in KIT-driven t(8;21) acute myeloid leukaemias. Cancer Gene Ther 2022; 29:519-532. [PMID: 33833412 PMCID: PMC9113930 DOI: 10.1038/s41417-021-00329-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Cabozantinib is an orally available, multi-target tyrosine kinase inhibitor approved for the treatment of several solid tumours and known to inhibit KIT tyrosine kinase. In acute myeloid leukaemia (AML), aberrant KIT tyrosine kinase often coexists with t(8;21) to drive leukaemogenesis. Here we evaluated the potential therapeutic effect of cabozantinib on a selected AML subtype characterised by t(8;21) coupled with KIT mutation. Cabozantinib exerted substantial cytotoxicity in Kasumi-1 cells with an IC50 of 88.06 ± 4.32 nM, which was well within clinically achievable plasma levels. The suppression of KIT phosphorylation and its downstream signals, including AKT/mTOR, STAT3, and ERK1/2, was elicited by cabozantinib treatment and associated with subsequent alterations of cell cycle- and apoptosis-related molecules. Cabozantinib also disrupted the synthesis of an AML1-ETO fusion protein in a dose- and time-dependent manner. In a mouse xenograft model, cabozantinib suppressed tumourigenesis at 10 mg/kg and significantly prolonged survival of the mice. Further RNA-sequencing analysis revealed that mTOR-mediated signalling pathways were substantially inactivated by cabozantinib treatment, causing the downregulation of ribosome biogenesis and glycolysis, along with myeloid leukocyte activation. We suggest that cabozantinib may be effective in the treatment of AML with t(8;21) and KIT mutation. Relevant clinical trials are warranted.
Collapse
|
14
|
Althubiti M. Tyrosine kinase targeting: A potential therapeutic strategy for diabetes. SAUDI JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2022; 10:183-191. [PMID: 36247049 PMCID: PMC9555044 DOI: 10.4103/sjmms.sjmms_492_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been studied extensively in cancer research, ultimately resulting in the approval of many drugs for cancer therapy. Recent evidence from reported clinical cases and experimental studies have suggested that some of these drugs have a potential role in diabetes treatment. These TKIs include imatinib, sunitinib, dasatinib, erlotinib, nilotinib, neratinib, and ibrutinib. As a result of promising findings, imatinib has been used in a phase II clinical trial. In this review, studies that used TKIs in the treatment of both types of diabetes are critically discussed. In addition, the different molecular mechanisms of action of these drugs in diabetes models are also highlighted to understand their antidiabetic mode of action.
Collapse
|
15
|
Fernández-Ruiz M. Overview of the Risk of Infection Associated with Biologic and Target Therapies. INFECTIOUS COMPLICATIONS IN BIOLOGIC AND TARGETED THERAPIES 2022:3-15. [DOI: 10.1007/978-3-031-11363-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Al Abadie M, Sharara Z, Ball PA, Morrissey H. A Literature Review of the Janus Kinase Inhibitors Used in the Treatment of Auto-Immune Dermatological Conditions. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/rhmizdv54f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2021; 20:839-861. [PMID: 34354255 DOI: 10.1038/s41573-021-00252-y] [Citation(s) in RCA: 338] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
The FDA approval of imatinib in 2001 was a breakthrough in molecularly targeted cancer therapy and heralded the emergence of kinase inhibitors as a key drug class in the oncology area and beyond. Twenty years on, this article analyses the landscape of approved and investigational therapies that target kinases and trends within it, including the most popular targets of kinase inhibitors and their expanding range of indications. There are currently 71 small-molecule kinase inhibitors (SMKIs) approved by the FDA and an additional 16 SMKIs approved by other regulatory agencies. Although oncology is still the predominant area for their application, there have been important approvals for indications such as rheumatoid arthritis, and one-third of the SMKIs in clinical development address disorders beyond oncology. Information on clinical trials of SMKIs reveals that approximately 110 novel kinases are currently being explored as targets, which together with the approximately 45 targets of approved kinase inhibitors represent only about 30% of the human kinome, indicating that there are still substantial unexplored opportunities for this drug class. We also discuss trends in kinase inhibitor design, including the development of allosteric and covalent inhibitors, bifunctional inhibitors and chemical degraders.
Collapse
|
18
|
Sokolov AV, Dostdar SA, Attwood MM, Krasilnikova AA, Ilina AA, Nabieva AS, Lisitsyna AA, Chubarev VN, Tarasov VV, Schiöth HB. Brain Cancer Drug Discovery: Clinical Trials, Drug Classes, Targets, and Combinatorial Therapies. Pharmacol Rev 2021; 73:1-32. [PMID: 34663683 DOI: 10.1124/pharmrev.121.000317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Brain cancer is a formidable challenge for drug development, and drugs derived from many cutting-edge technologies are being tested in clinical trials. We manually characterized 981 clinical trials on brain tumors that were registered in ClinicalTrials.gov from 2010 to 2020. We identified 582 unique therapeutic entities targeting 581 unique drug targets and 557 unique treatment combinations involving drugs. We performed the classification of both the drugs and drug targets based on pharmacological and structural classifications. Our analysis demonstrates a large diversity of agents and targets. Currently, we identified 32 different pharmacological directions for therapies that are based on 42 structural classes of agents. Our analysis shows that kinase inhibitors, chemotherapeutic agents, and cancer vaccines are the three most common classes of agents identified in trials. Agents in clinical trials demonstrated uneven distribution in combination approaches; chemotherapy agents, proteasome inhibitors, and immune modulators frequently appeared in combinations, whereas kinase inhibitors, modified immune effector cells did not as was shown by combination networks and descriptive statistics. This analysis provides an extensive overview of the drug discovery field in brain cancer, shifts that have been happening in recent years, and challenges that are likely to come. SIGNIFICANCE STATEMENT: This review provides comprehensive quantitative analysis and discussion of the brain cancer drug discovery field, including classification of drug, targets, and therapies.
