1
|
Chen K, Wang J, Cao J, Liu F, Fang J, Zheng W, Liu S, Zhao Y, Shuai X, Huang J, Chen B. Enzyme-responsive microgel with controlled drug release, lubrication and adhesion capability for osteoarthritis attenuation. Acta Biomater 2024:S1742-7061(24)00618-4. [PMID: 39427765 DOI: 10.1016/j.actbio.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The treatment of osteoarthritis (OA) remains challenging due to the narrow therapeutic window and rapid clearance of therapeutic agents, even with intra-articular administration, resulting in a low treatment index. Recent advancements in local drug delivery systems have yet to overcome the issues of uncontrolled burst release and short retention time, leading to suboptimal OA treatment outcome. Herein, we developed a methacrylate-crosslinking hyaluronic acid (HA) microgel (abbreviated as CXB-HA-CBP) that covalently conjugates the anti-inflammatory drug celecoxib (CXB) via a metalloproteinase-2 (MMP-2)-responsive peptide linker (GGPLGLAGGC) and a collagen II binding peptide (WYRGRLC). The GGPLGLAGGC linker is specifically cleaved by the overexpressed MMP-2 enzyme within the OA joint, enabling the sustained and on-demand release of CXB entity. The synergistic action of CXB and HA effectively inhibited macrophage activation and reduced the production of pro-inflammatory cytokines, protecting chondrocytes from damage. Furthermore, the collagen II peptide introduced on the microgel surface enabled a cartilage-binding function to form an artificial lubrication microgel layer on the cartilage surface to reduce cartilage wear. The CXB-HA-CBP microgel showed an extended retention time of up to 18 days in the affected joint, leading to an effective OA treatment in rats. This sophistically designed microgel, characterized by the prolonged retention time, sustained drug delivery, and enhanced lubrication, presents a promising biomedicine for OA treatment. STATEMENT OF SIGNIFICANCE: A new methacrylate-crosslinking hyaluronic acid (HA) microgel, covalently conjugated with the celecoxib (CXB)-GGPLGLAGGC and the collagen II binding peptide (CBP, peptide sequence: WYRGRLC), was developed. The overexpressed MMP-2 in OA joint cleaved the GGPLGLAGGC linker to trigger the CXB moiety release. Besides, the CBP on the surface of microgels enabled a cartilage-attaching ability, resulting in a prolonged retention time and an improved lubrication property in joint. This advanced drug-loading microgel remarkably reduced macrophage activation and pro-inflammation cytokine production, while protecting the chondrocytes via a dual action of CXB and HA. This study demonstrated that the enzyme-responsive drug-loading microgel could serve as an platform to efficiently attenuate osteoarthritis.
Collapse
Affiliation(s)
- Keyu Chen
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiachen Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jue Cao
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jintao Fang
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weixin Zheng
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shubo Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuexin Zhao
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Bin Chen
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Palma C, Piazza S, Visone R, Ringom R, Björklund U, Bermejo Gómez A, Rasponi M, Occhetta P. An Advanced Mechanically Active Osteoarthritis-on-Chip Model to Test Injectable Therapeutic Formulations: The SYN321 Case Study. Adv Healthc Mater 2024:e2401187. [PMID: 39318108 DOI: 10.1002/adhm.202401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Current treatments for osteoarthritis (OA) often fail to address the underlying pathophysiology and may have systemic side effects, particularly associated with long-term use of non-steroidal anti-inflammatory drugs (NSAIDs). Thus, researchers are currently directing their efforts toward innovative polymer-drug combinations, such as mixtures of hyaluronic acid viscoelastic hydrogels and NSAIDs like diclofenac, to ensure sustained release of the NSAID within the joint following intra-articular injection. However, the progress of novel injectable therapies for OA is hindered by the absence of preclinical models that accurately represent the pathology of the disease. The uBeat® MultiCompress platform is here presented as a novel approach for studying anti-OA injectable therapeutics on human mechanically-damaged OA cartilage microtissues, in a physiologically relevant environment. This platform can accommodate injectable therapeutic formulations and is successfully tested with SYN321, a novel diclofenac-sodium hyaluronate conjugate under development as a treatment for knee OA. Results indicate the platform's effectiveness in evaluating therapeutic potential, showing downregulation of inflammatory markers and reduction in matrix degradation in OA cartilage micro-tissues treated with SYN321. The uBeat® MultiCompress platform thus represents a valuable tool for OA research, offering a bridge between traditional in vitro studies and potential clinical applications, with implications for future drug discovery.