Collapse
Affiliation(s)
- Aleksandr V Sokolov
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Samira A Dostdar
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksandra A Krasilnikova
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia A Ilina
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Amina Sh Nabieva
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna A Lisitsyna
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
19
|
Biswal J, Jayaprakash P, Rayala SK, Venkatraman G, Rangaswamy R, Jeyaraman J. WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches. ACS OMEGA 2021; 6:26829-26845. [PMID: 34693105 PMCID: PMC8529594 DOI: 10.1021/acsomega.1c02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 06/13/2023]
Abstract
p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 molecules out of ∼2162 drug molecules, based on their docking energies and molecular interaction patterns. From the molecules that were considered for WaterMap analysis, seven molecules, namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water molecules, only Acalabrutinib, Flubendazole, and Trazodone molecules highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and molecular dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug molecules Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug molecule Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The molecular orbital and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug molecules in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro analysis.
Collapse
Affiliation(s)
- Jayashree Biswal
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Prajisha Jayaprakash
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department
of Biotechnology, Indian Institute of Technology
Madras, Room No. BT 306, Chennai 600 036, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department
of Human Genetics, College of Biomedical Sciences, Sri Ramachandra University, Porur, Chennai 600 116, Tamil Nadu, India
| | - Raghu Rangaswamy
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| |
Collapse
|
20
|
Zobdeh F, Ben Kraiem A, Attwood MM, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Pharmacological treatment of migraine: Drug classes, mechanisms of action, clinical trials and new treatments. Br J Pharmacol 2021; 178:4588-4607. [PMID: 34379793 DOI: 10.1111/bph.15657] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Migraine is the sixth most prevalent disease globally, a major cause of disability, and it imposes an enormous personal and socioeconomic burden. Migraine treatment is often limited by insufficient therapy response, leading to the need for individually adjusted treatment approaches. In this review, we analyse historical and current pharmaceutical development approaches in acute and chronic migraine based on a comprehensive and systematic analysis of Food and Drug Administration (FDA)-approved drugs and those under investigation. The development of migraine therapeutics has significantly intensified during the last 3 years, as shown by our analysis of the trends of drug development between 1970 and 2020. The spectrum of drug targets has expanded considerably, which has been accompanied by an increase in the number of specialised clinical trials. This review highlights the mechanistic implications of FDA-approved and currently investigated drugs and discusses current and future therapeutic options based on identified drug classes of interest.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Aziza Ben Kraiem
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
21
|
Qiu S, Liu Y, Li Q. A mechanism for localized dynamics-driven activation in Bruton's tyrosine kinase. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210066. [PMID: 34457331 PMCID: PMC8371364 DOI: 10.1098/rsos.210066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
Bruton's tyrosine kinase (BTK) plays a vital role in mature B-cell proliferation, development and function. Its inhibitors have gradually been applied for the treatment of many B-cell malignancies. However, because of treatment-associated drug resistance or low efficacy, it is urgent to develop new inhibitors and/or improve the efficacy of current inhibitors, where finding the intrinsic activation mechanism becomes the key to solve this problem. Here, we used BTK T474M mutation as a resistance model for inhibitors to study the mechanism of BTK activation and drug resistance by free molecular dynamics simulations. The results showed that the increase of kinase activity of T474M mutation is coming from the conformation change of the activation ring and ATP binding sites located in BTK N-terminus region. Specifically, the Thr474 mutation changed the structure of A-loop and stabilized the binding site of ATP, thus promoting the catalytic ability in the kinase domain. This localized dynamics-driven activation mechanism and resistance mechanism of BTK may provide new ideas for drug development in B-cell malignancies.
Collapse
Affiliation(s)
- Simei Qiu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou People's Republic of China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou People's Republic of China
| | - Yunfeng Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou People's Republic of China
| | - Quhuan Li
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou People's Republic of China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou People's Republic of China
| |
Collapse
|
22
|
Wu K, Zhai X, Huang S, Jiang L, Yu Z, Huang J. Protein Kinases: Potential Drug Targets Against Schistosoma japonicum. Front Cell Infect Microbiol 2021; 11:691757. [PMID: 34277472 PMCID: PMC8282181 DOI: 10.3389/fcimb.2021.691757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) infection can induce serious organ damage and cause schistosomiasis japonica which is mainly prevalent in Asia and currently one of the most seriously neglected tropical diseases. Treatment of schistosomiasis largely depends on the drug praziquantel (PZQ). However, PZQ exhibits low killing efficacy on juvenile worms and the potential emergence of its drug resistance is a continual concern. Protein kinases (PKs) are enzymes that catalyze the phosphorylation of proteins and can participate in many signaling pathways in vivo. Recent studies confirmed the essential roles of PKs in the growth and development of S. japonicum, as well as in schistosome-host interactions, and researches have screened drug targets about PKs from S. japonicum (SjPKs), which provide new opportunities of developing new treatments on schistosomiasis. The aim of this review is to present the current progress on SjPKs from classification, different functions and their potential to become drug targets compared with other schistosomes. The efficiency of related protein kinase inhibitors on schistosomes is highlighted. Finally, the current challenges and problems in the study of SjPKs are proposed, which can provide future guidance for developing anti-schistosomiasis drugs and vaccines.
Collapse
Affiliation(s)
- Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Xingyu Zhai
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Zheng Yu
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
23
|
Islam S, Wang S, Bowden N, Martin J, Head R. Repurposing existing therapeutics, its importance in oncology drug development: Kinases as a potential target. Br J Clin Pharmacol 2021; 88:64-74. [PMID: 34192364 PMCID: PMC9292808 DOI: 10.1111/bcp.14964] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Repurposing the large arsenal of existing non‐cancer drugs is an attractive proposition to expand the clinical pipelines for cancer therapeutics. The earlier successes in repurposing resulted primarily from serendipitous findings, but more recently, drug or target‐centric systematic identification of repurposing opportunities continues to rise. Kinases are one of the most sought‐after anti‐cancer drug targets over the last three decades. There are many non‐cancer approved drugs that can inhibit kinases as “off‐targets” as well as many existing kinase inhibitors that can target new additional kinases in cancer. Identifying cancer‐associated kinase inhibitors through mining commercial drug databases or new kinase targets for existing inhibitors through comprehensive kinome profiling can offer more effective trial‐ready options to rapidly advance drugs for clinical validation. In this review, we argue that drug repurposing is an important approach in modern drug development for cancer therapeutics. We have summarized the advantages of repurposing, the rationale behind this approach together with key barriers and opportunities in cancer drug development. We have also included examples of non‐cancer drugs that inhibit kinases or are associated with kinase signalling as a basis for their anti‐cancer action.
Collapse
Affiliation(s)
- Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Nikola Bowden
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Jennifer Martin
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Richard Head
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| |
Collapse
|
24
|
Huckstep H, Fearnley LG, Davis MJ. Measuring pathway database coverage of the phosphoproteome. PeerJ 2021; 9:e11298. [PMID: 34113485 PMCID: PMC8162239 DOI: 10.7717/peerj.11298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Protein phosphorylation is one of the best known post-translational mechanisms playing a key role in the regulation of cellular processes. Over 100,000 distinct phosphorylation sites have been discovered through constant improvement of mass spectrometry based phosphoproteomics in the last decade. However, data saturation is occurring and the bottleneck of assigning biologically relevant functionality to phosphosites needs to be addressed. There has been finite success in using data-driven approaches to reveal phosphosite functionality due to a range of limitations. The alternate, more suitable approach is making use of prior knowledge from literature-derived databases. Here, we analysed seven widely used databases to shed light on their suitability to provide functional insights into phosphoproteomics data. We first determined the global coverage of each database at both the protein and phosphosite level. We also determined how consistent each database was in its phosphorylation annotations compared to a global standard. Finally, we looked in detail at the coverage of each database over six experimental datasets. Our analysis highlights the relative strengths and weaknesses of each database, providing a guide in how each can be best used to identify biological mechanisms in phosphoproteomic data.
Collapse
Affiliation(s)
- Hannah Huckstep
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Liam G. Fearnley
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- Division of Population Health, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Melissa J. Davis
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Exploration of benzofuran-based compounds as potent and selective Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) inhibitors. Bioorg Chem 2021; 112:104839. [PMID: 33813310 DOI: 10.1016/j.bioorg.2021.104839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) has been identified as a potential target for the development of novel drugs against multi-drug resistant malaria. A series of benzofuran-based compounds was synthesised and evaluated as inhibitors of recombinantly expressed and purified PfGSK-3 and human glycogen synthase kinase-3 beta (HsGSK-3β). Of this series, five compounds (5k, 5m, 5p, 5r, 5s) preferentially inhibited PfGSK-3, with four of these compounds exhibiting IC50 values in the sub-micromolar range (0.00048-0.440 µM). Evaluation of the structure-activity relationships required for PfGSK-3 selective inhibition indicated that a C6-OCH3 substitution on ring A is preferred, while the effect of the ring B substituent on activity, in decreasing order is: C4'-CN > C4'-F > C3'-OCH3 > C3',4'-diCl. To date, development of PfGSK-3 inhibitors has been limited to the 4-phenylthieno[2,3-b]pyridine class. Chalcone-based scaffolds, such as the benzofurans described herein, are promising new hits which can be explored for future design of PfGSK-3 selective inhibitors.
Collapse
|
26
|
Belli C, Penault-Llorca F, Ladanyi M, Normanno N, Scoazec JY, Lacroix L, Reis-Filho JS, Subbiah V, Gainor JF, Endris V, Repetto M, Drilon A, Scarpa A, André F, Douillard JY, Curigliano G. ESMO recommendations on the standard methods to detect RET fusions and mutations in daily practice and clinical research. Ann Oncol 2021; 32:337-350. [PMID: 33455880 DOI: 10.1016/j.annonc.2020.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant activation of RET is a critical driver of growth and proliferation in diverse solid tumours. Multikinase inhibitors (MKIs) showing anti-RET activities have been tested in RET-altered tumours with variable results. The low target specificity with consequent increase in side-effects and off-target toxicities resulting in dose reduction and drug discontinuation are some of the major issues with MKIs. To overcome these issues, new selective RET inhibitors such as pralsetinib (BLU-667) and selpercatinib (LOXO-292) have been developed in clinical trials, with selpercatinib recently approved by the Food and Drug Administration (FDA). The results of these trials showed marked and durable antitumour activity and manageable toxicity profiles in patients with RET-altered tumours. The European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group (TR and PM WG) launched a collaborative project to review the available methods for the detection of RET gene alterations, their potential applications and strategies for the implementation of a rational approach for the detection of RET fusion genes and mutations in human malignancies. We present here recommendations for the routine clinical detection of targetable RET rearrangements and mutations.
Collapse
Affiliation(s)
- C Belli
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - F Penault-Llorca
- University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Department of BioPathology, Clermont-Ferrand, France
| | - M Ladanyi
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - N Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - J-Y Scoazec
- AMMICa, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy, Villejuif, France; Department of Pathology and Translational Research, Gustave Roussy Cancer Centre, Villejuif, France
| | - L Lacroix
- Translational Research Laboratory and Biobank, Gustave Roussy, Villejuif, France; Inserm U981, Gustave Roussy, Villejuif, France; Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - J S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - V Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J F Gainor
- Massachusetts General Hospital, Boston, USA
| | - V Endris
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Repetto
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - A Drilon
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, USA
| | - A Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health - Section of Pathology, University of Verona, Verona, Italy
| | - F André
- Gustave Roussy Cancer Center, Villejuif, France
| | - J-Y Douillard
- Scientific and Medical Division, European Society for Medical Oncology, Lugano, Switzerland
| | - G Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
27
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
28
|