Collapse
Affiliation(s)
- Cecilia Palma
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Stefano Piazza
- BiomimX Srl, Viale Decumano 41, MIND - Milano Innovation District, Milan, 20157, Italy
| | - Roberta Visone
- BiomimX Srl, Viale Decumano 41, MIND - Milano Innovation District, Milan, 20157, Italy
| | - Rune Ringom
- Recipharm OT Chemistry AB, Virdings allé 18, Uppsala, 754 50, Sweden
| | - Ulf Björklund
- UB-consulting AB, Trädgårdsgatan 7A, Uppsala, 753 09, Sweden
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
- BiomimX Srl, Viale Decumano 41, MIND - Milano Innovation District, Milan, 20157, Italy
| |
Collapse
|
3
|
Zhao X, Huang H, Jiang X, Zheng S, Qiu C, Cheng Y, Lin Y, Wang Y, Yan Y, Di X, Hu M, Zhu W, Wu F, Shi X, Chen R, Kou L. Supramolecular nanoparticle loaded with bilirubin enhances cartilage protection and alleviates osteoarthritis via modulating oxidative stress and inflammatory responses. Colloids Surf B Biointerfaces 2024; 245:114243. [PMID: 39288548 DOI: 10.1016/j.colsurfb.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Osteoarthritis (OA) is a chronic inflammation that gradually leads to cartilage degradation. Prolonged chondrocyte oxidative stress contributes to the development of diseases, including chondrocyte apoptosis, cartilage matrix degradation, and aggravation of articular cartilage damage. Bilirubin (BR) possesses strong antioxidant properties by scavenging reactive oxygen species (ROS) and potent protection effects against inflammation. However, its insolubility and short half-life limit its clinical use. Therefore, we developed a supramolecular system of ε-polylysine (EPL) conjugated by β-cyclodextrin (β-CD) on the side chain, and bilirubin was loaded via host-guest interactions, which resulted in the self-assemble of this system into bilirubin-loaded polylysine-β-cyclodextrin nanoparticle (PB) with improving solubility while reducing toxicity and prolonging medication action time. To explore PB's potential pharmacological mechanisms on OA, we established in vitro and in vivo OA models. PB exerted ROS-scavenging proficiency and anti-apoptotic effects on rat chondrocytes by activating the Nrf2-HO-1/GPX4 signaling pathway. Additionally, PB reprogrammed the cartilage microenvironment by regulating the NF-κB signaling pathway to maintain chondrocyte function. Animal experiments further confirmed that PB had excellent scavenging ability for ROS and inflammatory factors related to charge adsorption with cartilage as well as long retention ability. Together, this work suggests that PB has superior protective abilities with beneficial effects on OA, indicating its great potential for intervention therapy targeting chondrocytes.
Collapse
Affiliation(s)
- Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yinhao Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yunzhi Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Xinyu Di
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Miyun Hu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wanling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| |
Collapse
|
4
|
Bi J, Zhang L, Zhang P, Xu S, Liu Y, Zhang X, Qiu X, Bi Y, Yan F, Wei H, Cui X, Pan X, Huang J, Zhao Y. Nanoarchitectonics of Injectable Biomimetic Conjugates for Cartilage Protection and Therapy Based on Degenerative Osteoarthritis Progression. Biomater Res 2024; 28:0075. [PMID: 39257895 PMCID: PMC11383433 DOI: 10.34133/bmr.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024] Open
Abstract
Osteoarthritis (OA) is a common age-related degenerative disease characterized by changes in the local tissue environment as inflammation progresses. Inspired by the wind-dispersal mechanism of dandelion seeds, this study develops responsive biomimetic microsphere-drug conjugate for OA therapy and protection. The conjugate integrates dibenzaldehyde polyethylene glycol (DFPEG) with chitosan and polyethylene glycol diacrylate (PEGDA) through dynamic covalent bonds to form a dual-network hydrogel microsphere. Based on the progression of OA, the conjugate with the surface-anchored cyclic peptide cortistatin-14 (CST-14) achieves targeted drug therapy and a self-regulating hydrogel network. In cases of progressing inflammation (pH < 5), CST-14 dissociates from the microsphere surface (viz. the drug release rate increased) and inhibits TNF-α signaling to suppress OA. Concurrently, the monomer DFPEG responsively detaches from the hydrogel network and scavenges reactive oxygen species (ROS) to protect the cartilage tissue. The ROS scavenging of DFPEG is comparable to that of coenzyme Q10 and vitamin C. The degraded PEGDA microspheres provide tissue lubrication through reused conjugates. The rat OA model successfully achieved a synergistic therapeutic effect greater than the additive effect (1 + 1 > 2). This strategy offers an approach for anchoring amine-containing drugs and has marked potential for OA treatment and protection.
Collapse
Affiliation(s)
- Jingwei Bi
- Department of Orthopaedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Limin Zhang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Pengfei Zhang
- Department of Orthopaedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shulei Xu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yuhao Liu
- Department of Orthopaedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanwen Bi
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan Shandong 250012, China
| | - Fangfang Yan
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan Shandong 250012, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xin Pan
- Department of Orthopaedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yunpeng Zhao
- Department of Orthopaedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, Roque-Borda CA, Polinário G, Figueroa Banda RA, Sábio RM, Chorilli M, Santos HA, Pavan FR. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater 2024; 39:106-134. [PMID: 38783925 PMCID: PMC11112550 DOI: 10.1016/j.bioactmat.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Giulia Polinário
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
6
|
Mei H, Sha C, Lv Q, Liu H, Jiang L, Song Q, Zeng Y, Zhou J, Zheng Y, Zhong W, Zhou J, Li J. Multifunctional polymeric nanocapsules with enhanced cartilage penetration and retention for osteoarthritis treatment. J Control Release 2024; 374:466-477. [PMID: 39179111 DOI: 10.1016/j.jconrel.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disease characterized by cartilage degeneration and subchondral bone homeostasis imbalance. Effective topical OA therapy is challenging, as therapeutic drugs often suffer from insufficient penetration and rapid clearance. We develop miniature polydopamine (PDA) nanocapsules (sub-60 nm), which are conjugated with collagen-binding polypeptide (CBP) and loaded with an anabolic drug (i.e., parathyroid hormone 1-34, PTH 1-34) for efficient OA treatment. Such multifunctional polymeric nanocapsules, denoted as PDA@CBP-PTH, possess deformability when interacting with the dense collagen fiber networks, enabling the efficient penetration into 1 mm cartilage in 4 h and prolonged retention within the joints up to 28 days. Moreover, PDA@CBP-PTH nanocapsules exhibit excellent reactive oxygen species scavenging property in chondrocytes and enhance the anabolism in subchondral bone. The nanosystem, as dual-mode treatment for OA, demonstrates rapid penetration, long-lasting effects, and combinational therapeutic impact, paving the way for reversing the progression of OA for joint health care.