Iqbal S, Potharaju R, Naveen S, Lokanath NK, Mohanakrishnan AK, Gunasekaran K. Design, crystal structure determination, molecular dynamic simulation and MMGBSA calculations of novel p38-alpha MAPK inhibitors for combating Alzheimer's disease. J Biomol Struct Dyn 2021; 40:6114-6127. [PMID: 33522434 DOI: 10.1080/07391102.2021.1877197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The hallmark of the Alzheimer's disease (AD) is the accumulation of aggregated, misfolded proteins. The cause for this accumulation is increased production of misfolded proteins and impaired clearance of them. Amyloid aggregation and tau hyperphosphorylation are the two proteinopathies which accomplish deprivation of cell and tissue hemostasis during neuropathological process of the AD, as a result of which progressive neuronal degeneration and the loss of cognitive functions. p38 mitogen-activated protein kinase (p38 MAPK) has been implicated in both the events associated with AD: tau protein phosphorylation and inflammation. p38α MAPK pathway is activated by a dual phosphorylation at Thr180 and Tyr182 residues. Clinical and preclinical evidence implicates the stress related kinase p38α MAPK as a potential neurotherapeutic target. Drug design of p38α MAPK inhibitors is mainly focused on small molecules that compete for Adenosine triphosphate in the catalytic site. Here we have carried out the synthesis of phenyl sulfonamide derivatives Sulfo (I) and Sulfo (II). Crystal structures of Sulfo (I) and Sulfo (II) were solved by direct methods using SHELXS-97. Sulfo (I) and Sulfo (II) have Rint values of 0.0283 and 0.0660, respectively, indicating good quality of crystals and investigated their ability against p38α MAPK. Docking studies revealed that the Sulfo (I) had better binding affinity (-62.24 kcal/mol) as compared to Sulfo (II) and cocrystal having binding affinity of -54.61 kcal/mol and -59.84 kcal/mol, respectively. Molecular dynamics simulation studies of Sulfo (I) and cocrystal of p38α MAPK suggest that during the course of 30 ns simulation run, compound Sulfo (I) attained stability, substantiating the consistency of its binding to p38α MAPK compared to cocrystal. Binding free energy analysis suggests that the compound Sulfo (I) is better than the cocrystal. Thus, this study corroborates the therapeutic potential of synthesized Sulfo (I) in combatting AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saleem Iqbal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India.,Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai, India
| | - Raju Potharaju
- Department of Organic Chemistry, University of Madras, Chennai, India.,Escientia Bio Pharma Private Limited Turkapally, Hyderabad, India
| | - S Naveen
- Department of Physics, Faculty of Engineering & Technology, JAIN (Deemed-to-be University), Bangalore, India
| | - N K Lokanath
- Department of Studies in Physics, University of Mysore, Mysore, India
| | - Arasambattu K Mohanakrishnan
- Department of Organic Chemistry, University of Madras, Chennai, India.,Escientia Bio Pharma Private Limited Turkapally, Hyderabad, India
| | - Krishnasamy Gunasekaran
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai, India
| |
Collapse
|
29
|
Guo W, Vandoorne T, Steyaert J, Staats KA, Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 2021; 143:1651-1673. [PMID: 32206784 PMCID: PMC7296858 DOI: 10.1093/brain/awaa022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is the most common degenerative disorder of motor neurons in adults. As there is no cure, thousands of individuals who are alive at present will succumb to the disease. In recent years, numerous causative genes and risk factors for amyotrophic lateral sclerosis have been identified. Several of the recently identified genes encode kinases. In addition, the hypothesis that (de)phosphorylation processes drive the disease process resulting in selective motor neuron degeneration in different disease variants has been postulated. We re-evaluate the evidence for this hypothesis based on recent findings and discuss the multiple roles of kinases in amyotrophic lateral sclerosis pathogenesis. We propose that kinases could represent promising therapeutic targets. Mainly due to the comprehensive regulation of kinases, however, a better understanding of the disturbances in the kinome network in amyotrophic lateral sclerosis is needed to properly target specific kinases in the clinic.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jolien Steyaert
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
30
|
A Crosstalk Between Dual-Specific Phosphatases and Dual-Specific Protein Kinases Can Be A Potential Therapeutic Target for Anti-cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:357-382. [PMID: 33539023 DOI: 10.1007/978-3-030-49844-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While protein tyrosine kinases (PTKs) play an initiative role in growth factor-mediated cellular processes, protein tyrosine phosphatases (PTPs) negatively regulates these processes, acting as tumor suppressors. Besides selective tyrosine dephosphorylation of PTKs via PTPs may affect oncogenic pathways during carcinogenesis. The PTP family contains a group of dual-specificity phosphatases (DUSPs) that regulate the activity of Mitogen-activated protein kinases (MAPKs), which are key effectors in the control of cell growth, proliferation and survival. Abnormal MAPK signaling is critical for initiation and progression stages of carcinogenesis. Since depletion of DUSP-MAPK phosphatases (MKPs) can reduce tumorigenicity, altering MAPK signaling by DUSP-MKP inhibitors could be a novel strategy in anti-cancer therapy. Moreover, Cdc25A is, a DUSP and a key regulator of the cell cycle, promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases (CDK). Cdc25A-CDK pathway is a novel mechanism in carcinogenesis. Besides the mammalian target of rapamycin (mTOR) kinase inhibitors or mammalian target of rapamycin complex 1 (mTORC1) inhibition in combination with the dual phosphatidylinositol 3 kinase (PI3K)/mTOR or AKT kinase inhibitors are more effective in inhibiting the phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and cap-dependent translation. Dual targeting of the Akt and mTOR signaling pathways regulates cellular growth, proliferation and survival. Like the Cdc2-like kinases (CLK), dual-specific tyrosine phosphorylation-regulated kinases (DYRKs) are essential for the regulation of cell fate. The crosstalk between dual-specific phosphatases and dual- specific protein kinases is a novel drug target for anti-cancer therapy. Therefore, the focus of this chapter involves protein kinase modules, critical biochemical checkpoints of cancer therapy and the synergistic effects of protein kinases and anti-cancer molecules.
Collapse
|
31
|
Grześk G, Woźniak-Wiśniewska A, Błażejewski J, Górny B, Wołowiec Ł, Rogowicz D, Nowaczyk A. The Interactions of Nintedanib and Oral Anticoagulants-Molecular Mechanisms and Clinical Implications. Int J Mol Sci 2020; 22:ijms22010282. [PMID: 33396592 PMCID: PMC7795697 DOI: 10.3390/ijms22010282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Nintedanib is a synthetic orally active tyrosine kinase inhibitor, whose main action is to inhibit the receptors of the platelet-derived growth factor, fibroblast growth factor and vascular endothelial growth factor families. The drug also affects other kinases, including Src, Flt-3, LCK, LYN. Nintedanib is used in the treatment of idiopathic pulmonary fibrosis, chronic fibrosing interstitial lung diseases and lung cancer. The mechanism of action suggests that nintedanib should be considered one of the potential agents for inhibiting and revising the fibrosis process related to COVID-19 infections. Due to the known induction of coagulation pathways during COVID-19 infections, possible interaction between nintedanib and anticoagulant seems to be an extremely important issue. In theory, nintedanib could increase the bleeding risk, thrombosis and lead to thrombocytopenia. The data from clinical trials on the concomitant use of nintedanib and antithrombotic agents is very limited as this patient group was within the standard exclusion criteria. Nintedanib is an important therapeutic option, despite its interaction with anticoagulants. If anticoagulant therapy is necessary, the more effective and safer option is the concomitant administration of DOACs and nintedanib, especially when drug-monitored therapy will be used in patients at high risk of bleeding complications.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Anita Woźniak-Wiśniewska
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Jan Błażejewski
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Bartosz Górny
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Daniel Rogowicz
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
- Correspondence:
| |
Collapse
|
32
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
33
|
Mohareer K, Medikonda J, Vadankula GR, Banerjee S. Mycobacterial Control of Host Mitochondria: Bioenergetic and Metabolic Changes Shaping Cell Fate and Infection Outcome. Front Cell Infect Microbiol 2020; 10:457. [PMID: 33102245 PMCID: PMC7554303 DOI: 10.3389/fcimb.2020.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria, are undoubtedly critical organelle of a eukaryotic cell, which provide energy and offer a platform for most of the cellular signaling pathways that decide cell fate. The role of mitochondria in immune-metabolism is now emerging as a crucial process governing several pathological states, including infection, cancer, and diabetes. Mitochondria have therefore been a vulnerable target for several bacterial and viral pathogens to control host machinery for their survival, replication, and dissemination. Mycobacterium tuberculosis, a highly successful human pathogen, persists inside alveolar macrophages at the primary infection site, applying several strategies to circumvent macrophage defenses, including control of host mitochondria. The infection perse and specific mycobacterial factors that enter the host mitochondrial milieu perturb mitochondrial dynamics and function by disturbing mitochondrial membrane potential, shifting bioenergetics parameters such as ATP and ROS, orienting the host cell fate and thereby infection outcome. In the present review, we attempt to integrate the available information and emerging dogmas to get a holistic view of Mycobacterium tuberculosis infection vis-a-vis mycobacterial factors that target host mitochondria and changes therein in terms of morphology, dynamics, proteomic, and bioenergetic alterations that lead to a differential cell fate and immune response determining the disease outcome. We also discuss critical host factors and processes that are overturned by Mycobacterium tuberculosis, such as cAMP-mediated signaling, redox homeostasis, and lipid droplet formation. Further, we also present alternate dogmas as well as the gaps and limitations in understanding some of the present research areas, which can be further explored by understanding some critical processes during Mycobacterium tuberculosis infection and the reasons thereof. Toward the end, we propose to have a set of guidelines for pursuing investigations to maintain uniformity in terms of early and late phase, MOI of infection, infection duration and incubation periods, the strain of mycobacteria, passage numbers, and so on, which all work as probable variables toward different readouts. Such a setup would, therefore, help in the smooth integration of information across laboratories toward a better understanding of the disease and possibilities of host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jayashankar Medikonda
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Govinda Raju Vadankula
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
34
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
35
|
Liu J, Li H, Xia T, Du P, Giri B, Li X, Li X, Cheng G. Identification of Schistosoma japonicum GSK3β interacting partners by yeast two-hybrid screening and its role in parasite survival. Parasitol Res 2020; 119:2217-2226. [PMID: 32500370 DOI: 10.1007/s00436-020-06731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/25/2020] [Indexed: 01/04/2023]
Abstract
Schistosoma is the causative agent of schistosomiasis, a common infectious disease distributed worldwide. Our previous phosphoproteomic analysis suggested that glycogen synthase kinase 3 (GSK3), a conserved protein kinase in eukaryotes, is likely involved in protein phosphorylation of Schistosoma japonicum. Here, we aimed to identify the interacting partners of S. japonicum GSK3β (SjGSK3β) and to evaluate its role in parasite survival. Toward these ends, we determined the transcription levels of SjGSK3β at different developmental stages and identified its interacting partners of SjGSK3β by screening a yeast two-hybrid S. japonicum cDNA library. We further used RNA interference (RNAi) to inhibit the expression of SjGSK3β in adult worms in vitro and examined the resultant changes in transcription of its putative interacting proteins and in worm viability compared with those of control worms. Reverse transcription-quantitative polymerase chain analysis indicated that SjGSK3β is expressed throughout the life cycle of S. japonicum, with higher expression levels detected in the eggs and relatively higher expression level found in male worms than in female worms. By screening the yeast two-hybrid library, eight proteins were identified as potentially interacting with SjGSK3β including cell division cycle 37 homolog (Cdc37), 14-3-3 protein, tegument antigen (I(H)A), V-ATPase proteolipid subunit, myosin alkali light chain 1, and three proteins without recognized functional domains. In addition, SjGSK3β RNAi reduced the SjGSK3β gene transcript level, leading to a significant decrease in kinase activity, cell viability, and worm survival. Collectively, these findings suggested that SjGSK3β may interact with its partner proteins to influence worm survival by regulating kinase activity.
Collapse
Affiliation(s)
- Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Huimin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Pengfei Du
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Bikash Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Xue Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Xuxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China.
- Tongji University of School of Medicine, #1239 Si-Ping Road, Shanghai, 200092, China.
| |
Collapse
|
36
|
Kim JH, Seo Y, Jo M, Jeon H, Lee WH, Yachie N, Zhong Q, Vidal M, Roth FP, Suk K. Yeast-Based Genetic Interaction Analysis of Human Kinome. Cells 2020; 9:cells9051156. [PMID: 32392905 PMCID: PMC7291280 DOI: 10.3390/cells9051156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Kinases are critical intracellular signaling proteins. To better understand kinase-mediated signal transduction, a large-scale human-yeast genetic interaction screen was performed. Among 597 human kinase genes tested, 28 displayed strong toxicity in yeast when overexpressed. En masse transformation of these toxic kinase genes into 4653 homozygous diploid yeast deletion mutants followed by barcode sequencing identified yeast toxicity modifiers and thus their human orthologs. Subsequent network analyses and functional grouping revealed that the 28 kinases and their 676 interaction partners (corresponding to a total of 969 genetic interactions) are enriched in cell death and survival (34%), small-molecule biochemistry (18%) and molecular transport (11%), among others. In the subnetwork analyses, a few kinases were commonly associated with glioma, cell migration and cell death/survival. Our analysis enabled the creation of a first draft of the kinase genetic interactome network and identified multiple drug targets for inflammatory diseases and cancer, in which deregulated kinase signaling plays a pathogenic role.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Yeojin Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Myungjin Jo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Hyejin Jeon
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea;
| | - Nozomu Yachie
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.Y.); (F.P.R.)
| | - Quan Zhong
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA;
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Frederick P. Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.Y.); (F.P.R.)