Collapse
Affiliation(s)
- Hongxiang Mei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chuanlu Sha
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Qinyi Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiantao Song
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yiwei Zeng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yule Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Wang S, Li K, Deng Y, Gou J, He H, Yin T, Tang X, El-Shazly M, Zhang Y. Long-acting bulleyaconitine A microspheres via intra-articular delivery for multidimensional therapy of rheumatoid arthritis. Int J Pharm 2024; 661:124414. [PMID: 38960344 DOI: 10.1016/j.ijpharm.2024.124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Bulleyaconitine A (BLA) is a promising candidate for treating rheumatoid arthritis (RA) with diverse pharmacological activities, including anti-inflammatory, analgesic and bone repair. Herein, the long-acting bulleyaconitine A microspheres (BLA-MS) were developed to treat RA comprehensively by forming drug reservoirs in joint cavities. The BLA-MS were prepared by emulsion/solvent evaporation method. The particle size and distribution were assessed by SEM. The crystalline state was investigated by DSC and PXRD. The drug loading (DL), encapsulation efficiency (EE) and cumulative release in vitro were determined by HPLC. The DL and EE were 23.93 ± 0.38 % and 95.73 ± 1.56 % respectively, and the cumulative release was up to 69 days with a stable release curve. The pharmacodynamic results in collagen induced arthritis (CIA) rats showed a noticeable reduction in paw thickness (5.66 ± 0.32 mm), and the decreasing expression level of PGE2, TNF-α and IL-6 which diminished the infiltration of inflammatory cells, thereby alleviating the progression of erosion and repairing the damaged bones (BV/TV (Bone Volume / Total Volume): 81.97 %, BS/BV (Bone Surface / Bone Volume): 6.08 mm-1). In conclusion, intra-articular injection of BLA-MS should have a promising application in the treatment of RA and may achieve clinical transformation in the future.
Collapse
Affiliation(s)
- Shile Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Kehui Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt.
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
8
|
Feng K, Wang F, Chen H, Zhang R, Liu J, Li X, Xie X, Kang Q. Cartilage progenitor cells derived extracellular vesicles-based cell-free strategy for osteoarthritis treatment by efficient inflammation inhibition and extracellular matrix homeostasis restoration. J Nanobiotechnology 2024; 22:345. [PMID: 38890638 PMCID: PMC11186174 DOI: 10.1186/s12951-024-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease which currently lacks of effective agents. It is therefore urgent and necessary to seek an effective approach that can inhibit inflammation and promote cartilage matrix homeostasis. Cartilage progenitor cells (CPCs) are identified as a cell population of superficial zone in articular cartilage which possess strong migration ability, proliferative capacity, and chondrogenic potential. Recently, the application of CPCs may represent a novel cell therapy strategy for OA treatment. There is growing evidence that extracellular vesicles (EVs) are primary mediators of the benefits of stem cell-based therapy. In this study, we explored the protective effects of CPCs-derived EVs (CPCs-EVs) on IL-1β-induced chondrocytes. We found CPCs-EVs exhibited chondro-protective effects in vitro. Furthermore, our study demonstrated that CPCs-EVs promoted matrix anabolism and inhibited inflammatory response at least partially via blocking STAT3 activation. In addition, liquid chromatography-tandem mass spectrometry analysis identified 991 proteins encapsulated in CPCs-EVs. By bioinformatics analysis, we showed that STAT3 regulatory proteins were enriched in CPCs-EVs and could be transported to chondrocytes. To promoting the protective function of CPCs-EVs in vivo, CPCs-EVs were modified with cationic peptide ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD) for surface charge reverse. In posttraumatic OA mice, our results showed PPD modified CPCs-EVs (PPD-EVs) effectively inhibited extracellular matrix catabolism and attenuated cartilage degeneration. Moreover, PPD-EVs down-regulated inflammatory factors expressions and reduced OA-related pain in OA mice. In ex-vivo cultured OA cartilage explants, PPD-EVs successfully promoted matrix anabolism and inhibited inflammation. Collectively, CPCs-EVs-based cell-free therapy is a promising strategy for OA treatment.