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
- Correspondence:
| |
Collapse
|
37
|
Kalaki Z, Asadollahi-Baboli M. Molecular docking-based classification and systematic QSAR analysis of indoles as Pim kinase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:399-419. [PMID: 32319325 DOI: 10.1080/1062936x.2020.1751277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Pim kinase enzyme has an essential role in the treatment of prostate, colon and acute myeloid leukaemia cancers. The indoles inhibitors were docked in the enzyme's active pocket in order to survey the inhibition mechanism and extract the ligands' conformations. The docking outcome shows that the active inhibitors have strong van der Waals interactions with residues of Ile185, Leu44, Leu120 and Leu174, hydrogen bonds with residues of Asp128, Arg122 and Glu171 and π-π interaction with the residue of Phe49. The sum of these interactions is ~80 kcal mol-1 contributing ~90% of total binding free energies. Using docking-based molecular descriptors, the unsupervised and supervised classifications were successfully carried out with the accuracy of 0.82 and 0.95, respectively, to categorize the active/inactive Pim kinase inhibitors. The vigorous quantitative assessment was performed using different machine learning techniques. The constructed QSAR model [(r 2 cal, r 2 p, r 2 m and Q 2 LOO) > 0.80 and (SE cal, SEp and SE LOO) < 0.22] indicates that the molecular descriptors of nN, RDF20v and E1v can describe both the inhibition activities and the inhibition mechanism. The adequate evaluations of the molecular docking, classifications and QSAR analysis show that the current approaches can be used as valuable tools to design more effective new Pim kinase inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Z Kalaki
- Department of Chemistry, Faculty of Science, Babol Noshirvani University of Technology , Babol, Iran
| | - M Asadollahi-Baboli
- Department of Chemistry, Faculty of Science, Babol Noshirvani University of Technology , Babol, Iran
| |
Collapse
|
38
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
39
|
Wang F, Li D, Zheng Z, Kin Wah To K, Chen Z, Zhong M, Su X, Chen L, Fu L. Reversal of ABCB1-related multidrug resistance by ERK5-IN-1. J Exp Clin Cancer Res 2020; 39:50. [PMID: 32164732 PMCID: PMC7066765 DOI: 10.1186/s13046-020-1537-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
Background Inhibition of ABC transporters is considered the most effective way to circumvent multidrug resistance (MDR). In the present study, we evaluated the MDR modulatory potential of ERK5-IN-1, a potent extracelluar signal regulated kinase 5 (ERK5) inhibitor. Methods The cytotoxicity and MDR reversal effect of ERK5-IN-1 were assessed by MTT assay. The KBv200-inoculated nude mice xenograft model was used for the in vivo study. Doxorubicin efflux and accumulation were measured by flow cytometry. The modulation of ABCB1 activity was measured by colorimetric ATPase assay and [125I]-iodoarylazidoprazosin (IAAP) photolabeling assay. Effect of ERK5-IN-1 on expression of ABCB1 and its downstream markers was measured by PCR and/or Western blot. Cell surface expression and subcellular localization of ABCB1 were tested by flow cytometry and immunofluorescence. Results Our results showed that ERK5-IN-1 significantly increased the sensitivity of vincristine, paclitaxel and doxorubicin in KBv200, MCF7/adr and HEK293/ABCB1 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Moreover, in vivo combination studies showed that ERK5-IN-1 effectively enhanced the antitumor activity of paclitaxel in KBv200 xenografts without causing addition toxicity. Mechanistically, ERK5-IN-1 increased intracellular accumulation of doxorubicin dose dependently by directly inhibiting the efflux function of ABCB1. ERK5-IN-1 stimulated the ABCB1 ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into ABCB1 in a concentration-dependent manner. In addition, ERK5-IN-1 treatment neither altered the expression level of ABCB1 nor blocked the phosphorylation of downstream Akt or Erk1/2. No significant reversal effect was observed on ABCG2-, ABCC1-, MRP7- and LRP-mediated drug resistance. Conclusions Collectively, these results indicated that ERK5-IN-1 efficiently reversed ABCB1-mediated MDR by competitively inhibiting the ABCB1 drug efflux function. The use of ERK5-IN-1 to restore sensitivity to chemotherapy or to prevent resistance could be a potential treatment strategy for cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Delan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - ZongHeng Zheng
- Department of Gastrointestinal surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Kenneth Kin Wah To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mengjun Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaodong Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Likun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
40
|
A Targeted Quantitative Proteomic Method Revealed a Substantial Reprogramming of Kinome during Melanoma Metastasis. Sci Rep 2020; 10:2485. [PMID: 32051510 PMCID: PMC7015909 DOI: 10.1038/s41598-020-59572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Kinases are involved in numerous critical cell signaling processes, and dysregulation in kinase signaling is implicated in many types of human cancers. In this study, we applied a parallel-reaction monitoring (PRM)-based targeted proteomic method to assess kinome reprogramming during melanoma metastasis in three pairs of matched primary/metastatic human melanoma cell lines. Around 300 kinases were detected in each pair of cell lines, and the results showed that Janus kinase 3 (JAK3) was with reduced expression in the metastatic lines of all three pairs of melanoma cells. Interrogation of The Cancer Genome Atlas (TCGA) data showed that reduced expression of JAK3 is correlated with poorer prognosis in melanoma patients. Additionally, metastatic human melanoma cells/tissues exhibited diminished levels of JAK3 mRNA relative to primary melanoma cells/tissues. Moreover, JAK3 suppresses the migration and invasion of cultured melanoma cells by modulating the activities of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9). In summary, our targeted kinome profiling method provided by far the most comprehensive dataset for kinome reprogramming associated with melanoma progression, which builds a solid foundation for examining the functions of other kinases in melanoma metastasis. Moreover, our results reveal a role of JAK3 as a potential suppressor for melanoma metastasis.