Collapse
Affiliation(s)
- Kai Feng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Feng Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hongfang Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Rui Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiashuo Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaodong Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
9
|
Liu C, Sun Y, Li D, Wang F, Wang H, An S, Sun S. A multifunctional nanogel encapsulating layered double hydroxide for enhanced osteoarthritis treatment via protection of chondrocytes and ECM. Mater Today Bio 2024; 26:101034. [PMID: 38596826 PMCID: PMC11002310 DOI: 10.1016/j.mtbio.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is characterized by progressive and irreversible damage to the articular cartilage and a consecutive inflammatory response. However, the majority of clinical drugs for OA treatment only alleviate symptoms without addressing the fundamental pathology. To mitigate this issue, we developed an inflammation-responsive carrier and encapsulated bioactive material, namely, LDH@TAGel. The LDH@TAGel was designed with anti-inflammatory and antioxidative abilities, aiming to directly address the pathology of cartilage damage. In particular, LDH was confirmed to restore the ECM secretion function of damaged chondrocytes and attenuate the expression of catabolic matrix metalloproteinases (Mmps). While TAGel showed antioxidant properties by scavenging ROS directly. In vitro evaluation revealed that the LDH@TAGel could protect chondrocytes from inflammation-induced oxidative stress and apoptosis via the Nrf2/Keap1 system and Pi3k-Akt pathway. In vivo experiments demonstrated that the LDH@TAGel could alleviated the degeneration and degradation of cartilage induced by anterior cruciate ligament transection (ACLT). The OARSI scores indicating OA severity decreased significantly after three weeks of intervention. Moreover, the IVIS image revealed that LDH@TAGel enhances the controlled release of LDH in a manner that can be customized according to the severity of OA, allowing adaptive, precise treatment. In summary, this novel design effectively alleviates the underlying pathological causes of OA-related cartilage damage and has emerged as a promising biomaterial for adaptive, cause-targeted OA therapies.
Collapse
Affiliation(s)
- Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dengju Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Fan Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Senbo An
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
10
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
11
|
Zhou T, Xiong H, Yao SY, Wang S, Li S, Chang J, Zhai Z, Guo DS, Fan C, Gao C. Hypoxia and Matrix Metalloproteinase 13-Responsive Hydrogel Microspheres Alleviate Osteoarthritis Progression In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308599. [PMID: 38054626 DOI: 10.1002/smll.202308599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Indexed: 12/07/2023]
Abstract
The occurrence of osteoarthritis (OA) is highly associated with the inflammatory hypoxic microenvironment. Yet currently no attention has been paid to fabricating hypoxia-responsive platforms for OA treatment. Herein, an injectable hydrogel microsphere system (HAM-SA@HCQ) focusing on the hypoxic inflamed joint is prepared with methacrylate-modified sulfonated azocalix[4]arene (SAC4A-MA), methacrylated hyaluronic acid (HA-MA), and dithiol-terminated matrix metalloproteinase 13 (MMP-13) sensitive peptide via a microfluidic device and photo crosslinking technique, followed by encapsulation of the anti-inflammatory drug hydroxychloroquine (HCQ) through host-guest interaction. Owing to the hydrophobic deep cavity, phenolic units, and azo bonds of SAC4A-MA, the hydrogel microspheres show strong drug loading capacity, prominent reactive oxygen species (ROS) scavenging capability, and specific hypoxia-responsive drug release ability. In the OA tissue microenvironment, the hydrogel microspheres undergo degradation by excessive MMP-13 and release HCQ under the hypoxia condition, which synergizes with the ROS-scavenging calixarene to inhibit the inflammatory response of macrophages. After being injected into the OA-inflamed joint, the HAM-SA@HCQ can significantly attenuate the oxidative stress, downregulate the expression of hypoxia-induced factor-1α and inflammatory cytokines, and prevent the cartilage from being destroyed.
Collapse
Affiliation(s)
- Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shun-Yu Yao
- College of Chemistry, Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jieting Chang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Liu Y, Yao J, Deng G, Zhong G, Zhao J, Lan Q, Meng J, Yu Y, Chen F. Microgel Encapsulated Nanoparticles for Intra-articular Disulfiram Delivery to Treat Osteoarthritis. Mol Pharm 2024; 21:87-101. [PMID: 38100656 DOI: 10.1021/acs.molpharmaceut.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Osteoarthritis (OA) affects numerous patients worldwide, and there are no approved disease-modifying drugs. Repurposing FDA-approved small molecular drugs could be a promising alternative strategy to treat OA. Disulfiram (DSF), a clinically approved drug for treatment of alcoholism, inhibits inflammasome activation and exhibits a protective role in interleukin-1β-induced cardiac injury. However, its efficacy in treating OA remains to be explored due to its poor water solubility and stability, which limit its use in OA treatment. Here, the anti-inflammatory effect of DSF is evaluated in vitro, and a double-layer encapsulation approach is developed for intra-articular delivery of DSF for OA treatment in vivo. DSF is loaded into poly(lactic-co-glycolic acid)-based nanoparticles and encapsulated in gelatin methacrylate microgels through a microfluidic device. Results show that DSF effectively inhibits the expression of key inflammatory cytokines in OA chondrocytes, and the double-layer encapsulation approach reduces the burst release of DSF and prolongs its retention time in the in vitro study. Sustained release of DSF from microgels mitigates cartilage inflammation and subchondral bone erosion in a monoiodoacetate-induced rat OA model. This work demonstrates the potential of repurposing FDA-approved drugs for OA treatment and provides a promising platform for intra-articular delivery of small molecules for superior therapeutic effect.