Collapse
|
41
|
Druggable exosites of the human kino-pocketome. J Comput Aided Mol Des 2020; 34:219-230. [PMID: 31925639 DOI: 10.1007/s10822-019-00276-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Small molecules binding at any of the multiple regulatory sites on the molecular surface of a protein kinase may stabilize or disrupt the corresponding interaction, leading to consequent modulation of the kinase cellular activity. As such, each of these sites represents a potential drug target. Even targeting sites outside the immediate ATP site, the so-called exosites, may cause desirable biological effects through an allosteric mechanism. Targeting exosites can alleviate adverse effects and toxicity that is common when ATP-site compounds bind promiscuously to many other types of kinases. In this study we have identified, catalogued, and annotated all potentially druggable exosites on the protein kinase domains within the existing structural human kinome. We then priority-ranked these exosites by those most amenable to drug design. In order to identify pockets that are either consistent across the kinome, or unique and specific to a particular structure, we have also implemented a normalized representation of all pockets, and displayed these graphically. Finally, we have built a database and designed a web-based interface for users interested in accessing the 3-dimensional representations of these pockets. We envision this information will assist drug discovery efforts searching for untargeted binding pockets in the human kinome.
Collapse
|
42
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
43
|
Decker TM, Forné I, Straub T, Elsaman H, Ma G, Shah N, Imhof A, Eick D. Analog-sensitive cell line identifies cellular substrates of CDK9. Oncotarget 2019; 10:6934-6943. [PMID: 31857848 PMCID: PMC6916755 DOI: 10.18632/oncotarget.27334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022] Open
Abstract
Transcriptional cyclin-dependent kinases regulate all phases of transcription. Cyclin-dependent kinase 9 (CDK9) has been implicated in the regulation of promoter-proximal pausing of RNA polymerase II and more recently in transcription termination. Study of the substrates of CDK9 has mostly been limited to in vitro approaches that lack a quantitative assessment of CDK9 activity. Here we analyzed the cellular phosphoproteome upon inhibition of CDK9 by combining analog-sensitive kinase technology with quantitative phosphoproteomics in Raji B-cells. Our analysis revealed the activity of CDK9 on 1102 phosphosites quantitatively, and we identified 120 potential cellular substrates. Furthermore, a substantial number of CDK9 substrates were described as splicing factors, highlighting the role of CDK9 in transcription-coupled splicing events. Based on comparison to in vitro data, our findings suggest that cellular context fundamentally impacts the activity of CDK9 and specific selection of its substrates.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany.,Present address: Department of Biochemistry, University of Colorado, Boulder, USA
| | - Ignasi Forné
- Biomedical Center Munich, ZFP, Ludwig-Maximilian University Munich, Germany
| | - Tobias Straub
- Bioinformatic Unit, Biomedical Center Munich, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany
| | - Hesham Elsaman
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany
| | - Guoli Ma
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany
| | - Nilay Shah
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany.,Present address: Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Axel Imhof
- Biomedical Center Munich, ZFP, Ludwig-Maximilian University Munich, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Germany
| |
Collapse
|
44
|
Ligand-based virtual screening, consensus molecular docking, multi-target analysis and comprehensive ADMET profiling and MD stimulation to find out noteworthy tyrosine kinase inhibitor with better efficacy and accuracy. ADVANCES IN TRADITIONAL MEDICINE 2019. [DOI: 10.1007/s13596-019-00406-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Im D, Moon H, Kim J, Oh Y, Jang M, Hah JM. Conformational restriction of a type II FMS inhibitor leading to discovery of 5-methyl- N-(2-aryl-1 H-benzo[d]imidazo-5-yl)isoxazole-4-carboxamide analogues as selective FLT3 inhibitors. J Enzyme Inhib Med Chem 2019; 34:1716-1721. [PMID: 31571509 PMCID: PMC6781469 DOI: 10.1080/14756366.2019.1671837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A series of 4-arylamido 5-methylisoxazole derivatives incorporating benzimidazole was designed and synthesised by conformational restriction of an in-house type II FMS inhibitor. Kinase profiling of one compound revealed interesting features, with increased inhibitory potency towards FLT3 and concomitant loss of potency towards FMS. Several benzimidazole derivatives 5a–5g and 6a–6c containing various hydrophobic moieties were synthesised, and their inhibitory activity against FLT3 was evaluated. Specifically, 5a, 5-methyl-N-(2-(3-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole-5-yl) isoxazole-4-carboxamide, exhibited the most potent inhibitory activity against FLT3 (IC50 = 495 nM), with excellent selectivity profiles.
Collapse
Affiliation(s)
- Daseul Im
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Hyungwoo Moon
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Jingwoong Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Youri Oh
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Miyoung Jang
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| | - Jung-Mi Hah
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , Korea
| |
Collapse
|
46
|
Kothari V, Goodwin JF, Zhao SG, Drake JM, Yin Y, Chang SL, Evans JR, Wilder-Romans K, Gabbara K, Dylgjeri E, Chou J, Sun G, Tomlins SA, Mehra R, Hege K, Filvaroff EH, Schaeffer EM, Karnes RJ, Quigley DA, Rathkopf DE, He HH, Speers C, Spratt DE, Gilbert LA, Ashworth A, Chinnaiyan AM, Raj GV, Knudsen KE, Feng FY. DNA-Dependent Protein Kinase Drives Prostate Cancer Progression through Transcriptional Regulation of the Wnt Signaling Pathway. Clin Cancer Res 2019; 25:5608-5622. [PMID: 31266829 PMCID: PMC6744969 DOI: 10.1158/1078-0432.ccr-18-2387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/07/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Protein kinases are known to play a prominent role in oncogenic progression across multiple cancer subtypes, yet their role in prostate cancer progression remains underexplored. The purpose of this study was to identify kinases that drive prostate cancer progression.Experimental Design: To discover kinases that drive prostate cancer progression, we investigated the association between gene expression of all known kinases and long-term clinical outcomes in tumor samples from 545 patients with high-risk disease. We evaluated the impact of genetic and pharmacologic inhibition of the most significant kinase associated with metastatic progression in vitro and in vivo. RESULTS DNA-dependent protein kinase (DNAPK) was identified as the most significant kinase associated with metastatic progression in high-risk prostate cancer. Inhibition of DNAPK suppressed the growth of both AR-dependent and AR-independent prostate cancer cells. Gene set enrichment analysis nominated Wnt as the top pathway associated with DNAPK. We found that DNAPK interacts with the Wnt transcription factor LEF1 and is critical for LEF1-mediated transcription. CONCLUSIONS Our data show that DNAPK drives prostate cancer progression through transcriptional regulation of Wnt signaling and is an attractive therapeutic target in aggressive prostate cancer.
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Radiation Oncology, University of California at San Francisco, CA
| | - Jonathan F Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Yi Yin
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - S Laura Chang
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Joseph R Evans
- Department of Radiation Oncology, OSF Healthcare, Peoria, Illinois
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Kristina Gabbara
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan Chou
- Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Grace Sun
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rohit Mehra
- Department of Pathology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | - Edward M Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | | | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Luke A Gilbert
- Department of Urology, University of California at San Francisco, San Francisco, California
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Urology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, CA.
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Urology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
47
|
Mossenta M, Busato D, Baboci L, Cintio FD, Toffoli G, Bo MD. New Insight into Therapies Targeting Angiogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1086. [PMID: 31370258 PMCID: PMC6721310 DOI: 10.3390/cancers11081086] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by neoangiogenesis that is determined by an augmented production of proangiogenesis factors by tumor and adjacent cells. This unbalanced angiogenesis process is a key feature of HCC carcinogenesis and progression. Proangiogenic factors also have a relevant role in the generation and maintenance of an immunosuppressive tumor microenvironment. Several therapeutic options for HCC treatment are based on the inhibition of angiogenesis, both in the early/intermediate stages of the disease and in the late stages of the disease. Conventional treatment options employing antiangiogenic approaches provide for the starving of tumors of their blood supply to avoid the refueling of oxygen and nutrients. An emerging alternative point of view is the normalization of vasculature leading to enhance tumor perfusion and oxygenation, potentially capable, when proposed in combination with other treatments, to improve delivery and efficacy of other therapies, including immunotherapy with checkpoint inhibitors. The introduction of novel biomarkers can be useful for the definition of the most appropriate dose and scheduling for these combination treatment approaches. The present review provides a wide description of the pharmaceutical compounds with an antiangiogenic effect proposed for HCC treatment and investigated in clinical trials, including antibodies and small-molecule kinase inhibitors.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy.
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
| |
Collapse
|
48
|
Tang J, Gautam P, Gupta A, He L, Timonen S, Akimov Y, Wang W, Szwajda A, Jaiswal A, Turei D, Yadav B, Kankainen M, Saarela J, Saez-Rodriguez J, Wennerberg K, Aittokallio T. Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. NPJ Syst Biol Appl 2019; 5:20. [PMID: 31312514 PMCID: PMC6614366 DOI: 10.1038/s41540-019-0098-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/06/2019] [Indexed: 01/02/2023] Open
Abstract
Cancer cells with heterogeneous mutation landscapes and extensive functional redundancy easily develop resistance to monotherapies by emerging activation of compensating or bypassing pathways. To achieve more effective and sustained clinical responses, synergistic interactions of multiple druggable targets that inhibit redundant cancer survival pathways are often required. Here, we report a systematic polypharmacology strategy to predict, test, and understand the selective drug combinations for MDA-MB-231 triple-negative breast cancer cells. We started by applying our network pharmacology model to predict synergistic drug combinations. Next, by utilizing kinome-wide drug-target profiles and gene expression data, we pinpointed a synergistic target interaction between Aurora B and ZAK kinase inhibition that led to enhanced growth inhibition and cytotoxicity, as validated by combinatorial siRNA, CRISPR/Cas9, and drug combination experiments. The mechanism of such a context-specific target interaction was elucidated using a dynamic simulation of MDA-MB-231 signaling network, suggesting a cross-talk between p53 and p38 pathways. Our results demonstrate the potential of polypharmacological modeling to systematically interrogate target interactions that may lead to clinically actionable and personalized treatment options.
Collapse
Affiliation(s)
- Jing Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Abhishekh Gupta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT USA
| | - Liye He
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sanna Timonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Wenyu Wang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Agnieszka Szwajda
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Alok Jaiswal
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Denes Turei
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Department of Medicine and Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| |
Collapse
|
49
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
50
|
Gautam P, Jaiswal A, Aittokallio T, Al-Ali H, Wennerberg K. Phenotypic Screening Combined with Machine Learning for Efficient Identification of Breast Cancer-Selective Therapeutic Targets. Cell Chem Biol 2019; 26:970-979.e4. [PMID: 31056464 DOI: 10.1016/j.chembiol.2019.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
The lack of functional understanding of most mutations in cancer, combined with the non-druggability of most proteins, challenge genomics-based identification of oncology drug targets. We implemented a machine-learning-based approach (idTRAX), which relates cell-based screening of small-molecule compounds to their kinase inhibition data, to directly identify effective and readily druggable targets. We applied idTRAX to triple-negative breast cancer cell lines and efficiently identified cancer-selective targets. For example, we found that inhibiting AKT selectively kills MFM-223 and CAL148 cells, while inhibiting FGFR2 only kills MFM-223. Since the effects of catalytically inhibiting a protein can diverge from those of reducing its levels, targets identified by idTRAX frequently differ from those identified through gene knockout/knockdown methods. This is critical if the purpose is to identify targets specifically for small-molecule drug development, whereby idTRAX may produce fewer false-positives. The rapid nature of the approach suggests that it may be applicable in personalizing therapy.
Collapse
Affiliation(s)
- Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Alok Jaiswal
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00290 Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Hassan Al-Ali
- The Miami Project to Cure Paralysis, Peggy and Harold Katz Family Drug Discovery Center, Sylvester Comprehensive Cancer Center, and Departments of Neurological Surgery and Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Truvitech LLC, Miami, FL 33136, USA.
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00290 Helsinki, Finland; Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|