Collapse
Affiliation(s)
- Yisi Liu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jun Yao
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guotao Deng
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gang Zhong
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianping Zhao
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiumei Lan
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinzhi Meng
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yin Yu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
13
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
14
|
Bordon G, Berenbaum F, Distler O, Luciani P. Harnessing the multifunctionality of lipid-based drug delivery systems for the local treatment of osteoarthritis. Biomed Pharmacother 2023; 168:115819. [PMID: 37939613 DOI: 10.1016/j.biopha.2023.115819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoarthritis (OA) is a widespread joint condition affecting millions globally, presenting a growing socioeconomic burden thus making the development of more effective therapeutic strategies crucial. This review emphasizes recent advancements in lipid-based drug delivery systems (DDSs) for intra-articular administration of OA therapeutics, encompassing non-steroidal anti-inflammatory drugs, corticosteroids, small molecule disease-modifying OA drugs, and RNA therapeutics. Liposomes, lipid nanoparticles, lipidic mesophases, extracellular vesicles and composite systems exhibit enhanced stability, targeted delivery, and extended joint retention, which contribute to improved therapeutic outcomes and minimized systemic drug exposure. Although active targeting strategies hold promise, further research is needed to assess their targeting efficiency in physiologically relevant conditions. Simultaneously, multifunctional DDSs capable of delivering combinations of distinct therapeutic classes offer synergistic effects and superior OA treatment outcomes. The development of such long-acting systems that resist rapid clearance from the joint space is crucial, where particle size and targeting capabilities emerge as vital factors. Additionally, combining cartilage lubrication properties with sustained drug delivery has demonstrated potential in animal models, meriting further investigation in human clinical trials. This review highlights the crucial need for direct, head-to-head comparisons of novel DDSs with standard treatments, particularly within the same drug class. These comparisons are essential in accurately evaluating their effectiveness, safety, and clinical applicability, and are set to significantly shape the future of OA therapy.
Collapse
Affiliation(s)
- Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Francis Berenbaum
- Sorbonne University, INSERM CRSA, AP-HP Saint-Antoine Hospital, Paris, France
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Singh H, Dan A, Kumawat MK, Pawar V, Chauhan DS, Kaushik A, Bhatia D, Srivastava R, Dhanka M. Pathophysiology to advanced intra-articular drug delivery strategies: Unravelling rheumatoid arthritis. Biomaterials 2023; 303:122390. [PMID: 37984246 DOI: 10.1016/j.biomaterials.2023.122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent life-long autoimmune diseases with an unknown genesis. It primarily causes chronic inflammation, pain, and synovial joint-associated cartilage and bone degradation. Unfortunately, limited information is available regarding the etiology and pathogenesis of this chronic joint disorder. In the last few decades, an improved understanding of RA pathophysiology about key immune cells, antibodies, and cytokines has inspired the development of several anti-rheumatic drugs and biopharmaceuticals to act on RA-affected joints. However, life-long frequent systemic high doses of commercially available drugs are currently a limiting factor in the efficient management of RA. To address this issue, various single and double-barrier intra-articular drug delivery systems (IA-DDSs) such as nanocarriers, microparticles, hydrogels, and particles-hybrid hydrogel composite have been developed which can exclusively target the RA-affected joint cavity and release the precisely controlled therapeutic drug concentration for prolonged time whilst avoiding the systemic toxicity. This review provides a comprehensive overview of the pathogenesis of RA and discusses the rational design and development of biomaterials-based novel IA-DDs, ranging from conventional to advanced systems, for improved treatment of RA. Therefore, this review aims to unravel the pathophysiology of rheumatoid arthritis and explore cutting-edge IA-DD strategies exploiting biomaterials. It offers researchers a consolidated and up-to-date resource platform to analyze existing knowledge, identify research gaps, and contribute to the scientific literature.
Collapse
Affiliation(s)
- Hemant Singh
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, 382055, Gujarat, India; Department of Biology, Khalifa University, Main Campus, Abu Dhabi, 127788, United Arab Emirates
| | - Aniruddha Dan
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, 382055, Gujarat, India
| | - Mukesh Kumar Kumawat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Vaishali Pawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Deepak S Chauhan
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL- 33805, USA
| | - Dhiraj Bhatia
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, 382055, Gujarat, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, 382055, Gujarat, India.
| |
Collapse
|
16
|
Zhao T, Li X, Li H, Deng H, Li J, Yang Z, He S, Jiang S, Sui X, Guo Q, Liu S. Advancing drug delivery to articular cartilage: From single to multiple strategies. Acta Pharm Sin B 2023; 13:4127-4148. [PMID: 37799383 PMCID: PMC10547919 DOI: 10.1016/j.apsb.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage (AC) injuries often lead to cartilage degeneration and may ultimately result in osteoarthritis (OA) due to the limited self-repair ability. To date, numerous intra-articular delivery systems carrying various therapeutic agents have been developed to improve therapeutic localization and retention, optimize controlled drug release profiles and target different pathological processes. Due to the complex and multifactorial characteristics of cartilage injury pathology and heterogeneity of the cartilage structure deposited within a dense matrix, delivery systems loaded with a single therapeutic agent are hindered from reaching multiple targets in a spatiotemporal matched manner and thus fail to mimic the natural processes of biosynthesis, compromising the goal of full cartilage regeneration. Emerging evidence highlights the importance of sequential delivery strategies targeting multiple pathological processes. In this review, we first summarize the current status and progress achieved in single-drug delivery strategies for the treatment of AC diseases. Subsequently, we focus mainly on advances in multiple drug delivery applications, including sequential release formulations targeting various pathological processes, synergistic targeting of the same pathological process, the spatial distribution in multiple tissues, and heterogeneous regeneration. We hope that this review will inspire the rational design of intra-articular drug delivery systems (DDSs) in the future.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoyuan Deng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianwei Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Songlin He
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuangpeng Jiang
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
18
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
19
|
Deng C, Chen Y, Zhao X, Yu L, Xiao Y, Li H, Zhang Y, Ai K, Zhou D, Bai X, Gong T, Wei J, Zeng C, Lei G. Apoptotic Neutrophil Membrane-Camouflaged Liposomes for Dually Targeting Synovial Macrophages and Fibroblasts to Attenuate Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39064-39080. [PMID: 37523857 DOI: 10.1021/acsami.3c05861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed "NM@Lip") for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints. NM@Lip has a high cellular uptake in M1 macrophages and activated SFs. Furthermore, TA-loaded NM@Lip (TA-NM@Lip) effectively repolarizes M1 macrophages to the M2 phenotype and transforms pathological SFs to the deactivated phenotype by inhibiting the PI3K/Akt pathway. NM@Lip retains in the joint for up to 28 days and selectively distributes into M1 macrophages and activated SFs in synovium with low distribution in cartilage. TA-NM@Lip decreases the levels of pro-inflammatory cytokines, chemokines, and cartilage-degrading enzymes in osteoarthritic joints. In a rodent model of osteoarthritis-related pain, a single intra-articular TA-NM@Lip injection attenuates synovitis effectively and achieves complete pain relief with long-lasting effects. In a rodent model of osteoarthritis-related joint degeneration, repeated intra-articular TA-NM@Lip injections induce no obvious cartilage damage and effectively attenuate cartilage degeneration. Taken together, TA-NM@Lip represents a promising nanotherapeutic approach for osteoarthritis therapy.
Collapse
Affiliation(s)
- Caifeng Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Yuxiao Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Xuan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Liukang Yu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
20
|
Feng K, Yu Y, Chen Z, Wang F, Zhang K, Chen H, Xu J, Kang Q. Injectable hypoxia-preconditioned cartilage progenitor cells-laden GelMA microspheres system for enhanced osteoarthritis treatment. Mater Today Bio 2023; 20:100637. [PMID: 37128287 PMCID: PMC10148185 DOI: 10.1016/j.mtbio.2023.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common age-related degenerative joint disease mainly characterized by the destruction of articular cartilage. Owing to its native avascular property, intrinsic repair of articular cartilage is very limited. Thus, a chondrogenic microenvironment in the joint is essential to the preservation of healthy chondrocytes and OA treatment. Recently, cartilage progenitor cells (CPCs)-based therapy is emerging as a promising strategy to repair degenerated and damaged articular cartilage. In this study, injectable hypoxia-preconditioned three-dimensional (3D) cultured CPCs-laden gelatin methacryloyl (GelMA) microspheres (CGMs) were constructed and characterized. Compared to normoxia-pretreated 3D CPCs and two-dimensional (2D) cultured CPCs, hypoxia-preconditioned 3D cultured CPCs exhibited enhanced cartilage extracellular matrix (ECM) secretion and greater chondrogenic ability. In addition, hypoxia-preconditioned 3D cultured CPCs more effectively maintained cartilage matrix metabolism balance and attenuated articular cartilage degeneration in subacute and chronic rat OA models. Mechanistically, our results demonstrated hypoxia-preconditioned 3D cultured CPCs exerted chondro-protective effects by inhibiting inflammation and oxidative stress via NRF2/HO-1 pathway in vitro and in vivo. Together, through the 3D culture of CPCs using GelMA microspheres (GMs) under hypoxia environment, our results proposed an efficient articular cartilage regeneration strategy for OA treatment and could provide inspiration for other stem cells-based therapies.
Collapse
Affiliation(s)
- Kai Feng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yifan Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhengsheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Feng Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kunqi Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hongfang Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Corresponding author.
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Corresponding author.
| |
Collapse
|
21
|
Jahanbekam S, Mozafari N, Bagheri-Alamooti A, Mohammadi-Samani S, Daneshamooz S, Heidari R, Azarpira N, Ashrafi H, Azadi A. Ultrasound-responsive hyaluronic acid hydrogel of hydrocortisone to treat osteoarthritis. Int J Biol Macromol 2023; 240:124449. [PMID: 37072059 DOI: 10.1016/j.ijbiomac.2023.124449] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
One of the practical ways to manage the disease flares of arthritis is using an intra-articular depot formulation of glucocorticoids. Hydrogels, as controllable drug delivery systems, are hydrophilic polymers with distinctive properties, such as remarkable water capacity and biocompatibility. This study aimed to design an injectable thermo-ultrasound-triggered drug carrier based on Pluronic® F-127, hyaluronic acid, and gelatin. The in situ hydrogel loaded by hydrocortison was developed and D-optimal design was used to formulate the process. The optimized hydrogel was combined with four different surfactants to better regulate the release rate. In situ gels composed of the hydrocortisone-loaded hydrogel and hydrocortisone-loaded mixed-micelle hydrogel were characterized. The hydrocortisone-loaded hydrogel and selected hydrocortisone-loaded mixed-micelle hydrogel showed a spherical shape and were nano-sized with a unique thermo-responsive nature able to prolong drug release. The ultrasound-triggered release study showed that drug release was time-dependent. By inducing osteoarthritis in a rat model, behavioral tests and histopathological analyses were carried out on the hydrocortisone-loaded hydrogel and a particular hydrocortisone-loaded mixed-micelle hydrogel. In vivo results showed that the selected hydrocortisone-loaded mixed-micelle hydrogel improved the status of the disease. Results highlighted the potential of ultrasound-responsive in situ-forming hydrogels as hopeful formulas for efficient treatment of arthritis.
Collapse
Affiliation(s)
- Sheida Jahanbekam
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Bagheri-Alamooti
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamooz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Nativel F, Smith A, Boulestreau J, Lépine C, Baron J, Marquis M, Vignes C, Le Guennec Y, Veziers J, Lesoeur J, Loll F, Halgand B, Renard D, Abadie J, Legoff B, Blanchard F, Gauthier O, Vinatier C, Rieux AD, Guicheux J, Le Visage C. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater Today Bio 2023; 19:100581. [PMID: 36896417 PMCID: PMC9988569 DOI: 10.1016/j.mtbio.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.
Collapse
Affiliation(s)
- Fabien Nativel
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Audrey Smith
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jeremy Boulestreau
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Charles Lépine
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Julie Baron
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Melanie Marquis
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Caroline Vignes
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Yoan Le Guennec
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Joelle Veziers
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Julie Lesoeur
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - François Loll
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Boris Halgand
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Denis Renard
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Jerome Abadie
- LabONIRIS, ONIRIS (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), F-44300 Nantes, France
| | - Benoit Legoff
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Frederic Blanchard
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Olivier Gauthier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de Recherche et D'investigation Préclinique (CRIP), F-44300 Nantes, France
| | - Claire Vinatier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jerome Guicheux
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Catherine Le Visage
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
23
|
Zhou D, Zhou F, Sheng S, Wei Y, Chen X, Su J. Intra-articular nanodrug delivery strategies for treating osteoarthritis. Drug Discov Today 2023; 28:103482. [PMID: 36584875 DOI: 10.1016/j.drudis.2022.103482] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) is characterized by progressive cartilage degeneration. Pharmaceutical intervention remains a main treatment approach. However, drug delivery via intra-articular administration (IA) can be restricted by rapid clearance, the dense and highly negatively charged extracellular matrix (ECM) of cartilage, and uneven distribution of diseased chondrocytes. Nanodrug delivery systems, such as liposomes, micelles, and nanoparticles (NPs), have shown great potential to prolong intra-articular residence, penetrate the ECM, and achieve diseased chondrocyte-specific delivery. In this review, we discuss the challenges associated with intra-articular drug delivery in OA and the nanodrug delivery strategies developed to overcome these challenges. It is anticipated that these nanodrug delivery strategies will advance IA of drugs into broader applications in OA treatment.
Collapse
Affiliation(s)
- Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China; College of Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Shihao Sheng
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China.
| | - Xiao Chen
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
24
|
Chu K, Zhu Y, Lu G, Huang S, Yang C, Zheng J, Chen J, Ban J, Jia H, Lu Z. Formation of Hydrophilic Nanofibers from Nanostructural Design in the Co-Encapsulation of Celecoxib through Electrospinning. Pharmaceutics 2023; 15:pharmaceutics15030730. [PMID: 36986590 PMCID: PMC10051909 DOI: 10.3390/pharmaceutics15030730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
This study presents a method for a one-step co-encapsulation of PLGA nanoparticles in hydrophilic nanofibers. The aim is to effectively deliver the drug to the lesion site and achieve a longer release time. The celecoxib nanofiber membrane (Cel-NPs-NFs) was prepared by emulsion solvent evaporation and electrospinning with celecoxib as a model drug. By this method, nanodroplets of celecoxib PLGA are entrapped within polymer nanofibers during an electrospinning process. Moreover, Cel-NPs-NFs exhibited good mechanical strength and hydrophilicity, with a cumulative release of 67.74% for seven days, and the cell uptake at 0.5 h was 2.7 times higher than that of pure nanoparticles. Furthermore, pathological sections of the joint exhibited an apparent therapeutic effect on rat OA, and the drug was delivered effectively. According to the results, this solid matrix containing nanodroplets or nanoparticles could use hydrophilic materials as carriers to prolong drug release time.
Collapse
Affiliation(s)
- Kedi Chu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Zhu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Geng Lu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sa Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510663, China
| | - Chuangzan Yang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Juying Zheng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junming Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junfeng Ban
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huanhuan Jia
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510663, China
- Correspondence: (H.J.); (Z.L.)
| | - Zhufen Lu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (H.J.); (Z.L.)
| |
Collapse
|
25
|
Intracellular Delivery of Itaconate by Metal–Organic Framework-Anchored Hydrogel Microspheres for Osteoarthritis Therapy. Pharmaceutics 2023; 15:pharmaceutics15030724. [PMID: 36986584 PMCID: PMC10051475 DOI: 10.3390/pharmaceutics15030724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Treatment of osteoarthritis (OA) remains a significant clinical challenge. Itaconate (IA), an emerging regulator of intracellular inflammation and oxidative stress, may potentially be harnessed to treat OA. However, the short joint residence time, inefficient drug delivery, and cell-impermeable property of IA can seriously hamper the clinical translation. Herein, IA-encapsulated zeolitic imidazolate framework-8 (IA-ZIF-8) nanoparticles were self-assembled by zinc ions, 2-methylimidazole, and IA to render them pH-responsive. Subsequently, IA-ZIF-8 nanoparticles were firmly immobilized in hydrogel microspheres via one-step microfluidic technology. It was demonstrated in vitro experiments that IA-ZIF-8-loaded hydrogel microspheres (IA-ZIF-8@HMs) exhibited good anti-inflammatory and anti-oxidative stress effects by releasing pH-responsive nanoparticles into chondrocytes. Importantly, compared with IA-ZIF-8, IA-ZIF-8@HMs showed better performance in the treatment of OA due to their superior performance in sustained release. Thus, such hydrogel microspheres not only hold enormous potential for OA therapy, but also provide a novel avenue for cell-impermeable drugs by constructing appropriate drug delivery systems.
Collapse
|
26
|
Gao J, Karp JM, Langer R, Joshi N. The Future of Drug Delivery. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:359-363. [PMID: 37799624 PMCID: PMC10553157 DOI: 10.1021/acs.chemmater.2c03003] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Affiliation(s)
- Jingjing Gao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Robert Langer
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Li J, Zhang H, Han Y, Hu Y, Geng Z, Su J. Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023; 13:931-954. [PMID: 36793867 PMCID: PMC9925319 DOI: 10.7150/thno.78639] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/07/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by loss of articular cartilage and chronic inflammation, involving multiple cellular dysfunctions and tissue lesions. The non-vascular environment and dense cartilage matrix in the joints tend to block drug penetration, resulting in low drug bioavailability. There is a desire to develop safer and more effective OA therapies to meet the challenges of an aging world population in the future. Biomaterials have achieved satisfactory results in improving drug targeting, prolonging the duration of action, and achieving precision therapy. This article reviews the current basic understanding of the pathological mechanisms and clinical treatment dilemmas of OA, summarizes and discusses the advances for different kinds of targeted and responsive biomaterials in OA, seeking to provide new perspectives for the treatment of OA. Subsequently, limitations and challenges in clinical translation and biosafety are analyzed to guide the development of future therapeutic strategies for OA. As the need for precision medicine rises over time, emerging multifunctional biomaterials based on tissue targeting and controlled release will become an irreplaceable part of OA management.
Collapse
Affiliation(s)
- Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai 200444, China.,School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
28
|
Xu XL, Xue Y, Ding JY, Zhu ZH, Wu XC, Song YJ, Cao YL, Tang LG, Ding DF, Xu JG. Nanodevices for deep cartilage penetration. Acta Biomater 2022; 154:23-48. [PMID: 36243371 DOI: 10.1016/j.actbio.2022.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease and is the main cause of chronic pain and functional disability in adults. Articular cartilage is a hydrated soft tissue that is composed of normally quiescent chondrocytes at a low density, a dense network of collagen fibrils with a pore size of 60-200 nm, and aggrecan proteoglycans with high-density negative charge. Although certain drugs, nucleic acids, and proteins have the potential to slow the progression of OA and restore the joints, these treatments have not been clinically applied owing to the lack of an effective delivery system capable of breaking through the cartilage barrier. Recently, the development of nanotechnology for delivery systems renders new ideas and treatment methods viable in overcoming the limited penetration. In this review, we focus on current research on such applications of nanotechnology, including exosomes, protein-based cationic nanocarriers, cationic liposomes/solid lipid nanoparticles, amino acid-based nanocarriers, polyamide derivatives-based nanocarriers, manganese dioxide, and carbon nanotubes. Exosomes are the smallest known nanoscale extracellular vesicles, and they can quickly deliver nucleic acids or proteins to the required depth. Through electrostatic interactions, nanocarriers with appropriate balance in cationic property and particle size have a strong ability to penetrate cartilage. Although substantial preclinical evidence has been obtained, further optimization is necessary for clinical transformation. STATEMENT OF SIGNIFICANCE: The dense cartilage matrix with high-negative charge was associated with reduced therapeutic effect in osteoarthritis patients with deep pathological changes. However, a systematic review in nanodevices for deep cartilage penetration is still lacking. Current approaches to assure penetration of nanosystems into the depth of cartilage were reviewed, including nanoscale extracellular vesicles from different cell lines and nanocarriers with appropriate balance in cationic property and size particle. Moreover, nanodevices entering clinical trials and further optimization were also discussed, providing important guiding significance to future research.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai 201613, China
| | - Jia-Ying Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Heng Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi-Chen Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Jia Song
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Long-Guang Tang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
29
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
30
|
Bassand C, Villois A, Gianola L, Laue G, Ramazani F, Riebesehl B, Sanchez-Felix M, Sedo K, Ullrich T, Duvnjak Romic M. Smart design of patient centric long-acting products: from preclinical to marketed pipeline trends and opportunities. Expert Opin Drug Deliv 2022; 19:1265-1283. [PMID: 35877189 DOI: 10.1080/17425247.2022.2106213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION We see a development in the field of long-acting products to serve patients with chronic diseases by providing benefits in adherence, efficacy and safety of the treatment. This review investigates features of long-acting products on the market/pipeline to understand which drug substance (DS) and drug product (DP) characteristics likely enable a successful patient-centric, low-dosing frequency product. AREAS COVERED This review evaluates marketed/pipeline long-acting products with greater than one week release of small molecules and peptides by oral and injectable route of administration (RoA), with particular focus on patient centricity, adherence impact, health outcomes, market trends, and the match of DS/DP technologies which lead to market success. EXPERT OPINION Emerging trends are expected to change the field of long-acting products in the upcoming years by increasing capability in engineered molecules (low solubility, long half-life, high potency, etc.), directly developing DP as long-acting oral/injectable, increasing the proportion of products for local drug delivery, and a direction towards more subcutaneous, self-administered products. Among long-acting injectable products, nanosuspensions show a superiority in dose per administration and dosing interval, overwhelming the field of infectious diseases with the recently marketed products.
Collapse
Affiliation(s)
- Céline Bassand
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Lucas Gianola
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Grit Laue
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Bernd Riebesehl
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Manuel Sanchez-Felix
- Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, MA 02139, USA
| | - Kurt Sedo
- PharmaCircle LLC, Sunny Isles Beach, FL, USA
| | - Thomas Ullrich
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | | |
Collapse
|